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MONOTONE DECOMPOSITIONS INTO
TREES OF HAUSDORFF CONTINUA
IRREDUCIBLE ABOUT A FINITE SUBSET

ELpoN J. VOUGHT

This paper deals with characterizing two types ¢f monotone,
upper semi-continuous decompositions of a Hausdorff continuum
that is irreducible about a finite subset. One of the decompositions
is minimal with respect to the property of having a quotient space
which is a tree (a hereditarily unicoherent, locally connected con-
tinuum) and is characterized in terms of certain collections of
subcontinua. The other decomposition is not only minimal but
also unique with respect to the properties that the quotient space is
a tree and the elements of the decomposition have void interiors.
This decomposition is characterized quite simply by prohibiting
the existence of indecomposable subcontinua with nonvoid inter-
iors. The structure of the elements of the decompositions that have
void interiors is very nice and is described by means of the apo-
syndetic set function 7. In the case where elements exist with
nonvoid interiors, the structure can be very complicated and a final
result deals with this structure under some rather stringent con-
ditions.

For a compact, metric continuum M that is irreducible about two
points Thomas proved [7, p. 15] that M has a decomposition & such that

(1) Y is upper semi-continuous,

(2) the elements of & are continua,

(3) each element of & has void interior, and

(4) the quotient space of & is an arc,
if and only if M contains no indecomposable subcontinuum with nonvoid
interior. Gordh [3, p. 650] generalized this for a compact, Hausdorff con-
tinuum where the quotient space in his result is a generalized arc (a
continuum in which every point except for two is a separating point).
Theorem 1 in this paper generalizes the above decomposition theorem to a
compact, Hausdorff continuum that is irreducible about a finite set of
points where condition (4) is now that the quotient space is a tree (a locally
connected, hereditarily unicoherent continuum). This result strengthens
somewhat a theorem due to Russell [6, p. 260] which proves that a sufficient
condition in order for a metric continuum M to have such a decomposition
is that M be hereditarily decomposable.
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If M is a compact, Hausdorff continuum that is irreducible about a
finite set of points then in Theorem 2 necessary and sufficient conditions are
given so that M has a nontrivial decomposition & for which

(1) Y is upper semi-continuous,

(2) the elements of & are continua, and

(3) the quotient space is a tree.

These results generalize and strengthen a theorem of the author’s [8] for a
continuum that is irreducible about two points.

The difference in Theorems 1 and 2 is that the elements of the de-
composition must have void interiors in Theorem 1. The elements in this
decomposition have a very nice structure indeed and, in fact, the decom-
position is unique. The decomposition in Theorem 2 is not unique with
respect to properties (1), (2), (3), but is minimal in the sense of refinement
and enjoying these properties. In this decomposition the element structure
is quite complicated. A final theorem of this paper allows M to contain
certain combinations of indecomposable subcontinua with nonvoid inter-
iors and a decomposition results that is very similar to that of Theorem 1.

Some terminology and a few notions are necessary in order to prove
the first theorem. Let M be a compact, Hausdorff continuum and 4 a subset
of M. Then T(A) is the set 4 together with all points x € M for which there
does not exist an open set U and continuum Hsuchthatx e UC HC M
—AIfn=11etT"(4) = T(4) and if n = 2let T"(4) = T(T"~ ' (4)).
If T(A) = A let us say that 4 is T-closed and if T(x) = {x} for each x €
M we say that M is semi-locally connected. The set function T is the
aposyndetic set function first defined by Jones [5]. For more information on
T and T"see [1]. If M is irreducible about the n points x,, x, ..., X, butis
not irreducible about any fewer number of points, then M is minimally
irreducible about x,, X5, ..., x,and each x;, 1 < i < n, is an end point of M.
A decomposition & of M that has a specific set of properties is a core
decomposition with respect to these properties if & refines every other
decomposition of M having these properties. FitzGerald and Swingle have
proved that if M is a compact, Hausdorff continuum, then M has a core
decomposition with respect to the properties of being monotone and hav-
ing a semi-locally connected quotient space [2, p. 37]. We will use this
result.

THEOREM 1.  Let M be a compact, Hausdorff continuum that is mini-
mally irreducible about n points, n = 2. If M contains no indecomposable
subcontinuum with nonvoid interior then there exists a decomposition & of
M such that

(1) Y is upper semi-continuous,
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(2) the elements of & are continua,

(3) the quotient space of D is locally connected, and

(4) each element of & has void interior.
Furthermore, the quotient space is a tree minimally irreducible about n points
and ) is the only decomposition satisfying (1), (2), (3), (4). Conversely, if % is
a decomposition of M satisfying (1), (2), (3), (4) then M contains no inde-
composable subcontinuum with nonvoid interior.

Proof. Let each indecomposable subcontinuum of M have void in-
terior. We will first show that T"(x) = T"*!(x) for all x € M and that
{T"(x) | x € M} is a decomposition of M. Then by [2, p. 39], {T"(x), x €
M} will be the core decomposition of M with respect to being monotone,
upper semi-continuous and having a semi-locally connected quotient
space. Given x € M clearly T"(x) C T"*!(x). Toshow T"* ' (x) C T"(x)
suppose y & T"(x). There exists a continuum H,suchthaty € HY C H; C
M — T"~'(x). The components of M — H, are open sets since there can
be only a finite number due to the fact that M is irreducible about a finite
set. So H, can be chosen so that M — H, is connected. Let K, = M — H,.
For each z € H, there is a continuum H,suchthatz € H’ C H,C M —
T" ~?(x) and hence, by the compactness of the continuum H|, there exists
a continuum H, such that H, C HY C H, C M — T"~ *(x). Again we may
assume that M — H, is connected and we set K, = M — H,. Continuing
this process we obtain » continua H,, H,, ..., H, for which the following
sequence of inclusions holds:

yeH’cH cH’cHc~cH’cH,cM-{x.

LetK;,=M — H,;,i = 1, ..., n, where M — H,is connected. Consider the
pairwise disjoint open sets

0 770 o gyo 0 [ 0 0
Hl s HZ N Kl > H3 N KZ 9y Hnm-m+1 N Knm—m’ nm-m+1°

Since K, and H, are continua and M isirreducible about x,, x,, ... , x,, H/
and K;? must each contain an end point of M. Because M has but n end
points, one of the above n + 1 open sets, say HY N K{_, contains no end
point of M. Let L be an irreducible continuum from H; _ to K;. Then H7
N Ki_, C Lorelse H_; U L U K;is a proper subcontinuum of M
containing all of the end points. Therefore L° # ¢ and L = L, U L, where
L, and L, are proper subcontinua of L. Due to L being irreducible we have
LinNH,_#%#L,NK,andL,NK,= % =L, N H;_,. Wenow have
the inclusions T(x) c K, T*(x) ¢ K, s " *1(x) c K,
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T""*%(x) c K, 0 Ly, T"*3(x) € K;_q, ..o s
T"(x) c K,, " (x) c K,.

Therefore y & T+ !(x) and it follows that T"(x) = T" * ' (x).
To show {T"(x) | x € M} is a decomposition, suppose z € T" (x). By
the above argument it is clear that x € T"(z). We then have

T"(z) ¢ T"(T"(x)) = T*"(x) = T"(x) and T"(x) c T*"(z) = T"(2).

Then T"(x) = T"(2). Soif z € T"(x) N T"(y) we must have T"(x) =
T"(z) = T"(y) and, consequently, {T"(x) | x € M} is a decomposition. As
mentioned, the decomposition is monotone, upper semi-continuous and
the quotient space M’ is semi-locally connected. Since M is minimally
irreducible about n points so is M’, and it follows easily from this and the
semi-local connectedness that M’ is locally connected.

The continuum M’ is a tree if and only if given any two distinct points
xand y of M’ there is a point z € M’ such that z separates x from y [9]. Take
X, y € M’ and let H be an irreducible subcontinuum of M’ from x to y.
Choose z € H such that z & {x, y, f(x1), f(x2), ..., f(x,)} where fis the
quotient map from M onto M’. The components of M’ — {z} are open sets
since M’ is locally connected. Suppose x and y are in the same component C
of M’ — {z}.Let Ube anopensetsuchthatz € U,x,y & U, andf(x;) € U,
i = 1,..., n. By the local connectedness of M’ and because z does not
separate C = C U {}, there exists a continuum Ksuch that C — U C K’ C
K C C. The open set C — K C H for otherwise (M’ — C) U KU Hisa
proper subcontinuum of M’ containing f(x;), i = 1, ..., n. Choose w € C
— K. If wseparates z from K in C then w separates {x, y} from zin H which
means that H is not irreducible from x to y. So w does not separate z from K
in C and now, because M’ is locally connected, there exists a subcontinuum
Lof C — {w)suchthatz€ Land LN K # ¢.But(M' — C) UL U Kiis
a proper subcontinuum of M’ containing f(x;), i = 1, ..., n, a contradic-
tion. So the assumption that x and y are in the same component of M’ —
{z} is contradictory. Hence x and y are in different components of M’ —
{z} which means that z separates x from yin M’.

To show (4) suppose for some x € M that T"(x) has nonempty
interior. First suppose T"(x) contains none of the end points. Let K;,
K,, ..., K, be the closures of the finite number of components of M —
T"(x) and let Q be a subcontinuum of 7" (x) irreducible about the closure
of (T"(x))°. Now Q is irreducible about a finite set of points, is not
indecomposable and contains no indecomposable subcontinuum with
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nonvoid interior. Therefore there exist two points x’, y’ such that x’ € K; N
0,y €K; NQ for some pair of integers i, j; 1 < i, j < m; and for which the
following inclusions hold:

ye0’°cQcQ’c@cc 0’ cQ,cM-I{x|

where each Q; is a continuum. But then y’ & T"(x") = T"(x), a contra-
diction. If 7" (x) contains one of the end points x; from {x;, X5, ..., Xa },
then let L be a subcontinuum of M irreducible about {x;, x;, ..., X; _,
Xi4+1s ---» Xp } and let L’ be an irreducible subcontinuum of M from x; to L.
Since L’ contains no indecomposable subcontinuum with nonvoid interior
it has a monotone decomposition &, the elements of which have void
interiors, and for which the quotient space is a generalized arc [3, p. 650].
Let D,, be the element of & ’ that contains x;. Clearly 7" (x) C D,, since Xx;
€ T"(x) and this is a contradiction to (7" (x))° # 9.

To complete the proof of sufficiency we need to show that {T"(x) | x
€ M} is the only decomposition satisfying (1), (2), (3), (4). Let & be any
other decomposition satisfying these properties. Since {T"(x)|x €M}
refines 7, there exists A € 7 and T"(x) for some x € M such that
T"(x)  h. Lety €h — T"(x). Borrowing the construction from the first
part of the proof we have the continua H,, Hs, ..., H,; K;, K, ..., K,
where y € H, and x € K,,. Forsome i, HY N K7_,; C L where L is the
irreducible subcontinuum of M from H; _, to K;. Clearly L separates M
into the open sets H?_ and K{ withy € H?_ ,and x € K?. But / contains
both x and y so # must contain L. Because L contains an open set and &
cannot contain such a set we have arrived at a contradiction.

Suppose & is any decomposition of M satisfying (1), (2), (3), (4) and
let I be an indecomposable subcontinuum of M such that I° # . First
suppose I contains an end point x;. Let L be a subcontinuum of M
irreducible about {x,, x5, ..., X; _1, X; 4, ..., X, } and let L’ be an irre-
ducible subcontinuum of M from x; to L. If D,, is the element of &
containing x; then it is clear that D,, N L = ¢. Let us denote by f the
quotient map of M onto the locally connected quotient space M’ of the
decomposition & . Because of the local connectedness of M, f(L") N f(L)
is a single element x € M’ and f(L’) is a generalized arc. So L’ contains no
indecomposable subcontinuum with nonvoid interior. Thus L’ ¢ I Butit
is clear then that for some element D € & that lies in L’, the continuum /
is separated by D, a contradiction.

Next suppose I contains no end point. Let K, K;, ..., K,, be the
closures of the components of M — I. Consider K. There do not exist D,,
Ds, ..., D, € & eachintersecting K;suchthat D, N K; # @,i =2, ..., m;
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for otherwise U/ | K; U U/, D; would be a proper subcontinuum of M
containing all the end points. A similar statement is true for each of the m
K;’s. Using this fact plus the local connectedness of the quotient space M” it
follows easily that there exists an element D € & such that D C I°.
Because 7 is upper semi-continuous there exists an open set U such that D
C U C I° and U is the union of members of & . Now f(D) € f(U) and
since M’ is locally connected there is a connected open set W € M’ such
that f(D) € W C W C f(U). Then D C f~'(W) C f~'(W) C U which
implies that f~'(W) is a proper subcontinuum of the indecomposable
continuum 7 with a nonvoid interior. This is impossible and the proof is
complete.

Next we need to borrow a definition from Whyburn. A collection ¢
of subsets (not necessarily disjoint) of M is a saturated collection if
whenever G € 4 and p & G there exists G’ € ¢ such that G’ separates p
from Gin M,i.e,M — G = A U Bwherep € 4,GC B,andAN B = ¢
= A N B[10, p. 45]. Also we call a subset G of M a separator if M — G is
not connected.

THEOREM 2. Let M be a compact, Hausdorff continuum that is mini-
mally irreducible about the n points {x,, X, ... , X, }. Suppose there exists a
nonvoid saturated collection of separators each element of which is a contin-
uum. Then M has a nontrivial decomposition & such that

(1) Y is upper semi-continuous

(2) the elements of Dare continua

(3) the quotient space of Y is locally connected.

Moreover, & is the core decomposition with respect to these three
properties and the quotient space is a tree minimally irreducible about m
points, m < n. Conversely, if 9 is a nontrivial decomposition satisfying (1),
(2), (3), there exists a nonvoid saturated collection of separators each element
of which is a continuum.

Proof. Consider the union of all saturated collections of separators
where the separators are continua and let us denote this collection by .
Clearly  is itself a saturated collection of separators each element of
which is a continuum and is the unique maximal such collection. Let S, be
the set of all points y such that there does not exist G €4 which separates x
from y. Now take G € F and let M — G = 4 U B, a separation of M.
Choosea € A, b € B, ¢ € G. There exists G’ €4 such that G’ separates a
from G and clearly G’ C A. So G’ separates a from c in M and hence by [2,
p.49] /" = {S, |x € M} is an upper semi-continuous decomposition of M
into closed sets. Now let 4 denote the core decomposition with respect to
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the properties of being monotone and having a semi-locally connected
quotient space (M, %) and let f be the quotient map from M onto (M, %)
Since (M, ¢) is semi-locally connected and clearly irreducible about m
points, m < n, it follows that (M, <) is locally connected. As in the proof of
Theorem 1, (M, €’) can be shown to be a tree. So what remains to be shown
isthat € =7 LetK = {f~'(k) | kis a point of (M, %) and k separates (M,
€)}. Since (M, €) is a tree obviously K # ¢ soletf~'(k) E K, x € M —
f~'(k) and consider f(x), k € (M, ¢). Due to the fact that (M, €) is
hereditarily unicoherent there exists a unique subcontinuum of (M,?%), H,
irreducible from f(x) to k. Choose ¥’ € H — {f(x), k}. Because (M, %) is
locally connected it follows that k” separates f(x) from k in (M, ¢). Then
f~' (k') separates x from f~!(k) in M and K is a saturated collection of
separators of M. By the monotonicity of feach element of K is a continuum.
The elements of # are of the form f~' (k) where k € (M, %) so take f ' (k)
€ ¢ and x € M — f~!(k). Exactly as above there exists k' € (M, %) such
that /! (k’) separates x from f~' (k). Since f ' (k') € K thenf~' (k') € F
(because 7 is maximal) and it follows that . < & .

To prove that € < ./ let us note that FitzGerald and Swingle have
proved that & can alternately be expressed as the core decomposition with
respect to the properties of being upper semi-continuous and having 7-
closed elements [2, p. 37]. We have already established that . is upper
semi-continuous and if we show that the elements of .7 are T-closed it will
follow that € < .. For this purpose take S, €. andy € M — S,. There
exists G E7suchthat M — G = A U B, aseparation, withx E 4 andy €
B. Because  is a saturated collection it follows easily that G can be chosen
sothat S, C 4 and y € B. Butthen G U Bis a continuum containing y in its
interior and not intersecting S,. Hence y & 7(S,) so S, is T-closed and .”’is
the core decomposition & of the theorem.

Conversely, suppose that & is a nontrivial decomposition satisfying
conditions (1), (2), (3) in Theorem 2. Let the quotient space of & be
denoted by (M, &) and let f be the quotient map of M onto (M, 7). We
know from the proof of Theorem 1 that (M, &) is a tree. Let K =
{f~'(k) |k € (M,2) and k separates (M,Z )} and let f~' (k) E K,y € M
— f~'(k). Because (M, D) is hereditarily unicoherent there exists a unique
continuum H irreducible between f(y) and k. As previously proved there
exists K’ € H — {f(»), k} such that k’ separates f(y) from k in (M, < ). Then
f ~! (k") separates y from £~ (k) in M. So K is a nonvoid saturated collection
of separators of M and each separator is a continuum since & is monotone.

The next theorem is a generalization of Theorem 1 where M is allowed
to contain simple chains of indecomposable subcontinua with nonvoid
interiors. A collection of subsets of M, {C; |i = 1, ... , m},is a simple chain if
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C:N C; # ¢ ifand onlyif |i — j| < 1. Each subset C;is called a link of the
chain.

THEOREM 3. Let M be a compact, Hausdorff continuum minimally
irreducible about n points, n = 2. If M contains no simple chain of m links, m
= 1, in which each link is an indecomposable continuum with nonvoid
interior then 9 = {T"™ ~"*!(x) |x €M} is the core decomposition of M
with respect to being monotone, upper semi-continuous with a locally con-
nected quotient space. Moreover, the quotient space is a tree minimally
irreducible about p points where p < n.

Proof. Itisonly necessary to show that 7" ~™+2(x) = T™ ~™ +!(x)
for each x € M and that {T" ~™ *!(x) |x € M} is a decomposition of M.
The conclusion will then follow by exactly the same reasoning as in
Theorem 1. Given x € M it is clear that 7" ~"+!1(x) C T™ ™ *+2(x).
Suppose y & T™™ =™ +!(x). As in the construction of Theorem 1, a sequence
of continua Hy, ..., H,,, _, , 1 can be constructed such that

yeH’cH cH’cHycCHp i1 C Hyp_mi1 € M- 1{x}.

As before let K; be the continuum M — H;,i = 1,...,nm — m + 1, and
consider the pairwise disjoint open sets

0 [ /] o o o [ 0
H° H’ " K’ H’ "K', .., H’ n K%, K,°.

Let L; be an irreducible subcontinuum of M from H;to K; ., i=1, ... ,nm
— m. Because M is irreducible about »n points H{ and K, _ ,, , ; must each
contain an end point and at least nm — m — (n — 2) of the L;s do not
contain an end point. It follows that each of these L’s mustcontain H{ _ | N
K? because of the irreducibility of M. Also because M contains no simple
chain of m links where each link is an indecomposable continuum with
nonvoid interior, at most (m — 1) (n — 1) of the L;s that do not contain an
end point are indecomposable. Therefore atleastmn — m — (n — 2) — (m
— I)(n — 1) = 1 of the L’s does not contain an end point and is
decomposable. For one such L;let L, = L, U L, where L, and L, are
proper subcontinua of L;. Since L; is irreducible from H;to K; ,, we have
LNH#+¢#*L,NK; andL,N K, ;=% = L, N H,. Asinthe proof
of Theorem 1 this leads immediately to the conclusion that 7™ =™ *2(x)
CK,. Hence y & T™ "*2(x) and it follows that T™ " +'(x) =
Trm—m +2 ( .X).

To show that {T"" " *+!(x) |x € M} is a decomposition of M, the
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reasoning in Theorem 1 may be employed with 7" replaced by 77"~ " * !,
In Theorems 1 and 3 it is established that the structure of the elements
in the decompositions are precisely 7" (x) and 7" =™ *! (x), respectively. It
is not hard to show by means of simple examples that the exponents of T
cannot be reduced. Also it can be shown easily that the elements D of the
decomposition & in Theorem 2 that have void interiors are of the form
T"(x) for each x € D. But the structure of the elements with nonvoid
interiors is considerably more complicated.

It might be pointed out too that, while Theorem 1 assures a decom-
position space which preserves the number of “ends,” the decomposition
spaces of Theorems 2 and 3 may greatly reduce this number; in the case of
Theorem 3, the decomposition space may be degenerate.
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