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SELF ADJOINT STRICTLY CYCLIC OPERATOR
ALGEBRAS

MArY R. EMBRY

A strictly cyclic operator algebra 7 on a Hilbert space
X is a uniformly closed subalgebra of #°(X) such that ¥, =
X for some 2z, in X. In this paper it is shown that if % is
a strictly cyclic self-adjoint algebra, then (i) there exists a
finite orthogonal decomposition of X, X = X7, P M,, such
that each M, reduces % and the restriction of " to M; is
strongly dense in <(M;) and (ii) the commutant of -*7is finite
dimensional.

1. Notation and terminology. Throughout the paper X is a
complex Hilbert space and <~ (X) is the algebra of continuous linear
operators on X. . will denote a uniformly closed subalgebra of
Z(X) which is strictly cyclic and x, will be a strictly cyclic vector
for .o7: That is, .&x, = X. We do not insist that the identity element
I of <#(X) be an element of &, We say that .o is self-adjoint if
A*e . whenever Aec .

If & < ~(X), then the commutant of & is &#’ = {E: Ee £ (X)
and EB = BE for all B in <#}. A closed linear subspace M of X
reduces <& if the projection of X onto M is in <&’'. In this case
M is a minimal reducing subspace of <& if M + {6} and {0} is the
only reducing subspace of <& properly contained in M.

We say that a collection {M;}7., of closed linear subspaces of X
is an orthogonal decomposition of X if and only if the M; are pair-
wise orthogonal and span X. A collection {P;}?., of projections is a
resolution of identity if and only if the collection {P;(X)}}-, of ranges
of the P; is an orthogonal decomposition of X.

2. Introduction. Strictly cyclic operator algebras have been
studied by R. Bolstein, A. Lambert, the author of this paper and
others. (See for example [1], [2], and [4].) In Lemma 1 of [1] Bolstein
shows that if N is a normal operator on X and {NY}’ is strictly cyclic,
then {N}” is finite dimensional. This raised questions about the
nature of arbitrary self-adjoint, strictly cyclic operator algebras. In
this paper we show that if .o~ is such an operator algebra, then
there exists a finite orthogonal decomposition {M,;} of X such that
each M; reduces .o~ and .o /M; is strongly dense in < (M;). From
this it follows that .o/’ is finite dimensional; indeed we show that
&' = >, P;.%7'P, (where P; is the projection of X onto M;) and
that for each j and k, P;.&'P, is of dimension zero or one. If &7’
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is abelian, we are able to show more; namely that %" = {37, M;P;: \;
complex}, giving us a complete generalization of Bolstein’s result.

Each of the results mentioned above is a consequence of two
basic facts concerning a self-adjoint strictly cyclic operator algebra
7: (1) (Lemma 1) each collection of pairwise orthogonal projections
in .97’ is finite and (2) (Theorems 1 and 2 of [3]) & has minimal
reducing subspaces.

3. Decomposition theorem. The first lemma in this section
demonstrates a very special characteristic of strictly cyclic operator
algebras on a Hilbert space.

LEMMA 1. Let &7 be a strictly cyclic operator algebra on X.
Each collection of mutually orthogonal projections in 7' is finite.

Proof. Let {P;} be a collection of mutually orthogonal projections
in .&’. Without loss of generality we may assume that {P;} is coun-
table. Let @, = 3%, P; and note that @, converges strongly to @ =
Siiz1 P;. Thus by Lemma 2.1 in [2] @, converges uniformly to Q =
>z P;. However, @ — @, is a projection and hence has norm zero
or one. Thus for » sufficiently large @, = Q and thus {P;} is finite.

This lemma and its proof were suggested by Robert Kallman,
University of Florida.

COROLLARY 2. Let %7 be a strictly cyclic operator algebra on
X. Each normal element of &7’ has finite spectrum.

Proof. By Lemma 3.6 in [2] if F'e€ .97’, then E has no continuous
spectrum. Thus if E is a normal element of .&’, the spectrum of
E consists entirely of point spectrum and by Lemma 1 E has only
a finite number of distinct eigenspaces. Thus the spectrum of FE is
finite.

Corollary 2 was proven by R. Bolstein in [1] in the special case
in which .97 is the commutant of a normal operator N.

Before considering further the nature of the commutant of a
self-adjoint, strictly cyclic operator algebra .o/ we shall study the
algebra .o itself.

THEOREM 3. If & 1is a self-adjoint strictly cyclic operator
algebra on X, then there exists a finite orthogonal decomposition
M2, of X such that each M, reduces & and /M, is strongly
dense in & (M,).

Proof. By Theorem 1 of [3] if X and {6} are the only reducing
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subspaces of .97 then .%7 is strongly dense in &°(X) and the trivial
decomposition {X} of X satisfies the requirements of the theorem.

Assume that {M,}i_, is a collection of mutually orthogonal sub-
spaces of X such that each M, reduces . and /M, is strongly
dense in & (M,). If the M, span X, the conclusion of the theorem
is satisfied. Otherwise consider .o/ = &7 /{M,, ---, M,}*. If P is the
orthogonal projection of X onto {M,, ---, M,}*, then Pe ., and if
x, is a strictly cyclic vector for .o, then &7, Px, = & Py, = P.&/x, =
P(X)={M, -+, M,}*. Thus .97 is strictly cyclic. Again by Theorem 1
of [3], if .4 has only trivial reducing subspaces, .o is strongly dense
in (M, ---, M,})* and the construction is complete. Otherwise
.7 has a nontrivial reducing subspace. Then by Theorem 2 of [3]
% has a minimal reducing subspace M,., and by Theorem 3 of [3]
/M, is strongly dense in <~(M,,,). Thus M, -+, M,., are pair-
wise orthogonal reducing subspaces for .o and .o/ /M, is strongly
dense in (M) for k=1, ---, p+ 1. By Lemma 1 the construction
will terminate with a finite number of pairwise orthogonal reducing
subspaces.

In view of Theorem 3 it is tempting to write &7 = P >i., L (My).
However, this is misleading since . may not be the full direct sum
of the ~(M,). The following simple finite dimensional example
demonstrates this:

A 0 .
& = {(0 A): A a 2 x 2 complex matrix

Here .o is a strictly cyclic self-adjoint operator algebra on #.

We shall use the decomposition of &~ developed in Theorem 3
to study the commutant of .97 It is worthwhile noting at this point
that the decomposition in Theorem 3 may not be unique. We shall
investigate this further in Corollary 7.

THEOREM 4. Let .7 be a self-adjoint strictly cyclic operator
algebra and {My}r., a decomposition of X as required in Theorem
3. Let P, be the orthogonal projection of X onto M,. Then ' =
St e=1 P; 2Py, and for each value of j and of k, P;. 7P, is of dimen-
ston ome or zero. In particular ' is finite dimensional.

Proof. We note that 2, P, = I and that since M, is a minimal
reducing subspace of ., then P, is a minimal projection in .87,
Further &' = (31, Pj) ' (Zioy Pi) = 3}y Pi7'Py.

We first show that P;.&'P; = (\P;}. Assume that C = P;EP; is
a projection. Note that Ce o7’ and C = P,CP; € P;. Thus since P;
is minimal, either C = 0 or C = P; and the only projections in P;.%7'P;
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are 0 and P;. Therefore P; &'P; = (\P;}.

Secondly we show that either P; &'P, =0 or P, 7'P, = {\ Uy}
where Uj, is the partial isometry with initial set P,(X) and final set
Py(X). Let F = P,EP, Ec.v'. Then FF*ec P;7'P; and hence by
the preceding paragraph FF* = AP, for some complex .. Therefore,
FF*F = \F. If P;>7'P, # 0, then some F = 0. Since FF*F = \F =
MP;EP,, F' is a scalar multiple of the partial isometry with initial set
P,(X) and final set P;(X).

The proof of Theorem 4 was provided by T. Hoover.

COROLLARY 5. If &7 1is a self-adjoint strictly cyclic operator
algebra with an abelian commutant, then 7" = {37, M;P;: \; complex}
where {P;} is a resolution of identity as required in Theorem 4. In
particular &7’ consists of normal operators with finite spectra.

Proof. By Theorem 4 &' = 37,., P;.%'P,. Thus if &7’ is
abelian, .7 = >, P;,o7’P;. Moreover, by Theorem 4, P; >'P; =
{n;P;: n; complex}.

The following corollary due to Bolstein, inspired the ideas which
have been developed in this paper. The techniques used by Bolstein
in [1] to arrive at this result differ radically from those used in this
paper.

COROLLARY 6. (Bolstein) Let N be a mormal operator with a
strictly cyclic commutant {N}. Then there exist orthogonal projec-
tions P, ++-, P, such that

(N} = {ﬁ] NPy n; complext .

Proof. By the Fuglede theorem {N}’ is self-adjoint. Thus since
{N}" is abelian, we can apply Corollary 5.

We return now to the question of the uniqueness of the decom-
position {M,}:-, in Theorem 3 or equivalently the uniqueness of a
resolution of identity {P,}{-, in .97, consisting of minimal projections.

COROLLARY 7. The decomposition {M.):-, in Theorem 3 is unique
if and only if 7' is abelian.

Proof. Assume first that &7’ is abelian. By Corollary 5 & =
{3, NP n; complex}. If @ is any projection in ., QP; = P,Q for
each j. Hence QP; is a projection and since P; is minimal, either
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QP; =0 or QP; = P;. Therefore, if Q is a minimal projection in .7,
or equivalently Q(X) is a minimal reducing subspace of X, then @ =
P; for some j. Thus the decomposition {M,};-, is unique.

Now assume that the decomposition {M,}:_, of Theorem 3 is
unique. Let P be any nonzero projection in .’ and P, a minimal
projection dominated by P. Since the decomposition is unique,
necessarily P(X) = M, for some k. Consequently P = >\*_\;P; where
A; is zero or one. Thus all projections (and hence all elements) in &7’
commute.

In conclusion we note that if .o is an arbitrary strictly cyclic
operator algebra on X, then .o = .o/ @@ .7, where .7 is self-adjoint
strictly eyclic and .97, is strictly cyclic but has no reducing subspaces
on which it is self-adjoint. To see this we argue as follows: Let
%" Dbe the class of all reducing subspaces of .9 on which & is
self-adjoint. Order .9 by inclusion and note that Lemma 1 implies
that any linearly ordered subset of .2¢" is finite. Thus the Maximal
Principle can be applied and there exists a maximal reducing subspace
M such that .7 /M is self-adjoint. Finally if 2, is a strictly cyclic
vector for . and P the projection of X onto M, then Pz, is a
strictly cyclic vector for .o /M.

ADDENDUM. The referee kindly pointed out that Rickart (Section
3, pp. 622-623, of “The uniqueness of norm problems in Banach spaces”,
Annals of Mathematics, 51 (1950), 615-628) showed that the commu-
tant of a strictly cyclic transitive algebra consists only of scalars
and that the algebra is n-transitive for every n. Thus .o/ is strongly
dense in &“(X). These facts make it unnecessary to quote Theorem
1 of [3] in the proof of Theorem 3 of this paper.
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