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GLOBAL REFLECTION FOR A CLASS OF
SIMPLE CLOSED CURVES

JAMES M. SLOSS

Global reflection is considered for a class of closed Jordan
curves Γ: [x(6), y(θ)], 0 ^ θ < 2π where x(β) and y(θ) are trigo-
nometric polynomials. Every curve of this form is algebraic
and global reflection across it reduces to investigating an
algebraic function and its critical points. The reflection
function is picked to be that solution of the algebraic equa-
tion that maps Γ: [x(θ), y(θ)] pointwise into [x(θ), -y(θ)]. This
function is defined and analytic except on a finite set of points
inside Γ, and at each of these points it is continuous.

1* Introduction* Reflection across an analytic arc which is a
generalization of inversion in a circle and reflection across a straight
line, goes back to Schwarz. Because of the current interest, see e.g.
P-L [3], [4], [5], in reflection of solutions of plane elliptic differential
equations across analytic arcs, it seems appropriate to analyze the
global reflection across a fairly general class of closed Jordan curves.

We shall investigate the class of Jordan rectifiable curves Γ of
the form

(1.1) x(θ) = Σ ak cos kθ + bk sin kθ
fc=0

0 ^ θ < 2π, n ^ m

(1.2) y(θ) =Σak cos kθ + βk sin kθ

with x'\θ) + y'\θ) ψ 0, (α#, K) Φ (0, 0) Φ (am, βm) and if m = n then
either a\ + β\Φ a\ + b\ or anan + βnbn Φ 0.

The investigation will be reduced to analyzing a certain algebraic
equation M[z, ζ] = 0 arising from (1.1) and (1.2) (see (2.5)-(2.8)).

Let R be a simply-connected region bounded by a curve Γ of
the form (1.1) and (1.2). Let S be the finite set of points made up
of zeros of the resultant polynomials

P(z) = R[M[z, ζ], Mζ[z, ζ]] - 0

and

Q{z) = R[M[z, ζ], M.[z, Cll = 0.

Let Li be a rectifiable Jordan arc in R containing {eu , es} - R Π S.
Then for one of the functions
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C = G(Z)

defined by M[z, ζ] = 0 we have
1 G(z) is defined and analytic on R — [ely •••, e,},
2 G(z) is single-valued on R\L{ U Γ,
3 G'(z) Φ 0 on i?\i, U A
4 For z on Γ, z =

5 G[Λ\LΠ n i2\I/. = 0 .
6 About each e$ (1 ^ j ^ s) we have either
( i ) G(z) is defined, single-valued and analytic on a neighborhood

of β, with

G*(«) analytic and thus G'{e3) — 0 or
(ii) on some neighborhood of e5

G(z) = Σ /*[ Vz - etf , l£p£2n (not (1.1)),
fc=0

/* constant, or
(iii) G(z) is defined, single-valued and analytic on a neighborhood

of es and G\e3) Φ 0.
In the event M[z, ζ] is irreducible 6(iii) is excluded. We shall

denote for z in R\Lt

z = G(z) .

G(z) is the reflection function and z is the reflection of z across Γ.
7 G(z) can be extended to be defined and analytic and single-

valued on

{R\L%) UΓU {G(i2\L,)} - {R\Lt} U Γ U

with

I = « for z in {22\LJ UΓU {lS\Lt} .

It is the proof of 6(ii) that gives the most difficulty.

2 Geometrical reflection* To begin our investigation of reflec-
tion across a rectifiable Jordan curve Γ of the form

(2.1) x(θ) = Σ ak cos A;̂  + bk sin fc^
A;=0

0 ^ ί < 2ττ, w ^ m

(2.2) y(ff)= Σ ak cos A:̂  + /3fc sin kθ
fc=0

we let
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t = eiθ = cos θ + i sin 0

and express (2.1) and (2.2) in terms of t and t9 then (2.1) and (2.2)
become:

(2.3) 2x = 2α0 + cxί + ^ ί + c2t
2 + c2P + + cΛίΛ + cJn

and

(2.4) 22/ = 2a0 + Tiί + 7 ^ + Ύ2t
2 + 72P + + Ύjm + 7 w t w

with

G* — a>k + ibk, Ύk — ak + iβk .

If we multiply (2.3) by tn and (2.4) by tm we see that (2.3) and (2.4)
are equivalent respectively to:

f(t) =

and

9{t) Ξ T M

+ cj*-1 + 2(α0 - x)t* + cj*+1 + + cΛP = 0

2w - 0 .

Thus the curve Γ is given by exactly those t for which f(t) — 0 and
g(t) = 0, i.e., by the common roots of f(t) and #(£). But a necessary
and sufficient condition for f(t) and flr(ί) to have common roots is that
Sylvester's determinant D(f, g) of order (2n + 2m) x {2n + 2m) vanish.
If we let

a(x) = 2(α0 - α?) , β(y) = 2(α0 -

then

(2.5)

D(ff 9) - det

0 en cn_x -

0 0 c » cM_!

0 0

c1ac1

cn^cn 0 0 0 ••• 0 0"

<;„_! c, O O 0 0

cn_, c . 0 0 0

7m_! 7 m 0 0 0 0

-i Ί.βΊs 7 m _ 1 7 m O 0 0

> 7m_! ?! β 7, 7m_! 7 . 0 0

L 0 0 0 7 . ?»_! 7i /8 7 t 7m_! 7«_

provided cTC ^ 0 ^ 7m. Since / and sr are fixed, we define

Δ[φ), β(y)\ = D(f, g) .

Then Γ is given by the algebraic equation:

Δ[a(x), β(y)\ = 0 , a = 2(α0 - a?), y9 = 2(α0 - y) .

2m

2n
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We now consider the algebraic equation of order 2n in ζ:

- g2Λ*K2n + gZn-^K2n'1 + + g2(z)ζ2 + g,{z)ζ + go(z) = o

and investigate the Riemann surface that this equation defines over
the z = x + iy plane.

First we prove:

LEMMA 2.1.

( i ) If n> m and cnΦ 0 Φ 7m, then

g*n{z) = ± - T ^ T I cn |
2m = constant Φ 0 .

(ii) Ifn = m and cnΦ 0 Φ 7n and cn + i7nΦθφ cn + iyn, then

g2n(z) = ±-^rτr( c » + iy*)n(cn + iτw)w = constant Φ 0 .
(2π)!

Proof. First we note that

„ ΛΛ _ 1 32

In order to differentiate M[z, ζ], it will be convenient to introduce
the notation:

C = C w x m =

Then

0 c. c
0 0 cn

0 0 0

' Cn-m+2
f 7~> T^mxm

0 7 W 7 m _ x 7 2

0 0 7 m . . . 7 8

0 0 0 . 7 W

m

m

2n—m

m

C

0

Γ

0

m

π — m

ft

2m n — m

A>

B,

•

2^

m

0

Cτ

0

Γ τ

m

2Λ

m

a=2ao-(z+ζ)

β=2ao+i(z-Q
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where, as indicated, Au Bu A2, B2 are matrices of size n — m x m.
Thus

d2n

M[z,ζ\-

M[z,ζ] =

C

0

Γ

0

c
0

Γ

0

0

0

j
0

0

-il

0

0
I

il

0

0

0

Cτ

0

Γ τ

0

CΓ

0

Γ τ

Next we perform the following set of operations
( i )i multiply the m + 1 column by iym and add it to the first

column
(iiX multiply the m + 1 column by ίτm_i and add it to the

second column
(iiiX multiply the m + 1 column by iτw_2 and add it to the

third column etc. to m
( i )2 multiply the m + 2 column by iΐm and add it to the

second column
(ii)2 multiply the m + 2 column by iΊm-x and add it to the

third column etc. to m — 1

( i )m multiply the 2m column by ίym and add it to the mth
column. This yields the following result:

7M[z,ζ\ =

c

0

0

0

0

0
I

0

0

il

0

cτ

0

where if n — m ^ m, i.e., n ^ 2m then
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C = C

and if n — m > m

n—m

0

JAMES

Ύ Ύι m i

0 *

0

0

0

M.

fm

0

0

0

SLOSS

7m—2 * '

7m—1 * *

7 m * *

0 ••

0 ••

•

• 0

• oJ

mxm

C =

Next we perform the following set of operations
( i X multiply column 2n + m by %Ίm and add it to column

2n + 2m
(iiX multiply column 2n + m by ΐ7w_! and add it to column

2n + 2m - 1
(iii)i multiply column 2n + m by ίτm_ 2 and add it to column

2n + 2m — 2 etc. to m
( i )2 multiply column 2π + 2m — 1 by %Ίm and add it to column

2n + 2m - 1
(ii )2 multiply column 2n + m — 1 by ίτm_! and add it to column

2n + 2m — 2 etc. to m — 1

( i ) w multiply column 2n + 1 by ί7m and add it to column
2n + m + 1. This yields the following result:

-M[z, ζ] =

c
0

0

0

0

0
I

0

0

il

0

c*

0

0

where if n — m ^ m, i.e., n ^ 2m then

n—m

C* = CJ

'0 0

0 0

•

0

0

.

•

. . .

7m 0
ry ry
'm—l ' m

rγ rγ
'm—l l m—l

0

0

0

0

' r

mxm
\
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and if n — m > m

C* - C
τ
 .

The next set of operations is as follows:
( i ) multiply row n + m + 1 by i and add to row 1
(ii) multiply row n + m + 2 by i and add to row 2
(iii) multiply row n + m + 3 by i and add to row 3
(2m) multiply row n + 2m by i and add to row 2m.

This yields:

253

d2n

M[z, ζ] =

c

0

0

0

0

0
0

0

0

il

0

c*

0

0

Since cn Φ 0 and if n = m, cn -{- iyn Φ 0 ^ cn -{- iΎn the above determi-
nant, with appropriate column operations, is also given by:

d2n

M[z, ζ] =

0

0

0

0

0
0

0

0

I

0

D*

0

0

where

Thus

D =

(cn + iyn)Inxn if n = m .

Ϊ, C] = ±(cB)»(cre)
M if » > m

= ± ( c . + »70"(c. + i7K)M if Λ =

which proves the lemma.
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If we write

= MO*2" + Λ.-ΛQ*2-1 + + λi(O« + WO - o,

then we also have:

LEMMA 2.2.

( i ) If n > m and cn Φ 0 Φ Ύm then

M O = ±"72^)1! C* ̂  = c o n s t a n t * °

( i i ) If n = m αwcϊ cΛ ^ 0 ^ τ w cmd cΛ — i7 Φ 0 ^ ew — iϊn

MO = ±72~)Γ(^ - ^W5* - W

Proof. As in Lemma 2.1

(2n)l dz

and the proof proceeds as in Lemma 2.1.
We now recall some well-known facts from the theory of alge-

braic functions and Riemann surfaces, see e.g., [2].
We restrict ourselves to the case where M[z, ζ] is irreducible.
A point z0 is called a critical point of M[z, ζ] if either
( i ) fc(Zo) = 0 or
(ii) M[z0, ζ] = 0 has multiple roots.

THEOREM (i). If z0 is a point such that g2n{zQ) Φ 0 and ζ0 is a
root of M[z0, ζ] of multiplicity I, 1 ^ I ^ 2n, then there exists an
ε > 0 and δ(e) > 0 such that if zx Φ Z0 lies in the disc D(z0, δ) of
radius δ about z0 then M(zu w) — 0 has exactly I distinct roots in

o, e). [1], P. 122.

If z0 is a point such that g2n(z0) Φ 0 and M[z0, ζ] has no multiple
roots, M[z0, Co] = 0, then from the above theorem I = 1 and for every
z = z1 in D(z0, δ), there is exactly one root of M[zu ζ] = 0. Thus on
D(zQ, δ) M[z, ζ] — 0 defines a single-valued continuous function ζ = gx(z)
for which ζ0 = g^z,).

THEOREM (ii). gx(z) is an analytic function of z on D(z0, δ).

In the case g2n{z) = constant Φ 0 then there are at most a finite
number of critical points.
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Let el9 e2, * ,er be the critical points and join these and co by
Lo, any nonintersecting smooth arc and half line. Cut the plane
along Lo. Then on the cut plane, M[z, ζ] = 0 defines 2n single-valued
analytic functions G^z), •••, G2n(z).

THEOREM (iii). About each critical point e we have the following
expansion in a neighborhood of e

where
( 1 ) 1 ^ p ^ 2n
( 2 ) there are at most a finite number of negative powers
( 3 ) if g2n(e) Φ 0 there are no negative powers.

We shall also need

LEMMA 2.3. Let

( 1 ) x'2(θ) + ye\θ)Φθ
( 2 ) (αw, bn) Φ 0 Φ {an, βn)
( 3) either a\ + βl Φ b\ + a\ or anan + bnβn Φ 0

then for no point z of Γ (i) is ζ = z a multiple root of M[z, ζ]; (ii)
is g2n{z) = 0.

Proof. Since

(7Λ - icn) = (an + iβn) - i(an + ibn) = an + bn + i(/Sft - αΛ)

(7» ~ icΛ) = (an — iβn) — i{a>n ~ ibn) = an — bn - i(βn + an)

then

(7. - icn)(yn - icn) ^al + βl- (a2

n + b2

n) - 2i[anan + bnβn] Φ 0 by (2).

Thus we see by Lemma 2.1 that g2n(z0) is never zero. For z on Γ,

i.e., for z = a(0) + ίy(θ), 0 ^ 61 < 2π, we have

ΛΓ[a?(β) + iy(ί), flj(β) - iy(ί)] Ξ= 0 , 0 ^ 0 < 2ττ .

Thus if we differentiate with respect to θ, we see since (1) holds,

that

(xr + i y ' ) 2 _ Mc[z, z]^Q Γ

xf> + y n M,[z, z]

Thus Mζ[zQ, ζ] Φ 0 for ζ on Γ, i.e., for ζ = z0 and the proof is complete.

LEMMA 2.4. Lei

( 1 ) (αΛ, 6,0 ^ 0 =£ (αΛ, /3W) and
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( 2 ) either a\ + β\Φ α2 + b\ or anan + βnbn Φ 0
then there are at most a finite number of z for which

M[z, ζ] = 0 and M,[z, ζ] = 0 .

Proof, z is a point at which the result of the lemma holds if
and only if for ζ fixed

M\z] = M\zy ζ]

has a multiple root. Thus

M\z\ = hUQz2n + ΛE-ICQS 1 - 1 + + Ao(ζ)

ikΓ/[z] - a i M O * 8 - 1 + + M O

and from Lemma 2.2 and the assumption of the lemma

h2n(Q = constant Φ 0 .

But a necessary and sufficient condition for M\z] to have a multiple
root is that the resultant

B[MU Ml] - 0 .

As this is a polynomial in ζ, the conclusion of the lemma follows.

LEMMA 2.5. Let the hypotheses of Lemma 2.3 hold, then for no
point z of Γ do we have for ζ = z

M[z, ζ] - 0 and M,[z, ζ] = 0 .

Proof. From the proof of Lemma 2.3

M.[z, z] _ Qg' - jyQ' 0

which is the conclusion.
We shall assume that for Γ we have
( 1 ) x'\θ) + y'\θ) Φ 0
( 2 ) (α., 6.) ^ 0 ^ (α., A )
( 3 ) either α2, + /32

W ̂  (b2

n + α2) or α.α, + bnβn Φ 0.
Assume, moreover, that M[z, ζ] is irreducible. Let el9 e2, , er be the
set of critical points of M[z, ζ] = 0 and let er+l9 er+2, , e8Q (by
Lemma 2.4) be the set of z for which

M[ei9 ζ]=0 a n d M.[ei9 ζ] - 0

and let

S - {ed: ί^j ^ s 0 } .
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Let z0 be a point of Γ and M[z0, zQ] = 0. By Lemma 2.3, ζ = z0 is
not a multiple root of M [z0, ζ] and thus M[z0, ζ] = 0 defines a single-
valued function of z, ζ = G(z) in some neighborhood No of zQ with
G(#o) = z0. Moreover, for each point z on Γ n -NO we have

2 - G(z)

by Lemma 2.3. Analytically continuing G(z) around Γ we return to
G(z). Since if we arrive at G^z) where G(z) and Gx{z) are defined
on a common neighborhood of zQ, then for 2 on Γ9 £(#) = #(#) + ί?/(#)
and ζ(#) = #(#) is a periodic function and thus

G(z) = G,(z) on Γ .

Therefore, they agree on the common neighborhood. From this it
follows that G(z) is single-valued and analytic on a neighborhood of Γ.

Let Si = {eu , es) be that subset of S (renumber if necessary)
that is contained in the interior of Γ and let Se — S\Sif then G(z) is
analytic on R\St. Moreover, if we join each eά of Si by a Jordan
arc Li then G(z) is analytic and single-valued on

Ro = R\Li U neighborhood of Γ .

Since on RQ we have G(z) is single-valued and analytic then

G'{z) - - -

which is Φ 0 for z on Γ and ζ = z on Γ by Lemma 2.5, and also
Φ 0 for z on iϋ\Z/i since all of the points Mz[z, ζ] \ζ=G{z) = 0 lie on Lt

by construction. Thus we have partially proved the

THEOREM. M[Z, ζ] = 0 defines a function

ζ = G(z)

which is determined by having zQ on Γ correspond to zQ - G(zQ).
For this G(z) we have

(1) G(z) is defined and analytic on R — {elf es) U neighborhood
of Γ.

( 2 ) G{z) is single-valued on R\Lt U neighborhood of Γ.
( 3 ) G'(z) Φ 0 on R\Li U neighborhood of Γ.
( 4 ) For z on Γ, z = G(z).
( 5 ) G[R\Li] f] R\Li = 0 .
( 6 ) About each e3- (1 ^ i ^ s) ^e ĵ αvβ either
( i ) G(z) is defined, single-valued and analytic on a neighborhood

of βj with
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G(z) = (s -

G*(z) analytic and thus G'{e3) = 0 or
(ii) on some neighborhood of es

G(z) =
fc = 0

/fc constant, or
(7) If we let z = G(z) then G(z) can be extended to be defined

analytic and single-valued on

( i ) {B\Lt} U Γ U {MLJ

(ii) § = 3 £JWre.

Proof (l)-(4) have been proved.
(5) Since G(Γ) = Γ* and since G is continuous on R\Lt we know

either G[R\Lt] c i? or G[R\Lt] f] R\L, = 0 . We shall have proved the
result if we can show that for one point z e R\Lif G(z) £ R.

Since x{θ) and y(θ) are analytic functions for real θ with #'2(#) +
y'\θ) Φ 0 they can be continued as analytic functions x{τ) and y{τ)
of the complex variable τ — θ + iη on some circle | τ \ < p for which,
on I τ I < p, x'(τ) + iy\τ) Φ 0. Then

r̂(r) = x(τ) + iy(τ) [ τ \ < p

maps τ = θ + iη, V = 0 onto a subarc JΓ0 of Γ and thus maps \τ\< p

1-1 onto a neighborhood of Γo. Consider

H(τ) =

for τ such that g(τ) c domain of G. Since G(z) is defined and G\z) Φ 0
on a neighborhood of Γ then iϊ(r) is defined on a neighborhood N
of I r I < p, η = 0 with 17 = 0 mapping onto Γo and iϊ(τ) establishes
a 1-1 correspondence between points of N and H(N). Thus that
portion N oί N for which 57 < 0 maps onto the region 22_ of one
side of Γo and N+, that portion of N for which η > 0 maps onto the
other side i2+ of Γo. Without loss of generality let ί L n i2\^ ^ 0>
R+ Π i?\I/i = 0 and let zQ e i?_ n i2\L< be such that if g(τ0) = ^0 then
τoeN+. Then ^(fo)ejB+. Note that on that neighborhood of ^ — 0
where everything is defined

g-ι[G[g(τ)}],
is analytic with

9 - Ί G [ 9 ( τ ) ] ] = g-ι[g{τ)\ = τ = τ

for r on 37 = 0 and thus is the identity map. Hence
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) = Glθ(τo)] = G[z0]

and G(zo)eR+ where as zoeR\Li. This completes the proof of (5).
( 6) (i) and (ii) follow immediately from Theorem (iii) and Lemma

2.1.
(7) (i) follows from (3) and (5). (ii) follows from the fact that

z = G[G(z)]

is an analytic function on {R\Lt} UΓU {R\Li} with

z — z on Γ

and thus

1 = 2 on {Λ\LjUΓU{β\L,}

and the theorem is proved.
In the event M[z, ζ] is not irreducible then the analysis and the

theorem will hold provided we decompose M[zf ζ] into its irreducible
factors and (1) study that factor which determines Γ and (2) prove
that for this factor we have the coefficient of the highest order
term in ζ is constant and the coefficient of the highest order term
in z is constant. We shall be possibly excluding an unnecessary
number of points eά where G(z) may be analytic single-valued and
G'(z) Φ 0. To see that the coefficient of the highest order term of
ζ and z are constants we let

M[z, ζ] = Q,{z, ζ)Q2(z, ζ) . . . Qr(z, ζ)

where the Qj(z, ζ) are irreducible. Then if

Q;(2, 0 - ? ; . , W + β ^ - i W - 1 + + qjo(z)

we have sί + s2 + + sr = 2n. Moreover,

qjs (z) = constant Φ 0 for all j = 1, 2, , r ,

since

Qis^z) Q2s2(z) qrSr(z) = g2n(z) = constant .

Similarly if we write

G;(s, Q Ξ PJ.JW + Ps -iW1 + + PdQ

we see that

pjSj(ζ) — constant Φ 0 for all j = 1, 2, , r .

It would be of interest to find conditions on the ck and Ύk so
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that M[z, ζ] is irreducible. This would eliminate the calculation of
an unnecessary number of points.
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