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SELF ADJOINT STRICTLY CYCLIC OPERATOR
ALGEBRAS

MARY R. EMBRY

A strictly cyclic operator algebra *$f on a Hubert space
X is a uniformly closed subalgebra of £?{X) such that J&ίco =
X for some x0 in X. In this paper it is shown that if ^f is
a strictly cyclic self-adjoint algebra, then (i) there exists a
finite orthogonal decomposition of X, X = Σ?=i® Mj9 such
that each Ms reduces *$f and the restriction of ^/ to M} is
strongly dense in ^f(Mj) and (ii) the commutant of J^is finite
dimensional.

1. Notation and terminology* Throughout the paper X is a
complex Hubert space and £f(X) is the algebra of continuous linear
operators on X. <$f will denote a uniformly closed subalgebra of
£f{X) which is strictly cyclic and x0 will be a strictly cyclic vector
for s$?\ That is, J^x0 — X. We do not insist that the identity element
I of j£f(X) be an element of Szf. We say that s/ is self-adjoint if
A* 6 *sf whenever A e szf.

If & c Sf(X\ then the commutant of ^ is &' = {JE7: i^e J2^(X)

and £JB = J3i? for all i? in ^ } . A closed linear subspace M of X
reduces & if the projection of X onto itf is in &\ In this case
M is a minimal reducing suhspace of ^ if M Φ {θ} and {̂ } is the
only reducing subspace of έ%? properly contained in M.

We say that a collection {Mj}"^ of closed linear subspaces of X
is an orthogonal decomposition of X if and only if the M3 are pair-
wise orthogonal and span X. A collection {P3)%x of projections is a
resolution of identity if and only if the collection {Pj(X)}]=1 of ranges
of the Pj is an orthogonal decomposition of X.

2. Introduction* Strictly cyclic operator algebras have been
studied by R. Bolstein, A. Lambert, the author of this paper and
others. (See for example [1], [2], and [4].) In Lemma 1 of [1] Bolstein
shows that if N is a normal operator on X and {N}' is strictly cyclic,
then {N}" is finite dimensional. This raised questions about the
nature of arbitrary self-adjoint, strictly cyclic operator algebras. In
this paper we show that if J ^ is such an operator algebra, then
there exists a finite orthogonal decomposition {MQ) of X such that
each M3 reduces s$f and J^jMό is strongly dense in ^f{M3). From
this it follows that sfr is finite dimensional; indeed we show that
*&" = Σ?,*=i Pj^ffPk (where P3 is the projection of X onto M3) and
that for each j and k, P3Sx?'Pk is of dimension zero or one. If
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is abelian, we are able to show more; namely that j ^ " = {Σ;=i ^jPf- λy
complex}, giving us a complete generalization of Bolstein's result.

Each of the results mentioned above is a consequence of two
basic facts concerning a self-adjoint strictly cyclic operator algebra
s*f\ (1) (Lemma 1) each collection of pairwise orthogonal projections
in j ^ ' is finite and (2) (Theorems 1 and 2 of [3]) S>/ has minimal
reducing subspaces.

3* Decomposition theorem* The first lemma in this section
demonstrates a very special characteristic of strictly cyclic operator
algebras on a Hubert space.

LEMMA 1. Let sx? be a strictly cyclic operator algebra on X.
Each collection of mutually orthogonal projections in Szf' is finite.

Proof. Let {Pd} be a collection of mutually orthogonal projections
in jy". Without loss of generality we may assume that {Pj} is coun-
table. Let Qn = Σ?=i Pi a n d n ° t e that Qn converges strongly to Q =
ΣteiίV Thus by Lemma 2.1 in [2] Qn converges uniformly to Q =
Σi^i Pj> However, Q — Qn is a projection and hence has norm zero
or one. Thus for n sufficiently large Qn = Q and thus {Pj\ is finite.

This lemma and its proof were suggested by Robert Kallman,
University of Florida.

COROLLARY 2. Let J^ be a strictly cyclic operator algebra on
X. Each normal element of J%fr has finite spectrum.

Proof. By Lemma 3.6 in [2] if Ee J*ff, then iίhas no continuous
spectrum. Thus if E is a normal element of jzf\ the spectrum of
E consists entirely of point spectrum and by Lemma 1 E has only
a finite number of distinct eigenspaces. Thus the spectrum of E is
finite.

Corollary 2 was proven by R. Bolstein in [1] in the special case
in which sf is the commutant of a normal operator N.

Before considering further the nature of the commutant of a
self-adjoint, strictly cyclic operator algebra Stf, we shall study the
algebra Szf itself.

THEOREM 3. If J%f is a self-adjoint strictly cyclic operator
algebra on X, then there exists a finite orthogonal decomposition
{Mk}k=i of X such that each Mk reduces Jzf and Jzf jMk is strongly
dense in J*f(Mk).

Proof. By Theorem 1 of [3] if X and {Θ} are the only reducing
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subspaces of j ^ then J ^ is strongly dense in Sf(X) and the trivial
decomposition {X} of X satisfies the requirements of the theorem.

Assume that {ilffc}j?=i is a collection of mutually orthogonal sub-
spaces of X such that each Mk reduces Ssf and J^/Mk is strongly
dense in ^f(Mk). If the Mk span X, the conclusion of the theorem
is satisfied. Otherwise consider j^[ = j^/{Mlf , MP}

L. If P is the
orthogonal projection of X onto {Λf;, . . . , ΛQ1, then P e j / ' , and if
#0 is a strictly cyclic vector for jy, then j^Paj 0 — J^P# 0 = PJ^#O =
P(X) = {Mlf , Mp}1. Thus jy; is strictly cyclic. Again by Theorem 1
of [3], if JK has only trivial reducing subspaces, J ^ is strongly dense
in Sf({Ml9 '",MP})L and the construction is complete. Otherwise

&Ί has a nontrivial reducing subspace. Then by Theorem 2 of [3]
/x has a minimal reducing subspace Mp+1 and by Theorem 3 of [3]

J#Ί/MP+1 is strongly dense in j*f(Mp+1). Thus Mlf •••, Mp+1 are pair-
wise orthogonal reducing subspaces for ό^f and Stf\Mk is strongly
dense in J2f(Mk) for k — 1, , p + 1. By Lemma 1 the construction
will terminate with a finite number of pairwise orthogonal reducing
subspaces.

In view of Theorem 3 it is tempting to write Ssf = 0 Σ*=i £f(Mh).
However, this is misleading since Sϊf may not be the full direct sum
of the J5f(Mk). The following simple finite dimensional example
demonstrates this:

0\ )
I: A a 2 x 2 complex matrix [ .

Here Stf is a strictly cyclic self-adjoint operator algebra on ^ \
We shall use the decomposition of j y developed in Theorem 3

to study the commutant of s^f. It is worthwhile noting at this point
that the decomposition in Theorem 3 may not be unique. We shall
investigate this further in Corollary 7.

THEOREM 4. Let Szf be a self-adjoint strictly cyclic operator
algebra and {Mk}l^ a decomposition of X as required in Theorem
3. Let Pk be the orthogonal projection of X onto Mk. Then S*/r —
Σ?,fc=i Pύ^ffPk and for each value of j and ofk, PάSέ"Pk is of dimen-
sion one or zero. In particular S%f' is finite dimensional.

Proof. We note that Σ*=i P* = I and that since Mk is a minimal
reducing subspace of Jzf, then Pk is a minimal projection in J ^ ' .
Further j * " = (Σ?-i Pi)*x"(ΣU Pt) - Σ?,k=i P^'Pk.

We first show that PόS^fPό = {λP, }. Assume that C = P^P,- is
a projection. Note that Ce jχ?f and C = P. CP,- < P, . Thus since Py

is minimal, either C = 0 or C = P, and the only projections in
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are 0 and P3. Therefore P3s*f'P3 = {XP3}.
Secondly we show that either P3j*f'Pk = 0 or P3Stf'Pk = {X Ujk}

where U3k is the partial isometry with initial set Pk(X) and final set
P3(X). Let F = P3EPk, Ee j*r\ Then FF* e P3J^'P3 and hence by
the preceding paragraph FF* = XP3 for some complex λ. Therefore,
FF*F = XF. If P3S^fPk Φ 0, then some F Φ 0. Since F F * ^ - λi*7 =
XP3EPk, F is a scalar multiple of the partial isometry with initial set
Pk{X) and final set P3(X).

The proof of Theorem 4 was provided by T. Hoover.

COROLLARY 5. If j%f is a self-adjoint strictly cyclic operator
algebra with an abelian commutant, then Szf' = {Σ;=i λ Λ : ^J complex}
where {P3) is a resolution of identity as required in Theorem 4. In
particular S/f consists of normal operators with finite spectra.

Proof. By Theorem 4 J ^ ' = Σ?,*=i P3^ffPk. Thus if j * " is
abelian, j # " = Σ?=i Pj*S*ffP3. Moreover, by Theorem 4, Pjjzf'Pj =
{λyP, : λy complex}.

The following corollary due to Bolstein, inspired the ideas which
have been developed in this paper. The techniques used by Bolstein
in [1] to arrive at this result differ radically from those used in this
paper.

COROLLARY 6. (Bolstein) Let N be a normal operator with a
strictly cyclic commutant {N}'. Then there exist orthogonal projec-
tions P1} , Pn such that

{N}" = J Σ λyP/. Xj complex} .

Proof. By the Fuglede theorem {NY is self-adjoint. Thus since
{iV}" is abelian, we can apply Corollary 5.

We return now to the question of the uniqueness of the decom-
position {Mk}k=1 in Theorem 3 or equivalently the uniqueness of a
resolution of identity {Pk}ϊ=ι in S*f\ consisting of minimal projections.

COROLLARY 7. The decomposition {Mk}ΐ=1 in Theorem 3 is unique
if and only if S/' is abelian.

Proof. Assume first that J ^ ' is abelian. By Corollary 5
{Σ?=i χJpJ: λ i complex}. If Q is any projection in sf\ QP3 = PjQ for
each j . Hence QP3 is a projection and since P3 is minimal, either
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= 0 or QPj = Pj. Therefore, if Q is a minimal projection in
or equivalently Q(X) is a minimal reducing subspace of X, then Q =
Pj for some j . Thus the decomposition {Mk}t=ι is unique.

Now assume that the decomposition {Mk}ΐ=1 of Theorem 3 is
unique. Let P be any nonzero projection in Szf' and Po a minimal
projection dominated by P. Since the decomposition is unique,
necessarily P0(X) = Mk for some k. Consequently P = Σ?=iλi^; where
λj is zero or one. Thus all projections (and hence all elements) in J&"
commute.

In conclusion we note that if Ssf is an arbitrary strictly cyclic
operator algebra on X, then Ssf = S^x φ J^ 2 where J ^ is self-adjoint
strictly cyclic and J^2 is strictly cyclic but has no reducing subspaces
on which it is self-adjoint. To see this we argue as follows: Let
3ίΓ be the class of all reducing subspaces of Szf on which J ^ is
self-adjoint. Order 3ίΓ by inclusion and note that Lemma 1 implies
that any linearly ordered subset of JίΓ is finite. Thus the Maximal
Principle can be applied and there exists a maximal reducing subspace
M such that S^/M is self-adjoint. Finally if x0 is a strictly cyclic
vector for j ^ and P the projection of X onto M, then Pxύ is a
strictly cyclic vector for Ssf/M.

ADDENDUM. The referee kindly pointed out that Rickart (Section
3, pp. 622-623, of "The uniqueness of norm problems in Banach spaces",
Annals of Mathematics, 51 (1950), 615-628) showed that the commu-
tant of a strictly cyclic transitive algebra consists only of scalars
and that the algebra is ^-transitive for every n. Thus J ^ is strongly
dense in J*f(X). These facts make it unnecessary to quote Theorem
1 of [3] in the proof of Theorem 3 of this paper.
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