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MONOTONE DECOMPOSITIONS INTO
TREES OF HAUSDORFF CONTINUA

IRREDUCIBLE ABOUT A FINITE SUBSET

ELDON J. VOUGHT

This paper deals with characterizing two types of monotone,
upper semi-continuous decompositions of a Hausdorff continuum
that is irreducible about a finite subset One of the decompositions
is minimal with respect to the property of having a quotient space
which is a tree (a hereditarily unicoherent, locally connected con-
tinuum) and is characterized in terms of certain collections of
subcontinua. The other decomposition is not only minimal but
also unique with respect to the properties that the quotient space is
a tree and the elements of the decomposition have void interiors.
This decomposition is characterized quite simply by prohibiting
the existence of indecomposable subcontinua with nonvoid inter-
iors. The structure of the elements of the decompositions that have
void interiors is very nice and is described by means of the apo-
syndetic set function Γ In the case where elements exist with
nonvoid interiors, the structure can be very complicated and a final
result deals with this structure under some rather stringent con-
ditions.

For a compact, metric continuum M that is irreducible about two
points Thomas proved [7, p. 15] that M has a decomposition 3) such that

(1) Q) is upper semi-continuous,
(2) the elements of !2) are continua,
(3) each element of *2) has void interior, and
(4) the quotient space of 3) is an arc,

if and only if M contains no indecomposable subcontinuum with nonvoid
interior. Gordh [3, p. 650] generalized this for a compact, Hausdorff con-
tinuum where the quotient space in his result is a generalized arc (a
continuum in which every point except for two is a separating point).
Theorem 1 in this paper generalizes the above decomposition theorem to a
compact, Hausdorff continuum that is irreducible about a finite set of
points where condition (4) is now that the quotient space is a tree (a locally
connected, hereditarily unicoherent continuum). This result strengthens
somewhat a theorem due to Russell [6, p. 260] which proves that a sufficient
condition in order for a metric continuum M to have such a decomposition
is that M be hereditarily decomposable.
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If M is a compact, Hausdorff continuum that is irreducible about a
finite set of points then in Theorem 2 necessary and sufficient conditions are
given so that M has a nontrivial decomposition & for which

(1) 31 is upper semi-continuous,
(2) the elements of & are continua, and
(3) the quotient space is a tree.

These results generalize and strengthen a theorem of the author's [8] for a
continuum that is irreducible about two points.

The difference in Theorems 1 and 2 is that the elements of the de-
composition must have void interiors in Theorem 1. The elements in this
decomposition have a very nice structure indeed and, in fact, the decom-
position is unique. The decomposition in Theorem 2 is not unique with
respect to properties (1), (2), (3), but is minimal in the sense of refinement
and enjoying these properties. In this decomposition the element structure
is quite complicated. A final theorem of this paper allows M to contain
certain combinations of indecomposable subcontinua with nonvoid inter-
iors and a decomposition results that is very similar to that of Theorem 1.

Some terminology and a few notions are necessary in order to prove
the first theorem. Let M be a compact, Hausdorff continuum and A a subset
of M. Then T(A) is the set A together with all points x E M for which there
does not exist an open set U and continuum H such that x E U C H C M
- A. If n = 1 let Tn(A) = T{A) and if n > 2 let Tn{A) = T(Tn~ k(A)).
If T(A) = A let us say that A is T-closed and if T(x) = {x} for each x E
M we say that M is semi-locally connected. The set function T is the
aposyndetic set function first defined by Jones [5]. For more information on
T and Tn see [1]. If M is irreducible about the n points x{, x2, .. ,xn but is
not irreducible about any fewer number of points, then M is minimally
irreducible about xλ9xl9 ... 9xn and each xi91 < i < n, is an end point of M.
A decomposition 3f of M that has a specific set of properties is a core
decomposition with respect to these properties if & refines every other
decomposition of M having these properties. FitzGerald and Swingle have
proved that if M is a compact, Hausdorff continuum, then M has a core
decomposition with respect to the properties of being monotone and hav-
ing a semi-locally connected quotient space [2, p. 37]. We will use this
result.

THEOREM 1. Let M be a compact, Hausdorff continuum that is mini-

mally irreducible about n points, n > 2. If M contains no indecomposable
subcontinuum with nonvoid interior then there exists a decomposition 3) of
M such that

(1) & is upper semi-continuous,
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(2) the elements of & are continua,
(3) the quotient space of S) is locally connected, and
(4) each element ofQ) has void interior.

Furthermore, the quotient space is a tree minimally irreducible about n points
and!3) is the only decomposition satisfying (I), (2), (3), (4). Conversely, ijr!3) is
a decomposition of M satisfying (1), (2), (3), (4) then M contains no inde-
composable subcontinuum with nonvoid interior.

Proof Let each indecomposable subcontinuum of Λf have void in-
terior. We will first show that Tn(x) = Tn + ι (x) for all x G M and that
{Tn(x)\x E M) is a decomposition of Λf. Then by [2, p. 39], {Tn(x), x G
Λf} will be the core decomposition of Λf with respect to being monotone,
upper semi-continuous and having a semi-locally connected quotient
space. Given x EM clearly Tn (x) C Tn + * (x). To show Tn + x (JC) C Tn (x)
suppose;/ £ Tn (x). There exists a continuum Hx such thaty G Hx C Hx C
Λf — Tn~ι (x). The components of Λf — Hx are open sets since there can
be only a finite number due to the fact that Λf is irreducible about a finite
set. So H\ can be chosen so that Λf — Hγ is connected. Let K\ = M — H\.
For each z G H\ there is a continuum /JΓ2 such that z G /// C Hz C M —
Tn ~ 2(x) and hence, by the compactness of the continuum Hx, there exists
a continuum 7/2 such that ^ C H c ^ C M - Γ " 2 (X). Again we may
assume that Λf — H2is connected and we set K2 = M — H2. Continuing
this process we obtain n continua Hx, H2, ..., Hn for which the following
sequence of inclusions holds:

y € Hx° c Hx c #2° c / ί 2 c - c Hn° c # Λ c Λf - {*}.

Let ΛΓif = M — /f/, i = 1, ..., Λ, where Λf — if, is connected. Consider the
pairwise disjoint open sets

n

Since K{ and Hn are continua and Λf is irreducible about xx, x2,... ,xn, Hx

and K° must each contain an end point of M. Because Λf has but n end
points, one of the above n + 1 open sets, say Hf Π K° _ i, contains no end
point of Λf. Let L be an irreducible continuum from Ht _ i to Kh Then if?
Π K°i_x C L or else Hx•_ x U L U AT, is a proper subcontinuum of Λf
containing all of the end points. Therefore L° Φ Φ and L = Lx U L2 where

Li and L2 are proper subcontinua of L. Due to L being irreducible we have
LXΠ Hi_xΦ Φ Φ L2Π Kt and Lx Π Kt = Φ = L2 Π /ί,- _ !. We now have
theinclusions r ( x ) c κn9 T2(x) c ^ . ^ ... , Tn~i+ι(x) c AT,,
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r-/+2(*) c κt v L2, r-/ + 3(x) c κt_u...

T"(x)

Therefore;; £ 7V1 + * (JC) and it follows that Tn(x) = Tn + ι (x).

To show { Γ ( x ) | ^ E Af} is a decomposition, suppose z G ΓΛ(x). By
the above argument it is clear that x G Tn (z). We then have

T"(z) c Tn(Tn(x)) = Γ2"(x) = r ( x ) and Tn{x) c Γ2π(z) = Tn(z).

Then Γ"(x) = ΓΛ(z). So if z G Tn(x) Π Γ n ( j ) we must have Tn(x) =
Γπ(z) = Γ"(y) and, consequently, {Γ n (x) | x G M} is a decomposition. As
mentioned, the decomposition is monotone, upper semi-continuous and
the quotient space Mr is semi-locally connected. Since M is minimally
irreducible about n points so is Af', and it follows easily from this and the
semi-local connectedness that Af' is locally connected.

The continuum Af' is a tree if and only if given any two distinct points
x andy of Λf there is a point ZELM' such that z separates x from 7 [9]. Take
x,y G AT and let if be an irreducible subcontinuum of Mr from x to y.
Choose z G # such thatz £ {x,J,/(xi),/(x2),... ,/(x n)} where/is the
quotient map from M onto M'. The components of M' — {z} are open sets
since M' is locally connected. Suppose x and/ are in the same component C
of Af' — {z}.Let Ube an open set such thatz G ί/,x,j> £ t/,and/(x,) £ £/,
i = 1, ...^n. By the local connectedness of Af and because z does not
separate C = C U { } , there exists a continuum AT such that C - l / c Γ C
# C C The open set C - AT C # f o r otherwise (Af' - C) U KΌ His a
proper subcontinuum of Af' containing/(xf), i = 1, ..., w. Choose w G C
— JC If w separates z from K in C then w separates {x, y} from z in 7f which
means that H is not irreducible from x toy. So w does not separate z from #
in C and now, because Af' is locally connected, there exists a subcontinuum
L o f C - {w} such thatz E L and L Π KΦ Φ. But(Af' - Q U L U AT is
a proper subcontinuum of AT containing/(x,), i = 1,..., w, a contradic-
tion. So the assumption that x and/ are in the same component of Af' —
{z} is contradictory. Hence x and y are in different components of Af' —
{z} which means that z separates x from/ in Af'.

To show (4) suppose for some x G Af that Γ n (x) has nonempty
interior. First suppose ΓΛ(x) contains none of the end points. Let K\9

K2,..., Km be the closures of the finite number of components of Λf —
Tn (x) and let Q be a subcontinuum of Γ n (x) irreducible about the closure
of (Tn(x))°. Now Q is irreducible about a finite set of points, is not
indecomposable and contains no indecomposable subcontinuum with
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nonvoid interior. Therefore there exist two points x\y such that x' E Kt Π
Q,y EKjΠQ for some pair of integers i,j; 1 < i,j < m; and for which the
following inclusions hold:

y e Q° c Qx c Q2° c Q2 c ••• c Qn° cQncM- {*}

where each g, is a continuum. But t h e n / £• Γn(x') = Tn{x), a contra-
diction. If Tn(x) contains one of the end points xt from {xγ, x2, ..., xn},
then let L be a subcontinuum of Λf irreducible about {#!, x2* •••>*/- i>
xJ + 1,...,jcrt} and let L' be an irreducible subcontinuum of M from x, to L.
Since 1/ contains no indecomposable subcontinuum with nonvoid interior
it has a monotone decomposition !@>', the elements of which have void
interiors, and for which the quotient space is a generalized arc [3, p. 650].
Let Dxι be the element of S) ' that contains x, . Clearly Tn (x) C DXi since xt

E Tn(x) and this is a contradiction to (Tn
 (JC))° Φ Φ.

To complete the proof of sufficiency we need to show that {Tn(x) | x
EM} is the only decomposition satisfying (1), (2), (3), (4). Let 3^ be any
other decomposition satisfying these properties. Since {Tn(x)\x EM)
refines 20*, there exists h G 2#" and ΓΛ(x) for some x G M such that
Tn{x) h. Let7 GΛ - Γ"(x). Borrowing the construction from the first
part of the proof we have the continua Hu H2, ..., Hn K\, Kl9..., Kn

where ^ G /ί! and x E Kn. For some i, H? Π K°_ι C L where L is the
irreducible subcontinuum of M from //, _ λ to jRΓ/. Clearly L separates M
into the open sets //?_ , and A? with/ G # ? _ , and x G A?. But h contains
both x and y so A must contain L. Because L contains an open set and h
cannot contain such a set we have arrived at a contradiction.

Suppose <2) is any decomposition of M satisfying (1), (2), (3), (4) and
let / be an indecomposable subcontinuum of M such that Γ Φ Φ. First
suppose / contains an end point xh Let L be a subcontinuum of M
irreducible about {*,, x2, ... ,xt _ u xt^ + ,, ..., xn} and let L' be an irre-
ducible subcontinuum of M from xt to £. If Dx. is the element of 3)
containing xt then it is clear that Dxι Π L = Φ. Let us denote by /the
quotient map of M onto the locally connected quotient space M' of the
decomposition <2) . Because of the local connectedness of M',f(U) Π /(L)
is a single element x E M' and/(L') is a generalized arc. So L' contains no
indecomposable subcontinuum with nonvoid interior. Thus U £ /. But it
is clear then that for some element D E 3) that lies in L\ the continuum /
is separated by D, a contradiction.

Next suppose / contains no end point. Let Ku K2, ..., Km be the
closures of the components of M — /. Consider K{. There do not exist Dl9

Z)3,... ,DmE S) each intersecting Kx such that £>,- Π KtΦ Φ, / = 2, ..., m;
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for otherwise U ?L x K, U U /I 2 D{ would be a proper subcontinuum of M
containing all the end points. A similar statement is true for each of the m
K?s. Using this fact plus the local connectedness of the quotient space M' it
follows easily that there exists an element D G Q) such that D C 7°.
Because S) is upper semi-continuous there exists an open set ί/such that D
C U C 7° and U is the union of members of Q) . Now/(Z>) G f(U) and
since M' is locally connected there is a connected open set W G M' such
that/(7)) G W C_TP C/(t/). Then 7) c / ^ ί W ) Cf-ι(W) C t/which
implies that /~ ' (W) is a proper subcontinuum of the indecomposable
continuum 7 with a nonvoid interior. This is impossible and the proof is
complete.

Next we need to borrow a definition from Whyburn. A collection &
of subsets (not necessarily disjoint) of M is a saturated collection if
whenever G 6 ^ and/? £ G there exists G' G e^ such that G' separates /?
from Gin M, i.e., M - G' = A U 5 where/? G 4 , G C 5 , a n d l Π 5 = Φ
= A Π B [10, p. 45]. Also we call a subset G of Λf a separator if M — G is
not connected.

THEOREM 2. Lei M be a compact, Hausdorff continuum that is mini-
mally irreducible about the npoints {xx, x2, ..., xn }• Suppose there exists a
nonvoid saturated collection of separators each element of which is a contin-
uum. Then M has a nontrivial decomposition 3) such that

(1) @) is Upper semi-continuous
(2) the elements of & are continua
(3) the quotient space of Q) is locally connected.
Moreover, S) is the core decomposition with respect to these three

properties and the quotient space is a tree minimally irreducible about m
points, m<n. Conversely, if 3) is a nontrivial decomposition satisfying (1),
(2), (3), there exists a nonvoid saturated collection of separators each element
of which is a continuum.

Proof Consider the union of all saturated collections of separators
where the separators are continua and let us denote this collection by d?.
Clearly & is itself a saturated collection of separators each element of
which is a continuum and is the unique maximal such collection. Let Sx be
the set of all points y such that there does not exist G &έ? which separates x
fromy. Now take G G ^ and let M — G = A U B, a separation of M.
Choose a G A, b G B, c G G. There exists G' <E$ such that G' separates a
from G and clearly G' C A. So G' separates a from c in M and hence by [2,
p. 49] y = {Sx \x G M} is an upper semi-continuous decomposition of M
into closed sets. Now let S denote the core decomposition with respect to
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the properties of being monotone and having a semi-locally connected
quotient space (Λ/,tί) and let/be the quotient map from M onto (M9€).
Since (M, ^) is semi-locally connected and clearly irreducible about m
points, m < n, it follows that (M,^) is locally connected. As in the proof of
Theorem 1, (M,€) can be shown to be a tree. So what remains to be shown
is that 4 = y \ Let K = {/~ι (k) | A: is a point of (MX) and k separates (M,
*ί)}. Since (M,^) is a tree obviously K Φ Φ so let/" 1 (A:) E A, * G M -
f~\k) and consider/(JC), A: G (M, ̂ ) . Due to the fact that (M, t ί) is
hereditarily unicoherent there exists a unique subcontinuum of (M,/), 77,
irreducible from/(jc) to k. Choose k' G H — {/(JC), A:}. Because (Λ/,^7) is
locally connected it follows that kf separates/(JC) from k in (Λf,^). Then

f~ι(k') separates x from/" 1 (A:) in M and A is a saturated collection of
separators of M. By the monotonicity of/each element of Kis a continuum.
The elements of -€ are of the form/"1 (A:) where A: G (M,^) so take/"1 (A:)
G ^ and x G M — / " ι (k). Exactly as above there exists kr G (M,^?) such
that/" ! (A:') separates JC from/"1 (A:). Since/"1 (A:') G K then/" 1 (A;') G ^
(because ^ is maximal) and it follows that <f < i%.

To prove that -β < </* let us note that FitzGerald and Swingle have
proved that 4 can alternately be expressed as the core decomposition with
respect to the properties of being upper semi-continuous and having Γ-
closed elements [2, p. 37]. We have already established that y is upper
semi-continuous and if we show that the elements of </* are Γ-closed it will
follow that € < y . For this purpose take Sx G / and/ G M - Sx. There
exists G G ^ such that M — G = A Ufi,a separation, with JC G A and/ G
B. Because t& is a saturated collection it follows easily that G can be chosen
so that Sx C A and/ G A But then G U B is a continuum containing/ in its
interior and not intersecting Sx. Hence/ 0 T(SX) so S* is Γ-closed and </ls
the core decomposition !2) of the theorem.

Conversely, suppose that Q) is a nontrivial decomposition satisfying
conditions (1), (2), (3) in Theorem 2. Let the quotient space of Q) be
denoted by (M,3)) and let/be the quotient map of M onto (Λf,^). We
know from the proof of Theorem 1 that (M, Q)) is a tree. Let # =
{f- * (A:) Ik G ( M , ^ ) and A: separates (M,^)} and let/" * (A:) G Jζ / G M
—f~\k). Because (Λ/,^) is hereditarily unicoherent there exists a unique
continuum H irreducible between/(/) and k. As previously proved there
exists k! EH- {/(/), k) such that A;' separates/(/) from A: in (M,^) . Then
/ " ! (/:') separates/ from/" ! (A:) in M. So ΛΓis a nonvoid saturated collection
of separators of M and each separator is a continuum since S) is monotone.

The next theorem is a generalization of Theorem 1 where M is allowed
to contain simple chains of indecomposable subcontinua with nonvoid
interiors. A collection of subsets of Af, {C/1/ = 1, ..., m}y is a simple chain if
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C/ Π Cj Φ Φ if and only if |i — j \ < 1. Each subset Cf is called a //«& of the

chain.

THEOREM 3. Let M be a compact, Hausdorff continuum minimally

irreducible about n points, n>2. IfM contains no simple chain ofm links, m

> 1, in which each link is an indecomposable continuum with nonvoid

interior then @ = {Tnm ~m + 1 (x) |JC E M} is the core decomposition ofM

with respect to being monotone, upper semi-continuous with a locally con-

nected quotient space. Moreover, the quotient space is a tree minimally

irreducible about p points where p < n.

Proof It is only necessary to show that Tnm ' m + 2 (x) = Tnm ' m + * (x)

for each j c G M a n d that {Tnm ~m + ι (x) \x G M} is a decomposition of M.

The conclusion will then follow by exactly the same reasoning as in

Theorem 1. Given x E M it is clear that Tnm~m + X(x) C Tnm'm+2(x).

Suppose;/ £ Tnm ~m + 1 ( c). As in the construction of Theorem 1, a sequence

of continua H{,..., Hnm _ m + x can be constructed such that

yeHx

ocHλc H2° c H2 c - c Hn°m_m+ι c Hnm_m+ι c M- [x].

As before let Kx be the continuum M — Hi9i = \, ... ,nm — m + 1, and

consider the pairwise disjoint open sets

Let Lt be an irreducible subcontinuum of M from Ht to AT, + x, i = 1, ... , nm

— m. Because M is irreducible about n points H° and K°nm _ m + j must each

contain an end point and at least nm — m — (n — 2) of the L,'s do not

contain an end point. It follows that each of these L,'s must contain H°+{D

K°i because of the irreducibility of M. Also because M contains no simple

chain of m links where each link is an indecomposable continuum with

nonvoid interior, at most (m — 1) (n — 1) of the L/s that do not contain an

end point are indecomposable. Therefore at least mn — m — (n — 2) — (m

— 1) (Λ — 1) = 1 of the L/s does not contain an end point and is

decomposable. For one such L, let L, = La U Lb where La and Lb are

proper subcontinua of L,. Since L, is irreducible from i/, to Kt + i we have

Lfl Π Hi Φ Φ Φ Lb Π AT/ + ! and LaΠ Ki + { = Φ = LhΠ H{. As in the proof

of Theorem 1 this leads immediately to the conclusion that Γ n m ~ m + 2 ( jc)

!. Hence y £ Tnm-m+2(x) and it follows that ΓΛW~m + 1(x) =
— m +2 / \

To show that {Tnm~m + ι(x)\x G M) is a decomposition of M, the
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reasoning in Theorem 1 may be employed with Tn replaced by Tnm ~ m + !.
In Theorems 1 and 3 it is established that the structure of the elements

in the decompositions are precisely Tn (JC) and Tnm ~m + {(x), respectively. It
is not hard to show by means of simple examples that the exponents of T
cannot be reduced. Also it can be shown easily that the elements D of the
decomposition^ in Theorem 2 that have void interiors are of the form
Tn(x) for each x G D. But the structure of the elements with nonvoid
interiors is considerably more complicated.

It might be pointed out too that, while Theorem 1 assures a decom-
position space which preserves the number of "ends," the decomposition
spaces of Theorems 2 and 3 may greatly reduce this number; in the case of
Theorem 3, the decomposition space may be degenerate.
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