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ON THE EXCEPTIONAL SETS FOR SPACES

OF POTENTIALS

DAVID R. ADAMS

New results on the Bessel and Besov-Lipschitz potentials
on Rn are obtained via recent results in nonlinear potential
theory. In particular their respective exceptional classes are
shown to be identical when p > 2 — a/n. By the same tech-
niques, results on thin sets and traces of potentials are
obtained.

I* Introduction* In the theory of "perfect functional comple-
tion" of a given normed linear space of smooth functions defined on
Rn

y the idea is to look for a Banach space with respect to the given
norm in, say, the class of Lebesgue measurable functions by taking
limits in the norm of smooth functions. Associated in a natural way
with any such completion is a cr-algebra of exceptional sets of Rn.
These exceptional sets give the limits up to which one can pick a
canonical equivalence class representative that is defined on the
largest possible set. In this note, the exceptional sets for two
important perfect functional completions are reexamined in light of
recent development in nonlinear potential theory — see e.g., [3], [4],
and [7]. The two classes of interest are: Λa>p = Λap(Rn), the Besov-
Lipschitz potentials on Rn, and La_p = La p{Rn), the Bessel potentials
on Rn. Their respective exceptional classes are denoted by %a'p and
WiP in [5], where they are studied extensively — see especially
Chapter III page 289 in [5] where a criterion for belonging to Sία'p

or SSα>2> is given. This is utilized in Proposition 1 below.

La>P{Rn) = ga(Lp(Rn)), i.e., the convolution image of the p-summa-
ble functions on Rn, 1 ^ p <Ξ oo, under the Bessel kernel ga = g(

a

n)(%),
the L^R"1) function whose Fourier transform is (1 + | ξ \2)~al\ ξ e Rn,
a > 0. The norm on La.p is || u\\ap = \\f \\pf where u = ga*f (|| | |p

the usual norm on Lp). For Λa>p, we say ueΛap, 1 ^ p ^ °°, 0 <
a < 1, if ue Lp and

(1) | . U , - , | . I U

is finite, Ayn{x) = u(x — y) — u{x). For 1 ^ a < 2, Ayn{x) is replaced
by Δ\u{x) — u(x — y) + u(x + y) — 2u(x) in (1). And finally for a ^ 2,
ueΛa^p iff ueLp and du/dxk e Λa_ί>p, k = 1, •••, n. Other equivalent
definitions of Λa>p can be found in [9].
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It is well known that Λa>2 = La>2 for all a > 0 and hence 2tα'2 =
aSα'2. But for 1 ^ p ^ 2, ΛβfP c Lα,p and for 2 ^ p ^ oo, Lβ i P c Λa>p.
Moreover, these inclusion are proper for p =£ 2. (See [9].) Thus,
although the classes Aa,p and La>p are quite different in many respects
it can be shown (via nonlinear potential theory) that %a'v = S3α>2>,
a > 0, 2 - α/w < p < co. When 1 ^ p <: 2 — α/n, the result remains
open. It is this and related results that are discussed here.

2 Main result* Consider the following set functions (capacities)
defined initially for compact set KaRn:

B{n)(K) — inf I IΦII P

and

= inf I φ |2,,

where, in each case, the infimum is over φeC~(Rn) for which φ(x) ^ 1
on K. C~(Rn) denotes the infinitely differentiate functions on Rn

with compact support.

REMARK. B{

a

n

fP and A{^p can be extended to all sets of Rn as
"outer capacities" — see e.g., [7].

PROPOSITION 1. A£P{K) = Q(B^P(K) = 0) iff Ke Ψ>*(Ke SSα^), K
a compact set of Rn.

THEOREM 1. A™P(K) = 0 iff B{£P(K) = 0, a > 0, 2 - a/n < p < oo,
K a compact set of Rn, and for ap > 1, p > 1 if K is a compact
subset of Rn~\

For the proof, we need to draw from two sources — the key
facts are Theorems I and II below.

THEOREM I ([8]). If for φ e C~(Rn), Emφ = φ(xlf , xm, 0, , 0),
1 ^ w ^ n, then there exists a linear extension operator Em such that
for ψ 6 C~(Rm), Rm(Emψ) = ψ. Furthermore, there is a constant C
independent of φ and ψ such that

( a ) \Rjp\β.,£C\\φ\\a.9

( b ) \\Emφ\\a,P^C\ψ\β!P

(C) \Rmφ\β,p£C\φ\a.p

( d ) \Emψ\a,P^C\ir\β,p

whenever l<p<°°,β = a — (n — m/p) > 0.

THEOREM II ([2]). For a Borel measure μ, set
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then

(2) m%(x) ~ Γ [r°>
J

for p > 2 — a/n, 0 < ap ^ n. The symbol ~ means that the ratio
is bounded above (for some b > 0) and below (for another b > 0), the
bounds being independent of x and μ. Sr(x) — ball of radius r about
xeRn.

Now by I(a), Afc&K) ^ CB%P(K) for some C> 0 independent of
K c Rm since the restriction Rm of each test function for B is a test
function for A. Similarly, B%P(K) ^ CAffi(K) using I(b). Hence,
/(α — d) implies that B{*X ~ Affi ~ A^l, on compact subsets of Rm,
m ^ n — 1. To remove this restriction on K, we use II. By [7] we
know that for any compact KaRm, B{£P(K) > 0 iff there is a non-
zero Borel measure concentrated on K such that ET^ is bounded.
But since ap - n = βp - m, II gives B^]

P(K) > 0 iff B^P(K) > 0,
p > 2 — /9/m, 0<ap^ n. (This relation trivially holds when ap > n.)
It might be noted that "B%(K) = 0 implies B{^V(K) = 0 for 1< p < oo"
is an immediate consequence of the definition of Bessel capacity — a
fact we have improved for p > 2 — βjm.

Note, if we change the notation slightly in the above arguments,
w e h a v e : B{

a

n

>p(K) = 0 iff BΆk

lv>p(K) = 0,p>2- a/n, K c o m p a c t i n
Rn, k 2L positive integer.

COROLLARY 1. B{

a

n

>p(K) = 0 iff B[^P(K) = 0, β = a - (n - m)/p >
0, p > 2 — /2/ra, if compact in Rm.

3. Thin sets. A set E(zRn is called J ^ , ^ — thin at xQeE iff
there exists a Borel measure μ such that U^]

p(x) is bounded and

U^Kx) < lim inf U{

a%(x) .
X-+XQ

Recently in [4], necessary and sufficient conditions of the Wiener type
have been given for a set to be J?a\V — thin at x0, provided p > 2 —
a/n. The condition, which depends strongly on II, is by [4] and
Theorem 1

(3) [ [rap~nA%(E n Sr(xMn*~ι)— < °°
Jo r

It was also shown in [4] that (3) is not equivalent to J^^ — thin-
ness for 1 < p < 2 — a/n. So, although it remains unknown as to
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what the appropriate replacement for (3) is when p < 2 — a/n, it is
of interest to know just what (3) means when p <= 2 — a/n. In this
vain, Theorem 1 gives

THEOREM 2. If EaRn, then (3) is equivalent to E being
^J+killp — thin at x0. Here k is a positive integer chosen large
enough so that p > 1 + O(l/i/Έ). Furthermore, k can be chosen to
be zero provided p > 2 — a/n.

4* Traces of Λa>p — potentials* The techniques of Theorem 1
can also be used to obtain trace inequalities in the spirit of [1] and
[2]. If Φ( , v) is a semi-norm on C~(Rn) for each Borel measure v,
such that Φ(φ, v) = 0 when φ is zero on the support of v, then

THEOREM 3. If for any a > 0 and 1 < p < <*>, there is a con-
stant C independent of ue C~(Rn) such that

Φ(\u\,v)^C\\u\\a,P

then

Φ(\u\,v)£C'\u |βfP

for some constant C" independent of u. The converse holds for
P ^ 2.

For various choices of Φ we can obtain trace inequalities for the
Λt-spaces analogous to those given in [1] and [2] for the LαJ,-spaces.
In particular, when Φ is a Lorentz norm, we get Sobolev type
inequalities for the ^-spaces from the known inequalities for the
Bessel potentials (cf. [6]). Thus from [2] we have the following
rather interesting

COROLLARY 2. Suppose μ is a Borel measure on Rn with compact
support such that for all xe Rn and r > 0, and any d: 0 < d ^ n,
μ(Sr(x)) ig Crd, then for ap = n, 1 < p < oo, and some b > 0,

suPι«'«.,*i J e χ P (δ I *Φ) \pΊdμ(χ) < oo ,

p' = p/(p - 1).

A further application of the techniques of Theorem 1, is to the
results of [10], where Fubini type theorems with respect to Aa,P and
BaP null sets are discussed. Theorem 1 improves the apparent
assy me try in these results.
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