
PACIFIC JOURNAL OF MATHEMATICS
Vol. 57, No. 2, 1975

SEMIPRIME RINGS WITH THE SINGULAR
SPLITTING PROPERTY

MARK L. TEPLY

A (right nonsingular) ring R is called a splitting ring
if, for every right ϋί-module M, the singular submodule Z(M)
is a direct summand of M. If R is a semiprime splitting
ring with zero right socle, then R contains no infinite direct
sum of two-sided ideals. As applications of this result, the
center of a semiprime splitting ring with zero socle is ana-
lyzed, and the study of splitting ring is completely reduced
to the case where R is a prime ring. The center of a semi-
prime splitting ring is a von Neumann regular ring.

l Introduction* In this paper R denotes an associative ring
with identity element. Unless otherwise noted, all modules will be
unital right modules.

Considerable work has recently been done on the problem of
characterizing the rings for which the singular submodule Z{M) of
every module M is a direct summand. Such rings will be called
splitting rings in this paper. Every splitting ring is a right non-
singular ring. Rotman [6] showed that a commutative integral domain
is a splitting ring if and only if it is a field. Cateforis and Sando-
mierski [1] characterized the commutative splitting rings as the von
Neumann regular rings R with the property that, for every essential
ideal / of R, R/I is a direct sum of fields. In a series of papers
[2, 3, 4], Goodearl (a) reduced the study of splitting rings to the
study of rings with essential right socle or zero right socle, (b)
characterized the splitting rings with essential right socle, and (c)
showed via a triangular matrix ring structure theorem that, in
order to complete the characterization of splitting rings, it is sufficient
to study the semiprime splitting rings with zero right socle.

In Theorem 7 of this paper, we show that a semiprime splitting
ring with zero right socle is an essential product of finitely many
prime splitting rings with zero right socle. (A ring R is an essential
product of the rings Rl9 R2, , Rn, if R is a subdirect product of
Rlf R2, Rn which contains an essential right ideal of Π?=i Rf) Each
prime ring used for the essential product in Theorem 7 is a homo-
morphic image of R which is determined in a natural way; so the
product of prime rings is constructable from R. Moreover, Theorem
7 can be used in the following way to reduce the study of splitting
rings to the case where R is a prime ring with zero right socle.
By the discussion above, we only need to construct the semiprime
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splitting rings with zero right socle from the prime ones. By an
iterative use of [3, Theorem 12], all (necessarily semiprime) splitting
rings which are essential products of prime splitting rings with zero
right socle can be constructed. But Theorem 7 says that every
semiprime splitting ring with zero right socle is such an essential
product. Thus all semiprime splitting rings with zero right socle can
be constructed from the prime splitting rings with zero right socle.

In Theorem 4 and Corollaries 5 and 6, we find useful necessary
conditions for semiprime and prime rings to be a splitting ring.

2* The results* The proof of the following lemma is contained
in the proof of [2, Theorem 5.3].

LEMMA 1. If R is a splitting ring and I is a two-sided ideal
of R, then R/I is a right perfect ring whenever I is essential as a
right ideal of R.

THEOREM 2. If R is a semiprime splitting ring with zero right
socle, then R contains no infinite direct sum of two-sided ideals.

Proof. Let A be an index set such that / = φ α e ^ L is a maximal
direct sum of two-sided ideals of R. If L is a nonzero right ideal
of R such that Lf]I — 0, then RL is a nonzero two-sided ideal of R.
By our choice of /, IΠ RL Φ 0. But ( In RL)2 § RL IS- 0, which
contradicts R semiprime. Thus I is an essential right ideal of R.

If |A| is infinite, partition A into a countable number of disjoint
infinite sets {Λ}Γ=i- If Z(R/φaeA. Ia) = 0, then choose Ma(aeAt) to
be an essential submodule of Ia such that Ma Φ Ia. (We can do this
since R has zero right socle.) Thus

aeAi
~® Ia/Ma

is not finitely generated. Hence Z(R/®aeA.Ma) cannot be a direct
summand of R/(BaeAiMa, which contradicts the splitting hypothesis.
Hence Z(R/®aeA. Ia)

 %Φ 0.

By the splitting hypothesis, there exists ei:e R — ( 0 ^ ^ D for
each i = 1, 2, 3, such that

(a) e\ = e<(mod©αe^i«),
(b) ezR + (φaeAila) ^ an essential extension of φaeAί Ia> and
(c) etR + ((BaeAila) is a two-sided ideal of R.

Hence e^-e (e,R + (®aeAi D) Π (βjR + ( 0 α e ^ !«)) = 0 whenever i Φ j .
Thus, {et + I}~=1 is a set of orthogonal idempotents in R/I.
If et e I, then et = ΣjU %> where x5 e Ia. and at least one a, g At.

By (b) there exists an essential right ideal K such that e*iT g φ ^ ^ Ia>
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so by properties of the direct sum x3 K = 0 for a^A^ But this
contradicts Z(RR) = 0; hence etί I for any i. Thus {et + Z}Γ=1 forms
an infinite set of distinct orthogonal idempotents in R/I, and hence
R/I cannot be right perfect. This contradicts Lemma 1, and therefore
A must be finite.

COROLLARY 3. The center C of a semiprime splitting ring R
with zero right socle is a semiprime Goldie ring.

Proof. Let A be an index set, and let φaeA Ca be a direct sum
of ideals of C. Now CβR Π (®aeA-mCaR) - 0; for

and R is semiprime. Hence ®aeACaR is a direct sum of two-sided
ideals of R. So A must be a finite set by Theorem 2.

If N £ C and N2 = 0, then (RN)2 = 0; so, since R is semiprime,
JV= 0. Therefore, C is semiprime and hence nonsingular. By [7,
Lemma 3] C must have ace on annihilators.

THEOREM 4. The center C of a semiprime splitting ring R is
von Neumann regular.

Proof. Let O ^ d e C , and let K = {r e R\dr = 0}. Since deC,
K is a two-sided ideal of R. Since Z{RR) = 0, then Z(R/K) = 0.
Hence jβ/ίΓ is a splitting ring (see [2, Proposition 1.11]). From the
definition of K and the semiprimeness of R, it follows that d = cZ +
i ί is not a zero-divisor in JS/iί.

Let R = R[K. Define M = LKU R'ldnR'. Assume that d'1 £ R\
so that dR S d2^' S d*R' 3 . Note that φr = 1 R/dnR S Z(Λf). A
nonzero element α? of ikf is said to have infinite height in M if there
exists yne M for each positive integer n such that yn d

n = a;. Since
d% is an element of the center of R, dn annihilates the first n coor-
dinates of M; so M has no elements of infinite height. Since M/Z(M)
is a direct summand of M by the splitting hypothesis, then in order
to get d'1 G R it is sufficient to show that M/Z(M) has elements of
infinite height.

Let

x = (1 + dR, 1 + d2R, d + d3R, d + d*R, ..., Jw + J2 w + 1i2',

d + <I2*+2i2', . . .) .

If α eZ(M), then there exists an essential right ideal / of R such
that xJ = 0. Thus d*J £ d2w+1i2' for all n. But J is not a zero-divisor
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in R'\ so J^dn+1R' for each n. Hence I = fϊSU dn+1R' 3 / is a
two-sided ideal of R', and I is essential as a right ideal of R!. Thus
Rf\I is a right perfect ring by Lemma 1. Thus R'/I has dec on
principal left ideals; but this contracts the assumption that

dR' ^ d2Rf ^ dBR' ̂  . 3 I .

Therefore, x$Z{M). Let

2/Λ = (0, 0, - , 1 + ώ2w+1i2', 1 + d2n+2R', d + dtn+*R', d + d2n+iR\ ...) .

Then

1 + d2R\ . . . , d " 1 + d2%i2', 0, 0, . . . )

Z(M) = y Λ ί

So a; + Z(M) has infinite height in M/Z(M).
Therefore d"1 e i?' = 22/JK". Then R = dR + K. Since i? is semi-

prime, ίZi? Π ΐΓ = 0. So R = dR + £" is a ring direct sum, and hence
there exists e — e2eC such that eR — K. Consequently, (d + e)"1 e C,
and d = (Z(d + e)~ιd.

COROLLARY 5. The center of a semiprίme splitting ring with
zero right socle is a direct sum of finitely many fields.

Proof. By Corollary 3 and Theorem 4, C is a commutative, von
Neumann regular, Goldie ring. Such a ring must be a direct sum
of finitely many fields.

As the example in the second remark on page 161 of [1] shows,
the "zero right socle" hypothesis cannot be dropped from Corollary
5. However, if R is a prime ring, then the "zero right socle" hypo-
thesis can be dropped.

COROLLARY 6. The center of a prime splitting ring is a field.

Proof. Since R is prime, then each nonzero element in the center
C of R is not a zero-divisor in C; so it follows from Theorem 4 that
C is a field.

Any field can be the center of a prime splitting ring with essential
right socle. For example, given a field F, let R be the algebra over
F whose basis consists of the identity of F and the set {e }̂£is=1,
where multiplication is defined by

ehk if i = j

0 otherwise .

Then the center of R is F; the right socle of R is ^je^-R; the
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singular submodule of any iϋ-module is injective and isomorphic to
a direct sum of copies of R/^i,j ei3 R.

If F is a field of characteristic 0 or if F has finite cardinality,
then examples of prime splitting rings with zero right socle and
center F are known.

THEOREM 7. A semiprime splitting ring with zero right socle
is an essential product of finitely many prime splitting rings with
zero right socle.

Proof. By Theorem 2, R has no infinite direct sum of two-sided
ideals. Hence R is an essential product of finitely many prime rings
by [5, Proposition 9]. Each of these prime rings is a splitting ring,
as each is nonsingular and a homomorphic image of R. Moreover,
since any simple submodule of one of these prime rings would also
be simple submodule of R, then each of the prime rings must have
zero right socle.
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