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THE ALGEBRA OF BOUNDED CONTINUOUS FUNCTIONS
INTO A NONARCHIMEDEAN FIELD

RICHARD STAUM

Let £ be a topological space, F a complete nonarchimedean
rank 1 valued field, and C*(S, F) the Banach algebra of
bounded, continuous, F-valued functions on &. Various topo-
logical conditions on S and/or F are shown to be equivalent,
respectively, to each of the following: every maximal ideal
of C*(S, F) is fixed; the only quotient field of C*(S, F) is F
itself; every homomorphism of C*(S, F) into F is an evaluation
at a point of S; the Stone-Weierstrass theorem holds for
C*(S, F). It is also shown that a certain topological space
derived from S may be embedded in the space of maximal
ideals of C*{S, F) with Gelfand topology, or in the space of
homomorphisms of C*(S, F) into F.

0. Introduction* Throughout this paper, C*(S, F) denotes the
Banach algebra of bounded, continuous functions on a topological
space S into a complete nonarchimedean rank 1 valued field F. We
introduce several stronger-than-usual topological separation properties,
such as ultrahausdorff, ultraregular, and ultranormal; and several
weaker-than-usual compactness properties, such as mildly compact,
mildly countably compact, and mildly Lindelof. We then show that
several key implications involving C*(S, F) become equivalences when
the new topological properties replace their conventional counterparts.

In §1, we define and discuss these new topological properties,
and relate them to the cofilters ("ouf-filtres") of van der Put [13].
In §2, we obtain a result on the metric structure of non-locally
compact nonarchimedean Banach spaces.

In §3, we show that all maximal ideals of C*(S, F) are fixed if
and only if S is mildly compact (Theorem 15); and that F is the only
quotient field of C*(S, F) if and only if F is locally compact or S is
mildly countably compact (Theorem 19). Using the result of §2, we also
give necessary and/or sufficient conditions for the only homomorphisms
of C*(S, F) into F to be evaluations at points of S (Theorems 20 and
21). We also show that the set of quasicomponents of S, appropriately
topologized, is homeomorphic to the space of fixed maximal ideals of
C*(S, F), with either of the Gelfand topologies defined by Shilkret
[14] (Theorems 10 and 12).

In §4, we extend results of Kaplansky [7] and Chernoίf, Rasala,
and Waterhouse [3]: we introduce two versions of the Stone-Weierstrass
property, and show that the stronger version in C*(S, F) is equivalent
to mild compactness of S, and the weaker version is sufficient for mild

169



170 RICHARD STAUM

countable compactness of S (Theorems 22 and 23).
It is interesting to note that many of our results involve properties

of S only, and are independent of the choice of the nonarchimedean
field F.

1* Topology* A quasicomponent of S is a minimal nonempty
intersection of sets clopen in S. The quasicomponents form a partition
of S into closed sets. Each quasicomponent is a union of components;
if S is compact and Hausdorff, the quasicomponents and components
are identical [6].

Distinct points or sets in S will be called ultraseparated if they
are contained in disjoint clopen sets. S will be called ultrahausdorff,
or UT2, if distinct points are ultraseparated; equivalently, if every
quasicomponent is a singleton. After Ellis [4], S will be called
ultraregular, or UR, if disjoints points and closed sets are ultra-
separated; equivalently, if S has a basis consisting of clopen sets. S
will be called ultranormal, or UN, if disjoint closed sets are ultra-
separated.

S is totally disconnected, or TO, if every component is a singleton.
Hence, if S is ultrahausdorff, it is totally disconnected; and if S is
compact, Hausdorff, and totally disconnected, then it is ultrahausdorff.
We also note that, for a 7\ space, ultranormality implies ultraregularity,
and ultraregularity implies the ultrachausdorff property. For a com-
pact space, the ultrahausdorff property implies ultraregularity, and
ultraregularity implies ultranormality.

LEMMA 1. In an ultraregular space, every open or closed set is
a union of quasicomponents.

Proof. If S is ultraregular, then every open set is a union of
clopen sets and hence a union of quasicomponents. It follows that
every closed set, being the complement of an open set, is also a union
of quasicomponents.

LEMMA 2. Let G be a family of functions on a set A into a
topological space B, and let A be topologized with the weak-G topology.
Then:

(1) If B is ultraregular, A is ultraregular.
(2) If B is ultrahausdorff, and G separates points of A, then

A is ultrahausdorff.

Proof. (1) If B is ultraregular, it has a clopen basis. The
preimages, under the members of G, of these clopen sets form a
clopen subbasis for A. Hence A is ultraregular.
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(2) Let p and q be distinct points of A. If G separates points,
then g(p) Φ g(q) for some g in G. If B is ultrahausdorff, then g(p)
and g(q) are contained in disjoint clopen sets V and W of B. Hence
g~\V) and g~~\W) are disjoint clopen neighborhoods of p and q in A.
Thus, A is ultrahausdorff.

THEOREM 1. S is ultraregular if and only if the topology on S
is the weak-C*(S, F) topology.

Proof. If JS is ultraregular, it has a clopen basis. Since C*(S, F)
contains all characteristic functions of clopen sets, it follows that
these basis sets are weak-C*(£, F) clopen as well. Hence the two
topologies are identical.

To prove the converse, we apply Lemma 2, part (1), setting A =
S,B = F, and G = C*(S, F). Since F is ultraregular, it follows that
the weak-C*(S, F) topology on S is ultraregular.

We will call S mildly compact, or MC, if every clopen cover of
S has a finite subcover; mildly countably compact if every countable
clopen cover has a finite subcover; and mildly Lindelof if every clopen
cover has a countable subcover.

We mention several examples. The closed interval [0, 1], with
the points 1, 1/2, 1/3, deleted, is mildly compact but not compact.
A countably infinite set with discrete topology is mildly Lindelof,
but not mildly countably compact. The space of all countable ordinals
is mildly countably compact, but not mildly Lindelof [5].

LEMMA 3. S is mildly countably compact if and only if every
partition of S into clopen sets is finite.

Proof. If S is not mildly countably compact, it has a clopen
cover {Ail i = 1, 2, 3, •} with no finite subcover. For each positive
integer n, let Bn = An — \J {A^: 1 ̂  i < n). Then the nonempty mem-
bers of the family {Bn: n — 1, 2, 3, •} form an infinite clopen partition
of S. The proof of the converse is direct.

THEOREM 2. (1) An ultraregular, mildly compact space is compact.
(2) An ultraregular, mildly Lindelof space is Lindelof.

Proof. If S is ultraregular, it has a clopen basis. If S is also
mildly compact, then every covering of S by members of this basis
has a finite subcover. This last condition is sufficient for compactness
[8]. The proof for mildly Lindelof spaces is similar.

The following diagrams of implications summarize some of our
results. In these diagrams, COMP denotes "compact".
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DIAGRAM 1. For all spaces,

TD, COMP <— UT2, COMP — UR, COMP — [7ΛΓ, COMP

), MC — £77% MC £722, MC = > C/iSΓ, M C .

DIAGRAM 2. .For Hausdorff spaces,

TD, COMP <=> Z7T2, COMP — UR, COMP <=> UN, COMP

TD, MC — OT2, MC — L7B, ΛfC — *

We note that all the implications of Diagram 2, except TD,
C0MP=>UT2, COMP, hold for 7\ spaces as well.

The quasicomponent quotient space of S, denoted Q(S), will be
the space of quasicomponents of S with the quotient topology [9].
For each point s of S, Q(s) will denote the quasicomponent containing
s. If P is a clopen set in S, and hence a union of quasicomponents,
then Q(P) is clopen in Q(S). If S is ultraregular, we also have,
using Lemma 1: If P is open, then Q(P) is open; and if P i s closed,
then Q(P) is closed. The following theorem is now obvious:

THEOREM 3. (1) Q(S) is ultrahausdorff. The quotient mapping
Q: S—> Q(S) is a homeomorphism if and only if S is ultrahausdorff.

( 2) If S is ultraregular, Q(S) is ultraregular.
(3 ) If S is compact, Q(S) is compact.
(4) Q(S) is mildly compact, or mildly countably compact, or

mildly Lindelof, if and only if S has the same property.

The ultraregular kernel of S, denoted K(S), will be the space
whose points are the points of S and whose topology is generated by
the clopen sets of S. It is obvious that:

THEOREM 4. (1) The topology of K(S) is the weak-C*{S,F)
topology {for any nonarchimedean field F).

(2) K(S) is ultraregular. The topologies of S and K(S) are
identical if and only if S is ultraregular.

(3) A subset of S is clopen in K(S) if and only if it is clopen
in S.

(4) K(S) is ultrahausdorff if and only if S is ultrahausdorff.
( 5) If S is compact, K(S) is compact.
(6) K(S) is mildly compact, or mildly countably compact, or

mildly Lindelof, if and only if S has the same property.
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We now show that the mappings Q and K commute.

THEOREM 5. K(Q(S)) and Q(K(S)) are identical topological spaces.

Proof. The points of both K(Q(S)) and Q(K(S)) are the quasicom-
ponents of S. To show that the topologies are identical, we note
that the following statements are equivalent:

R is an open set in K(Q(S)).
R is a union of clopen sets of Q{S).
Q~ι{R) is a union of clopen sets of S.
Q~iR) is open in K(S).
R is open in Q(K(S)).
Henceforward, QK(S) will denote the topological space of Theorem

5. We note that this space is both ultrahausdorίf and ultraregular.
A filter on S with a base consisting of clopen sets will be called

a cofilter, and a maximal cofilter will be called an ultracofilter. An
arbitrary filter H will be called fixed (after van der Put, [13]) if it
has nonempty intersection; if M is a cardinal number, H will be
called M-fixed if every intersection of M members of H is nonempty.
We will say that H recognizes a partition {A^. i e 1} of S if one of the
sets Ai is in H. We note that a cofilter on S is an ultracofilter if
and only if it recognizes all finite partitions of S into clopen sets.
It is obvious that:

LEMMA 4. If an ultracofilter on S is M-fixed, for some infinite
cardinal M, then it recognizes all clopen partitions of S of cardinality
M.

A partial converse to Lemma 4 is:

LEMMA 5. If a cofilter H on S recognizes all countable clopen
partitions of S, then H is countably fixed.

Proof. If H is not countably fixed, then it contains a family
{Ai%. i = 1, 2, 3, •} of clopen sets with empty intersection. For every
positive integer n, let Bn = Π {-4< 1 ̂  ^ n}', then {Bn: n = 1,2,3, •}
is a family of clopen sets in iJ, ordered by exclusion, with empty
intersection. Let d = S — Biy and for n > 1, let Cn = Bn^ — Bn.
Then the family {Cn: n = 1, 2, 3, •} forms a clopen partition of S,
but none of these sets is in H. Hence H does not recognize all
clopen partitions of S.

Nonmeasurable cardinals [5] may be characterized as follows:
every countably fixed ultrafilter on a set of nonmeasurable cardinality
is fixed. It is known that the nonmeasurable cardinals include ^0>
5rti> ^2, ' "I they are closed under exponentiation, passage to a successor
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or to any smaller cardinal, and the supremum operation over a non-
measurable index. The conjecture that all cardinals are nonmeasurable
remains unproved; however, it is known that it can never be disproved.

LEMMA 6. An ultracofilter U on S is countably fixed if and only
if it recognizes all clopen partitions of S of nonmeasurable cardinality.

Proof. If U recognizes all clopen partitions of S of nonmeasurable
cardinality, then, by Lemma 5, U is countably fixed. Conversely,
suppose U is countably fixed and {A^ie 1} is a clopen partition of S of
nonmeasurable cardinality. Then U induces, via the quotient mapping,
a countably fixed ultrafilter U' on the family {A^. i e I}. Since this
family is of nonmeasurable cardinality, Uf is fixed—that is, Uf contains
a singleton {Ad}. Hence Ad is in U, so U recognizes the partition
{A-iel}.

Taking the dual versions of our compactness definitions, and using
Lemma 6, we easily have the following lemmas:

LEMMA 7. S is mildly compact if and only if every ultracofilter
on S is fixed.

LEMMA 8. The following are equivalent:
(1) S is mildly countably compact.
(2) Every ultracofilter on S is countably fixed.
(3) Every ultracofilter on S recognizes all clopen partitions of

S of nonmeasurable cardinality.

LEMMA 9. The following are equivalent:
(1) S is mildly Lindelof.
(2) Every countably fixed ultracofilter on S is fixed.
(3) Every ultracofilter on S which recognizes all clopen partitions

of S of nonmeasurable cardinality is fixed.

2. The density of a nonarchimedean Banach space* Let X
be a nonarchimedean Banach space over F. We will assume that
\F\ s ||X|| § C1(|F|); i.e., (1) X has a unit vector, and (2) if F is
discrete, then ||X|| = \F\.

A sphere T(x, d) = {y e X: 11 y — x \ | ^ d) in X will be called a closphere;
a sphere W(x, d) = {y e X: \\y — x\\ < d) will be called an osphere.
V(X) will denote the closphere and subring T(0, 1). All clospheres
and ospheres are clopen sets; every point of a closphere or osphere is a
center; and the clospheres, or ospheres, of any fixed radius form a
partition of X [1]. For any xe X, aeF, and d > 0, we have:
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a- T(x, d) = T(ax, \a\-d) a- W(x, d) = W(ax, \a\-d) .

THEOREM 6. // X is locally compact, then every partition of a
closphere in X into clospheres of a fixed smaller radius is finite.

Proof. If X is locally compact, it contains a compact sphere K.
Since every other sphere in X is homeomorphic, by a translation and
scalar multiplication, to a clopen subset of K, it follows that every
sphere in X is compact. The theorem follows.

The remainder of this section is devoted to proving the companion
theorem:

THEOREM 7. // X is not locally compact, there exists an infinite
cardinal D(X) such that: if deCl(\F\), then every partition of a
closphere of radius d in X into clospheres of a fixed smaller radius
is of cardinality D(X).

For 0 < d < 1, let r(X, d) denote the cardinality of the partition
of V(X) into clospheres of radius d. Obviously, if 0 < c < d < 1, then
r(X, c) ̂  r(X, d).

LEMMA 10. // 0 < c < 1, 0 < d < 1, and de\F\, then r(X, cd) =
r(X, c) r(X, d).

Proof. Choose aeF with |a | = d. Since V(X) contains r(X, c)
distinct clospheres of radius c, it follows that T(0, d) = a. V(X) con-
tains r{X, c) distinct clospheres of radius cd. By translation, every
closphere in X of radius d contains r(X, c) distinct clospheres of radius
cd; so V(X), which contains r(X, d) clospheres of radius d, must
contain r(X, c)-r(X, d) clospheres of radius cd.

COROLLARY 11. If 0 < d < 1 and de\F\, then r(X, dn) = r{X, d)n

for any positive integer n.

LEMMA 12. If X is not locally compact, and 0 < d < 1, then
r(X, d) is infinite.

Proof. Shilkret [14] has shown that if X is not locally compact,
then it is not discrete or has infinite residue space. If X is not
discrete, then for some d > 0 there is a family {xn: n = 1, 2, 3, •}
in X such that d < \\xn\\ < 1 for all n and ||α?Λ|| Φ \\xm\\ for n Φ m.
Hence the clospheres {T(xn, d): n = 1, 2, 3, •} are distinct in V(X),
so r(X, d) is infinite.

If X has infinite residue space, then the members of the residue
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space form a partition of V(X) into ospheres of radius 1. Since this
partition is infinite, the equivalent or finer partition into clospheres
of radius d must also be infinite. Hence r(X, d) is infinite.

LEMMA 13. If X is not locally compact, then the cardinal numbers
{r(X, d): 0 < d < 1} are all equal.

Proof. (1) Suppose X and F are not discrete, and 0 < c < d < 1.
Choose ee\F\ and a positive integer n such that d < e < 1 and en < c.
Applying Corollary 11 and Lemma 12, we have:

r(X, d) t: r(X, e) = r(X, e)n = r(X, en) ^ r(X, c) ^ r(X, d) .

Hence r(X, c) - r(X, d).
(2) Suppose X and F are discrete, with | |X| | = \F\, and 0 <

d < 1. Let e < 1 be a generator of the multiplicative group \F — {0} |,
and let n be the integer satisfying en ^ d < e*"""1. Then every closphere
of radius d is a closphere of radius en; hence, by Corollary 11 and
Lemma 12,

r(X, d) = r(X, β ) = r(X, β)w - r(X, β) .

For X not locally compact, we now define D(X), the density of
X, to be r(X, d) for any d between 0 and 1. For X locally compact,
it will be convenient to define D(X) to be 1.

Proof of Theorem 7. Suppose X is not locally compact, T{x, d)
is a closphere in X with deC\{\F\), and P is a partition of T(x, d)
into clospheres of radius c < d.

(1) If de\F\, then T(x, d) is homeomorphic, by a translation
and scalar multiplication, to V(X); and this homeomorphism carries
P, in a one-to-one fashion, onto the partition of V(X) into clospheres
of radius c/d. Hence, card (P) = r(X, c/d) = D(X).

( 2 ) If <2 6 Cl (\F\), then there exist β, / e | F | such that c < β <
d < /. Obviously, T(x, e) £ Γ(α?, d) £ Γ(α?, /) ; and by part (1), T(x, e)
and T(x, /) both contain precisely D(X) clospheres of radius c. It
follows that T(x, d) contains D(X) clospheres of radius c, so card (P) —
D{X).

3* Maximal ideals of C*(S, F). Let X be a commutative non-
archimedean Banach algebra over F, with identity e of norm 1.

Each quotient field FM = X/Λί, for Λf a maximal ideal of X, is
both a field extending F (identifying each beF with b-e + ikfG.FV),
and a normed algebra over ί 7 whose quotient norm extends the valuation
on F [11].
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Each xe X gives rise to a function x* on Wl, the family of maximal
ideals of X, given by x*(M) = x + MeFM(Me Wft). The family X* =
{x*:xeX}, with the supremun norm, is a normed algebra over F.

After Shilkret [15], we let W = {MeWl: FM = F}, and Xo =
{xeX:x*(M)eF(MeWl)}. On 2R, the Gelfand topology is the weak-
XQ topology; on Sft', and all subsets of SPΐ', the strong Gelfand topology
is the weak-X* topology, and the weak Gelfand topology is the weak-
Xo* topology.

THEOREM 8. (1) All Gelfand topologies are ultraregular. (2)
The strong Gelfand topology on W is ultrahausdorff.

Proof. We apply Lemma 2, with A = Wl' or Wl, B = F, and G =
Xo* or X*. Part (1) follows immediately; part (2) follows from the
observation that X* separates points of 2JΪ\

For the remainder of this paper, X will be the algebra C*(S, F).
T(b, d) and W(b, d) will denote clospheres and ospheres in F. 3K" will
denote the family {Ms: seS} of fixed maximal ideals of X, where M$ =
{xGX: x(s) = 0}. We note that x*(M8) = x(s) eF for all xeX and
Ms G 2K"; hence 9W" £ W s SK.

THEOREM 9. For s,teS: Ms = Mt if and only if Q(s) = Q(t).

Proof. If MSΦ Mt9 then x(s) = 0 ^ a?(ί) for some a e l Let C be
a clopen neighborhood of 0 in F excluding x(t); then x~~ι(C) is a clopen
set in S containing s but not t. Hence Q(s) Φ Q(t).

Conversely, if Q(s) Φ Q(t), there is a clopen set K in S containing
s but not t. Since the characteristic function of K belongs to Mt but
not M8, we have Ms Φ Mt.

COROLLARY 14. Each member of X is constant on quasicomponents
of S.

COROLLARY 15. There is a natural one-to-one correspondence
between QK(S) and Wl", given by Q(s) —+ Ms(s e S).

COROLLARY 16. The natural mapping ofS onto W is a bisection
if and only if S is ultrahausdorff.

LEMMA 17. Xo contains all characteristic functions in X.

Proof. If x e X is a characteristic function, then x2 — x = 0.
Hence, for all Me 3K, x*(M)2 - x*(M) = 0; so x*(M) = 0 or 1. I t
follows that x e XQ.
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THEOREM 10. The weak and strong Gelfand topologies on 3ft"
are identical. This topology is ultrahausdorff and ultraregular.

Proof. Let (x*y\P) be a strong-Gelfand subbasic set in 3ft",
where P is an osphere in F, x e X> and x* is regarded as a function
on 3ft". Then

(x*)~\P) = {Ms: x*(M.) eP} = {Ms: x(s) e P} = {Ms: s e x~\P)}. Since
x~\P) is clopen in S, we have x~ι{P) = y~ι(Q), where y is the charac-
teristic function of x~\P), Q is a clopen set in F containing 1 but not 0,
and y* is regarded as a function on 3ft". It follows that (#*)"""%?) =
(2/*)""1(Q)> & weak-Gelfand open set. Hence the two Gelfand topologies
on 3ft" are identical; by Theorem 8, this topology is ultrahausdorff
and ultraregular.

We can now speak of the Gelfand topology on 3ft" without ambiguity.
We now show that C*(S, F) is congruent to the algebra of bounded,

continuous, F-valued functions on an ultrahausdorff, ultraregular space.

THEOREM 11. C*(S, F) is congruent to C*(QK(S), F).

Proof. Let Q': C*(QK(S), F) — C*(S, F) be given by Q\xf) = χΌQ.
Obviously, Q* is a ring homomorphism and an isometry. To show
that Q' is onto C*(S, F), consider any x e C*(S, F). Let xr e C*(QK(S),
F) be given by x'(Q{s)) = x(s)(s e S). By Corollary 14, x' is well-
defined; since x is continuous on S, x9 is continuous on QK(S); and
obviously Q'{xf) = x.

Thus, in general, we can only hope to recover the structure of
QK(S) from that of X. Only where S is homeomorphic to QK(S) —
i.e., where S is ultraregular and TV—can we hope to recover S itself.

Using the facts that the topology on QK(S) is the weak-C*(Q.K(S),
F) topology, and the topology on 3ft" is the weak-C*(S, F)* topology,
we easily have:

THEOREM 12. The natural bisection of QK(S) onto 3ft" is a
homeomorphism.

COROLLARY 18. The natural mapping of S onto 3ft" is continuous;
it is a homeomorphism if and only if S is ultraregular and Tλ.

We now establish a one-to-one correspondence between the closed
ideals of X and the cofilters on S.

For each x e X, a smallset of x will be a set

Sm(x, d) = {seS: \x(s)\ < d] = χ-\W(jb, d)) for some d > 0 .

Obviously, all smallsets are clopen. The zero-set Z{x) will be the set
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x"X0). For any clopen set L in S, C(L) will denote the characteristic
function of L.

For any proper ideal I of X, let G\I) denote the family of all
smallsets of members of I, and let (?"(/) denote the family of zero-
sets of characteristic functions of /.

LEMMA 19. G'(I) = G"{I) for any ideal I in X.

Proof. Let N = Sm{x, d) e G'(/). Let ye X be given by y(s) =
0(s e N), y(s) = xisy'is $ N). Then xy = C(S - N) is in /, so N =
Z(xy) is in G"(/). Thus, (?'(/) S G"(/). The reverse inclusion is
trivial.

We can now show that G'{I) generates a cofilter G(I) on S. First,
if L, MG G'(J), then C(S - L), C(S - M)el; hence C(S - L n Λf) =
C(S - L) + C(S - Λf) - C(S - L) C(S - M)el; so L n l e G'(I).
Second, ^ = Z(e) έ G'(I).

For any cofilter G on S, let /(G) denote the family of members
of X all of whose smallsets are in G.

LEMMA 20. I(G) is a closed ideal in X, for any cofilter G on S.

Proof. If x, y e I(G), then for any d > 0, Sm(x + y, d)e G, since
Sm(x + y,d)S Sm{x, d) Π Sm(y, d) e G; hence x + y e I(G). If α; e 7(G)
and yeX, then for any d > 0, Sm(xy, d)eG, since Sm(xy, d) 3
SraO, dll^/IΓ1) e G; hence ^ e /(G), so /(G) is an ideal. If z e Cl (/(G)),
then for any d > 0, \\z — a?|| < d for some α e I{G), so Sm(z, d) —
Sm(x, d) G G; hence z G I(G), SO ICG) is closed.

LEMMA 21. (1) I(G(I)) = C1(I) /or any tdβai I m X (2)
G(I(G)) = G /or ani/ cofilter G on S.

Proof. (1) Let a e I(G(I)). For any <Z > 0, Sm(x, d) e G(I); hence
(̂ , d) - «(C(L)) for some C(L) e I; so x C(L) e I and || a? - α? C(L) || <

d. Thus a G Cl (I), so I(G(I)) S Cl (I). The reverse inclusion follows
from the fact that I(G(I)) is a closed ideal containing /.

(2) Let L G G(I(G))J Then L a If for some Me G'(/(G)); hence
C(S - M) G J(G), so Λf - Sm(C(S - M), 1/2) eG; so L e G. Thus
G(I(G)) £ G. The reverse inclusion is trivial.

The following theorem is now obvious.

THEOREM 13. (1) There is a one-to-one correspondence between
the proper closed ideals of X and the cofilters on S, given by I—•
G(/), with inverse G—*I(G).

(2) This correspondence carries the maximal ideals of X onto
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the ultracofilters on S, and the fixed maximal ideals onto the fixed
ultracofilters.

THEOREM 14. 3ft" is Gelfand-dense in 3ft, and weak-Gelfand
dense in 3ft'.

Proof. Let Ne 2ft, and let V = {M e 2ft: \xf(M)\ <d(l^i^ n)}
be a typical Gelfand-basic neighborhood of N, where d > 0 and xζ e
Xo Π N(l <:i<Zn). Then the smallsets {Sm(xif d): 1 ^ i <* n} all belong
to the ultracofilter G(N); so the intersection of these smallsets is
nonempty and contains a point s. Hence \xf(Ms)\ = \%i(s)\ < d(l ^
i ^ n), so Ms e V. Thus N is in the Gelfand-closure of 3ft", and 3ft"
is Gelfand-dense in 3ft. The proof that 2ft" is weak-Gelfand dense in
3ft' is similar.

COROLLARY 22. The natural bijection of QK(S) onto 3ft" carries
QK(S) onto a dense subspace of both 3ft and 3ft'.

From Lemma 7 and Theorem 13, we now have the key result:

THEOREM 15. 3ft" = 3ft if and only if S is mildly compact.

The following corollary will be of use later.

COROLLARY 23. Suppose T is a mildly compact topological space,
Γ is an ideal in C*(Γ, F), and the members of Γ do not all vanish
at any point of T. Then Γ = G*{T, F).

Collecting results, we now nave the following theorem on the
natural injection B:Q(S)—>2ft and the mapping BoQ; S-+WI.

THEOREM 16. (1) B is a homeomorphism if and only if S is
mildly compact.

(2) BoQ is a bijection if and only if S is mildly compact and
ultrahausdorff.

(3) BoQ is a homeomorphism if and only if S is compact and
ultrahausdorff.

We note that, by Theorem 13, 3ft = {I(U): Uan ultracofilter on S}.

THEOREM 17. For any xeX, \\x\\ - ||a?*(I(I7))|| for some I(U) in
3ft; i.e., each member of X realizes its norm on some maximal ideal.

Proof. Let xeX. For d > 0, let K(d) = {seS:\x(s)| > d). The



THE ALGEBRA OF BOUNDED CONTINUOUS FUNCTIONS 181

family {K(d): 0 < d < ||α?||} generates a coίilter on S, and is therefore
contained in an ultracoίilter U.

For yeI(U) and 0 < d < ||a?||, the sets Sm(y, d) and K(d) are
both in U; hence some seS belongs to Sm(y, d) Π K(d); so \y(s)\ < d,
\x(s)\ >d, and \\x - y\\>d. Therefore, \\x-y\\ ^ ||a?|| for all yel(U),

so ||a?*(/(ϊ/))|| = inΐ{\\x - y\\:yeI(U)} ^ ||a?||. The reverse inequality
is trivial.

THEOREM 18. The following are equivalent:

( 1 ) For any x e X, \\x\\ = |x(s)\ for some s e S; i.e., each member
of X realizes its norm at some point of S.

( 2 ) F is discrete, or S is mildly countably compact.

Proof. Suppose (2) is false. Then there is a clopen partition
{At: i = 1, 2, 3, •} of S, and a bounded sequence {b^. i — 1, 2, 3, •}
in F such that {| b{ |: i = 1,2,3, } is strictly increasing. Let x e X be
given by x(s) = 6 ^ e i4<f i ^ 1). Then for any seS,\ x(s) \ < sup{| 641: i =
1, 2, 3, •} = ||a?||. The proof of the converse is similar.

For x e X, and U an ultracoίilter on S, x( U) will denote the filter
on F generated by the family {x(T): TeU}.

LEMMA 24. If x e X, U is an ultracofilter on S, and beF, then
x*(I(U)) = b if and only if x(U) converges to b.

Proof. Suppose x*(I(U)) = b. Then (x - b-e)*{I(U)) = 0, so
x — b ee I(U). Hence, for any d > 0,

Sm(x - δ e, d) = {seS: \x(s) - b\ < d) - ^ ( ^ ( 6 , d))

is in U, so W(6, d) is in x(U). Thus, every osphere containing b is
in x(U), so x(£7) converges to b. The proof of the converse is similar.

COROLLARY 25. A maximal ideal I(U) is in Wl' if and only if

x(U) converges for all xeX.

THEOREM 19. W = SK (i.e., F is the only quotient field of X) if
and only if F is locally compact or S is mildly countably compact.

Proof. (1) Let J(U) e SW. For x e X, and d > 0, let {T(bif d): i e 1}
be a partition of the closphere Γ(0, ||a;||) into clospheres of radius d.
Then the nonempty members of the family {x^T^, d)):iel} forma
clopen partition of S. If F is locally compact (in which case I is
finite) or S is mildly countably compact, this partition must be finite;
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hence one set x~\T{bh d)) is in U. Thus T{bh d) is in x{U), so x{U)
contains clospheres of arbitrarily small radius. Since F is complete,
x(U) converges. By Corollary 25, I(U)eW; so W = m.

(2) Suppose F is not locally compact and S is not mildly coun-
tably compact. Then for some d > 0, there is a bounded sequence
{hi', i = 1, 2, 3, •} in F such that | b{ — bs\ > d for i Φ j ; and there
is a countable clopen partition {A^ i = 1, 2, 3, •} of S. The family
{S — A{: i = 1, 2, 3, •} generates a cofilter on $, and is therefore
contained in an ultracofilter U. Let xeX be given by x(s) = ί>;(s e A<,
i ^ 1). Then x(U) contains no closphere of radius d, since it contains
the complement of every such closphere. Hence x(U) does not con-
verge in F9 so 1(17) is not in W. Thus W Φ SW.

LEMMA 26. A maximal ideal I(U) belongs to 5ΰlr if and only if
U recognizes all clopen partitions of S of cardinality less than or
equal to D(F).

Proof. We may assume that F is not locally compact, for other-
wise the lemma is trivial. Suppose that U recognizes all clopen
partitions of S of cardinality less than or equal to D{F), and let x e
X and 0 < d < \\x\\. Let {T(bi9 d):iel} be a partition of T(0, ||a?||);
then card (I) = D(F). The nonempty members of the family {xΓ\Tφi9

d)):ie 1} form a clopen partition of S of cardinality less than or equal
to D(F); hence U contains a set x~\T(bh d)). Thus, T(b3 , d) is in
x(U); x(U) contains arbitrarily small spheres; x(U) converges; and
I(U) is in W. The proof of the converse is similar to part (2) of
the proof of Theorem 19.

Recalling Lemma 6, we have:

COROLLARY 27. If D(F) is an infinite, nonmeasurable cardinal,
then I(U) is in 2K' if and only if U is countably fixed.

Using Theorems 13, 15, and 19, Lemmas 9 and 26, and Corollary
27, we have the following theorems:

THEOREM 20. W — W if and only if every cofilter on S which
recognizes all clopen partitions of S of cardinality less than or equal
to D(F) is fixed.

THEOREM 21. (1) For F locally compact: W = W if and only
if S is mildly compact.

(2) For F not locally compact: If S is mildly Lindelof, then
W = W.

(3) For F not locally compact and D(F) nonmeasurable: W =
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W if and only if S is mildly Lindelof.
(4) For S mildly countably compact: Hft" = W if and only if

S is mildly Lindelof.

The question of whether 2ft" = W always implies that S is mildly
Lindelof remains open.

COROLLARY 28. Suppose F is not locally compact. Then:
(1) If S is T19 ultraregular, and mildly Lindelof, then BoQ is

a homeomorphism of S onto W.
(2) If D(F) is nonmeasurable, and B°Q carries S homeomor-

phically onto W, then S is Tu ultraregular, and mildly Lindelof.

4. Stone-Weierstrass properties* We will say that X has the
stong Stone-Weierstrass property if every closed subalgebra which
separates quasicomponents of S is either X itself or a fixed maximal
ideal; and that X has the weak Stone-Weierstrass property if the only
closed subalgebra which separates quasicomponents and contains the
constants is X itself. This section is devoted to proving the following
two theorems:

THEOREM 22. X has the strong Stone- Weierstrass property if and
only if S is mildly compact.

THEOREM 23. // X has the weak Stone-Weierstrass property,
then S is mildly countably compact.

We begin with a lemma of Kaplansky [7].

LEMMA 29. If D is a compact set in F, and 0 Φ a e F, then there
is a polynomial p(t) over F, without constant term, such that p{a) —
1 and \p{b)\ ̂ l(δeJD).

Proof. We may assume that aeD, for otherwise we can replace
D with D U {a}. Let d = \a|2/| D\, where | D \ = sup {| &|: b e D). Then
d^ \a\.

The set D — T(Q, \a\) is closed in D, hence compact; hence it has
a finite partition {T(bi9 d)f]D:l^i^n} into clospheres of radius d.
We may assume that | bx\ ^ 16a| ^ ^ | bn|. We set k(i) = 2^(1 ^i^n)
and

Pit) - 1 - (1 - ί/α).Π?«i (1

By straightforward computation, the lemma follows.
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Proof of Theorem 22. (1) If S is not mildly compact, then, by
Theorem 15, X has a nonίixed maximal ideal I(U). If Q and R are
distinct quasicomponents of S, then some clopen set A ϋ S contains Q
but not R; either A or S — A is in 17; and hence a characteristic
function in I(U) separates Q and R. Thus, /([/) is a closed subalgebra
of X which separates quasicomponents. Since I(U) is neither X itself
nor a fixed maximal ideal, X does not have the strong Stone-Weierstrass
property.

(2) Suppose S is mildly compact, and Y is a closed subalgebra
of X which separates quasicomponents. We will prove that if Y is
contained in some fixed maximal ideal M8i then Y = Ms; a similar
proof shows that if Y is not contained in any fixed ideal, then Y — X.

We therefore assume that Y ϋ Ms for some s e S. First, we contend
that if u,veS and Q(s) Φ Q(u) Φ Q(v), then some x,v e Y satisfies:
xv(u) = 1, xv(v) = 0, | | α j | = 1.

To prove this, we note that some yL e Y separates u and v; and
some y2 e Y does not vanish at u. Let y — yxy2 — yx{v) y2; then yeY,
y(u) Φ 0, and y(v) — 0. Let a = y(u) and D = y(S); then D is mildly
compact, hence compact. Let p(t) be the resulting polynomial of
Lemma 29, and let xv = p(y).

Second, we contend that if V is a clopen set in S containing s, u
is a point of S outside F, and d > 0, then some x e Y satisfies: x(u) =
1, | φ ) | ̂ d(ve F), and ||α5|| = 1.

To prove this, we note that V is mildly compact. For each v e F,
some xve F satisfies: #,(%) = 1, xv(v) — 0, and ||a^|| = 1. For v e V,
let Wυ = {we V: \xυ(w)\ < d}; then the family {Wv: v e V} is a clopen
cover of F and has a finite subcover {Wv{1), •••, TΓV(Λ)}. Let α? =

Third, we contend that if W is a clopen set in S not containing
s, then the characteristic function C(W) is in Y.

To prove this, we note that if 0 < d < 1 and ue W, then some
$u G Y satisfies: xu(u) = 1, | α^(¥) | < d(v e S - PF), and 11 xu \ \ = 1. Each
set Wu = {w e W: \ xu(w) — 1\ < d} is clopen in W; hence the family
{Wu:ue W) is a clopen cover of W; and since W is mildly compact,
a finite subfamily {Ww(1), ••-, Wuin)} covers ΐF. Let

X = & \β Xiι(l)) ' ' * (^ ^it(w)) J

then x e Y and ||a? - C(W)\\ ^ d. Since Γ is closed, C(T7) e Y.
Finally, we show that Y — M8. Let x e Ms; for any d > 0, the

preimages, under x, of the clospheres of radius d in F form a clopen
partition of S. Since S is mildly compact, this partition is finite:
S ^UiWt Λ^i^n}, where each Wi = x~ι{T{ai, d)) = {ueS:\x(u) -
a,i\ ̂  d] for some α̂  e F. We may assume t h a t aγ — 0; i.e., t h a t s e T^.
Let y = α1C(TΓ1) αwC(TΓO; then y e Y and ||α? - y\\ £ d. Since Y
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is closed, x e Y.

Proof of Theorem 23. Suppose S is not mildly countably com-
pact. Then S has an infinite clopen partition {Γ<:ie/}. Let Y be
the closed ideal in X generated by the characteristic functions of
these sets; and let Z be the subalgebra Y + F-e of X. Then Z is a
closed subalgebra of X which separates quasicomponents and contains
the constants. However, every member of Z must take values arbi-
trarily close to some constant on all but a finite number of the sets
{Tiiie I}; so Z is not equal to X itself. Hence X does not have the
weak Stone-Weierstrass property.

We note that the question of whether the weak Stone-Weierstrass
property is equivalent to mild compactness, or to mild countable
compactness, or to some intermediate property, remains unresolved.
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