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INTERSECTIONAL PROPERTIES OF CERTAIN
FAMILIES OF COMPACT CONVEX SETS

B. E. FULLBRIGHT

Let p and q be integers with p ^ q ^ 2. A family g of
compact convex subsets of a finite dimensional linear space is
said to have the (p, g)-property if § contains at least p sets and
from each p sets of §ί some q have a common point. In this
paper a family 3? is defined to have the (p, q, ̂ -property in a
w-dimensional normed linear space if §? has the (p, #)-property
and an additional property which is measured by k, with 0 ^
k ^ 1. In some sense k measures the "squareness" of the mem-
bers of §. The main result is that if k > 0, there exists a
positive integer Pn(p, q, k) such that each family g with the
(p, q, &)-property in a ^-dimensional normed linear space can be
partitioned into Pn(p, q, k) subfamilies each with a nonempty
intersection.

Hadwiger and Debrunner have considered the following
question: Is there a positive integer N(p, q, n) such that every
finite family f? of sets in En with the (p, g)-property can be par-
titioned into N(p, q, n) subfamilies each of which has a nonempty
intersection?

1* Preliminaries* Let % be a family of nonempty subsets of a
space X and r a positive integer. The family % is said to be r-piercea-
ble if there exists a subset F of X consisting of r or fewer points
such that A Π F Φ 0 for all A e %. If % is r-pierceable for some r,
then define \%\ = min{r:g is r-pierceable}. If % is not r-pierceable
for any positive integer r, then define | § I = °°

The following lemma is a generalization of a well-known theorem
about the intersection of families of closed and compact subsets of X
with the finite inter sectional property. The proof is routine and is
omitted.

LEMMA 1.1. Let % be a family of closed and compact subsets of

X and m a positive integer. If \&* \ ̂  m for each nonempty finite

subfamily & of %, then \%\ ^ m.

The symbol Ln will denote the ^-dimensional normed real linear
space consisting of all ^-tuples of real numbers whose norm is given
by || (alf , an) \\ — max | α< |, and the symbol Bn will denote the closed
unit ball of Ln. To each ordered pair (x, A) where A is a compact
subset of Ln and xeA, associate real numbers I(x, A) and E(xy A)
defined by I(x, A) = sup {λ: x + XBn c A} and E(x, A) = inf {λ ^ 0: x +
XBn

 ID A}.
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Let & be a real number with 0 ^ k <̂  1. Then a family % of
nondegenerate compact convex subsets of Ln is said to have the
(Pf q> &)-property in Ln, if g has the (p, g)-property and for each A e §ί
there exists a point xeA such that (I(#, A)/E(x,A)) ^ A. Note that
since A is a nondegenerate set E(x, A) Φ 0; consequently, the above
ratio is defined and satisfies the inequality 0 ^ (I(x, A)/E(x, A)) <Ξ 1.

For integers p, q, and n with p^q^2, n^l and real number
k with O ^ ί ^ l define Pn(p9 q, k) = sup {| % |: % has the (p, q, k)-
property in Ln}.

It is easy to see that if % is a family of subsets of Ln with the
(P, tf)-property then | g I ̂  •?*(#, ?, 0). This fact together with Lemma
1.1 implies that the number N(p, q; n) as defined by Hadwiger and
Debrunner [2] is the same as Pn(p, q, 0). By a slight alteration of
the proof of Hadwiger and Debrunner's theorem [2] one can obtain
the following theorem.

THEOREM 1.2. If % is a finite family of subsets of Ln with the
(p + n, q + n — l)-property, there exists a subfamily £ίf of % such
that I % I <̂  I βίf I + 1 and either ^f has the (p, q)-property or \ £ίf \ ^
p - q + 1.

COROLLARY 1.3. Pn(p + n, q + n — 1, k) ^ Pn(p, q9 k) + 1 for all

fee [0,1].

Proof. This is a consequence of Theorem 1.2 and Lemma 1.1.

COROLLARY 1.4. I f p ^ q ^ n + 1^2 and nq ^ (n — V)p + n +

1, ίfteπ Pw(p, q,k) = p-q + lforallke [0, 1].

Proof. By means of an example it is not difficult to show that
Pn(p, Q, k) ̂  p — q + 1. Helly's theorem [4] implies that Pn(p, p, k) =
1 for p ;> π + 1 and ke [0, 1]. The corollary now follows from Corol-
lary 1.3 and by induction on p — q.

2. The main result* Let g = {A^: i = 1, •} where ^ is the
convex hull of the set {(1/i, 0), (0, 1 - 1/i)}. Then g has the (2, 2, 0)-
property in L2 and | S l — °° Consequently, P2(2, 2, 0) = oo. Similar
examples can be constructed in Ln, n ^ 2, to show that P%(π, n, 0) =
co. Consequently, Pn{p, q, 0) = oo for all p ^ <? ̂  2 and q ^ n. How-
ever, the following theorem implies that the situation is somewhat
different for k > 0.
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THEOREM 2.1. Let p, q, and n be positive integers with p ^ q ;>
2 and k a real number with 0 < k ^ 1. Then Pn{p, qf k) is finite.

Proof. Let Nt be the minimum number of translates of kBn

required to cover (1 + k)Bn and iV2 the minimum number of trans-
lates of ¥Bn with center of symmetry on bd[(l + k)Bn] required to
cover bd[(l + k)Bn]. Lemma 1.1 implies that it suffices to show that
I g I ̂  (p — q + l)(-AΓi + N2) whenever % is a finite family of sets with
the (p, q, &)-property in Ln.

Let g = {^ii i = 1, , m] have the (p, q9 &)-property in Ln. For
each A{e% there exists a point xt e A{ such that (I(xif A^jE(xi9 A{)) ;>
k. To simplify notation let I4 = I(xif Ai) and Et — E(xi9 Ai). Without
loss of generality assume that E1 — min {E^ = 1 and x1 — 0. Let %γ

consist of all sets in % which meet A1 and %2 = %\%!. Now divide §i
into two subfamilies ^ = {AiG^: || a?< || ^ 1 + Λ} and ^ = {AίG^:
|| φ i| > 1 + k). There exists Nλ points zl9 , zNl such that (1 + k)Bn

is covered by the family {s< + A:J?TC: ΐ = 1, , N^. For Aί 6 ^ it
follows that Xi e ^ + kBn for some j . Since I* ^ ΛJB^ ^ Λ, it follows
that Xi + kBn c A . Moreover, a?, e zά + ΛJB91 implies that ^ e a?< +
AE^cA,-; consequently each set in ^ contains some zs. Therefore,
I « ! I ^ JVi.

Now let Ai£^. Since A< Π Λ ^ 0 and A1dBn, it follows that
^ n Bn Φ 0 . Let 7/i e [bdJ5%] Π A{ and wt = λ ^ + (1 — λ)τ/i belong to
bd[(l + fe)^^ with 0 < λ < 1. The set w{ + X(IiBn) is contained in
the convex hull of the set {xi + I{Bn} U {Vi} which is contained in A{.
Now k ^ || yi - ^ || = λ|| yi - χi \\ ^ λJSi, which implies λ/̂  ^ (k/E^It ^
fc2. Therefore, Wj + fc2βncii<. Let t6lf •••, w 2̂ be N2 points such
that uj e bd[(l + k)Bn\ and bd[(l + k)Bn] is covered by the family
{Uj + ¥Bn: j = l, " -, iV2}. Now wt e u5 + fc2jBw for some j , which im-
plies that Uj βWi + k2Bn c ^ . Hence, each set in <gj contains one of
the ΛΓ2 points ^ , , uNz; consequently | ^ | ^ N2. Therefore, | Si I ^
N, + N*.

To complete the proof note that since each set in %2 fails to in-
tersect Alf it follows that either %2 has the (p — 1, q, &)-property o r

S2 fails to contain p — 1 sets. The theorem now follows by induction
on p — q.

For & > 0 the proof of Theorem 2.1 can be used to obtain upper
bounds for the values of Pn{py q, k). In the case of k = 1, Hadwiger
and Debrunner's work with families of mutually parallel parallelotopes
[3, p. 32] can be used to obtain upper bounds for Pn(p, q, 1) and if
the supplementary condition 2<^q^p<^2q — 2 is satisfied, then

P.(P, q, i) = P - Q + i.
As a function of k e [0, 1] to the positive integers union oo,

Pn(P, Q, &) is & decreasing function and Theorem 2.1 implies that it is
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integral-valued for ke(0, 1]. The following theorem implies that it
is continuous from the right at each ke [0, 1).

THEOREM 2.2. Let k0 e [0,1) then Pn(p, q, k)—>Pn(p, q, kQ) as k-*kt.

Proof. By Lemma 1.1 it is enough to show that \%\^k
sup {Pn(p, q, k):k > k0} for each finite family % with the (p, q, k0)-
property in Ln. For such an § and ε > 0, let %ε = {A + εBn: Ae$}.
Then § ε has the (p, q, &e)-property in Ln, where kε > kQ and kε —• k0 for
ε —> 0; also, by simple compactness arguments | § I ̂  ^m infs_013ε! ^
sup{P w (p, q,k):k> k0).

For p ^ q ^ 2 and % ̂  1, let £>(p, g; n) denote the set of points
in [0, 1] where as a function of k Pn{p, q, k) is discontinuous from
the left. If p, q, and n satisfy the inequalities in Corollary 1.4, then
clearly D(p, q; n) = 0 . It is unknown whether or not there exist
values of p, q> and n such that D(p, q; n) is a nonempty finite set.
If D(p, q; n) Φ 0 then D(pf q; n) can be written in the form
{ζ%(Pf q;n):ieJ}, where J is either the set of positive integers or an
initial segment of the positive integers, with ζi+1(p, q; n) < ζ^p, q; n).
In the next section ξj^p, q; n) will be determined for certain values
of p, q, and n.

3. Some examples• From Corollary 1.4 and the fact that
Pn(p, Qf 0) — oo for n ^ q ^ 2 it follows that the case with the
smallest values for p, q, and n, in which the question is unanswered
as to whether or not Pn(p, q, 0) is finite or not is that of p = £, q = 3,
and n = 2. However, it is known that P2(4, 3, 1) = 2. An example
will now be constructed to show that P2(4, 3, k) >̂ 3 and P2(2, 2, k) ^
3 for all k with 0 ^ fc < 1.

EXAMPLE 3.1. For m ^ 3 define points in L2 as follows:

, 0 ) , Cw = (0, -1/m) , Z) = (1, 0) ,

E = ( - 1 , 0) , Fm = (1, -1/m) , G = ( - 1 , - 1 ) , H = (1, -1) ,

/ - (0, - 1 ) , J = ( - 1 , 2) , iΓ = (1, 2) , ^ = ( - 1 , - 1 + l/2m) .

Also, let Mm and Nm denote the points of intersection of the line
through Cm and D with the line x — —1/2m and x = l/2m, respec-
tively, P m the intersection of the line through I and Nm with the
line y = — 1 + l/2m, i2m the intersection of the line through / and
Mm with the line through E and Cm.

Using the above points, define sets in L2 as follows:

S i - conv {J, K, D, Cm, E} , S i = conv {Nm, D, H, 1} ,

SI - conv {Cm, Fm, I, H} , S i = conv {£7, iίm, J, G} ,
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Si = conv {E, Mm Pm, Lm), and S i - conv {Am, Bmy Nm, Mm} .

Let %m = {SL: ί = 1, , 6} for m = 3, . Figure 1 illustrates the
family %4. For each m with m ^ 3, the family %m has both the
(2, 2)-property and the (4, 3)-property. Moreover, | %m | = 3 for all
m ^ 3. Note also that given & < 1, m can be chosen large enough
such that %m has both the (2, 2, &)-property and the (4, 3, &)-property
in L\ Consequently, P2(2, 2, ifc) ^ 3 and P2(4, 3, fc) ^ 3 for all k with
0 ^ A; < 1. Since as a function of n, Pn(p, q, k) is an increasing func-
tion, it follows that Pn(2, 2, k) ^ 3 and PΛ(4, 3, Λ) ^ 3 for all 0 ^ it <
1 and n ^ 2. This with the fact that Pn(2, 2, 1) - 1 and PΛ(4, 3, 1) =
2 implies that &(2, 2; π) - ^(4, 3; n) = 1 for all π ^ 2 . Griinbaum [1]
has^giverfan^ example of a family % consisting of 21 circular disks in
L2 with the (2, 2)-property such that 18 | = 4. Thus, P.(2, 2, V^/2) ^
4 for all w ^ 2.

THEOREM 3.1. If 2 ^ q ^ nf then ίx(g, q; n) = 1.

Proo/. Since PΛ(g, g, 1) = 1 it suffices to show that if k < 1, then
Pn(q, q, k) ^ 2. Moreover, since P^(g, g, k) ^ P%(^, ^, &) ίoτ q^n the
theorem will follow by showing that Pn{n, n, k) ^ 2 for all A: < 1.
Example 3.1 implies the desired result for n — 2, so assume that n ^ 3.

FIGURE 1

Without loss of generality, assume that L71"1 is the subspace of Ln

which is perpendicular to the line determined by the origin and the
point (0, , 0, 1). Since Pn^(n — 1, n — 1, 0) = ©o, there exists a
finite family % = {A*: ί = 1, , m} with the (w - 1, w - 1, 0)-property
in Ln~~x such that \%\ ^ 2 . Without loss of generality, assume that
Ai c B*""1 for i = 1, , m. Let A{ denote the convex hull of the set
A* U [Bn + (0, , 0, 1 + (1/3))] and let A = Bn + (0, • , 0, - 1 ) . For
j = 1, let & = {Af: i = 1, , m} U {A}. Then the family & has



62 B. E. FULLBRIGHT

the (n, n, j/(j + l))-property in Ln and \%5\ = 2. Thus, if 0 ^ k < 1,
there exists a j" such that §,• has the (n, n, ά)-property in Ln and
\%3-\ = 2. Consequently, Pn(n, n,k)^2 for all k with 0 ^ k < 1.

4* Concluding remarks. The procedure used in this paper in
defining the piercing function Pn(p, q, k) depends on the set Bn. A
similar development using any closed unit ball of an ^-dimensional
normed linear space could have been done. The theorems and corol-
laries which were proven in §§ 1 through 2 would still remain true.
However, the piercing function will not be identical to Pn(p, q, k)
unless the unit ball is a parallelotope. The unit ball Bn seems to be
the best of all possible choices because Pn(2, 2, 1) = 1. This would not
have been the case if the unit ball was not a parallelotope.

This paper gives rise to several unanswered questions which
should be rather clear from the context. However, they could all
probably be answered by answering the primary question, that is, what
is the value of Pn(p, q, k) for all p ^ q ^ 2, n ^ 2, and 0 ^ k ^ 1?
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