PACIFIC JOURNAL OF MATHEMATICS
Vol. 58, No. 1, 1975

SECOND ORDER DIFFERENTIAL OPERATORS
WITH SELF-ADJOINT EXTENSIONS

ArRNOLD L. VILLONE

Let % denote the Hilbert space of square summable analytic
functions on the unit disk, and consider those formal differential
operators

d? d
L =p2'(?+p|"‘i—z‘+po

which give rise to symmetric operators in #. Examples have
been given where the symmetric operators associated with these
formal operators have defect indices (0, 0) and (2, 2) and hence
are either self-adjoint or have self-adjoint extensions in #. In
this note a class of symmetric operators with defect indices (1, 1)
is given.

Let o denote the space of functions aralytic on the unit disk and #
the subspace of square summable functions in & with inner product

(f.g) = f [H £(2)2(@) dxdy.

A complete orthonormal set for # is obtained by normalizing the
powers of z. From this it follows that 7 is identical with the space of
power series 2., a,z" which satisfy

8

(1.1) la, P/(n + 1) <oo.

n=0

Let L be such that it maps polynomials into # and has the property
(Lz",z")=(z",Lz™), n,m =0,1,2,---. Let 9, be the subspace of
polynomials and set T,f = Lf for f in 9,. Then T;is symmetric and the
defect indices m* and m~ of its closure, S, are just the number of
linearly independent solutions of Lu = iu and Lu = — iu respectively
which are in #. See [2]. In [2] and [3] examples of such symmetric
operators S with defect indices (0, 0) and (2, 2) are provided. We now
give a class of operators with defect indices (1, 1).

261



262 ARNOLD L. VILLONE

2. Consider the operator L,
N & _, d
2.1 L =(clz’+c]z)32—2+((c2+3c.)zz+ cz)E+2czz.

In [3] it is shown that L gives rise to symmetric T,. Concerning the
defect indices of its closure S, we have the following.

THEOREM 2.1. Let L be the operator of (2.1) then S has defect
indices m*=m~ = 1.

Proof. The idea of the proof is to show that the equation L¢ =
+i¢ has precisely one power series solution ¢(z) =Z7,a;z’ and that
there exists a K >0 and a positive integer p such that |q;|= Kj~'" for j
sufficiently large. Consequently the series =7,|q; |’/(j + 1) converges
and ¢ belongs to #, and m*=m ™ =1.

Dividing L¢ = +i¢ by ¢, we have the differential equation

2.2) P+ w2)¢"+[B+a)z’+ Bl +2az¢ = A,

where w = ¢//ci, @ = ¢,/c,, B =C,/ci, and A = *i]c,.
Substituting 27, a;z' into (2.2) we obtain

(2.3) Bai+ 2 [+ 1) () +B)aj +(*+ja + a — Da1]2’
=
=Aa,+ D Aaz'  A#0.
izl

If B =0 we have a,=0 and (2.3) can be solved recursively for
a,, as,- -+, in terms of a, since wj + B never vanishes. Thus we have
but one analytic solution

d(z)=z(1+az*+--).

If B# 0, we have a, = Aa,/B and (2.3) can be solved recursively for
a, as, etc., provided that (wj+B) never vanishes for j=
1,2,---. Thus we are able to obtain the single formal power series
solution ¢(z)=1+a,z+a,z*+---. The case when (wj+B) van-
ishes for some positive integer j presents some complications and will
be considered later in the proof. Solving (2.3) for a;,, we have

(2.4) . =L

w

—[j*+ja +(a — D]a;_, + Ag;
I

w w
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But B/w = ¢,/¢, = @, hence (2.4) becomes

1 [—[+ja+(a—Dla+Ag
(2.4) G = { P+(+a)j+a }’

Thus we obtain the estimate

2.5) laj.| = |—(l—|
[A] 1
ﬂle+U+dﬁ+&H%L

P’tjat+(a—1)
p*t+a)j+a

fa;—nl

Since |w | =1 we have

(2.6) la]+l|§|ul(j)l]af—l|+|u2(j)!|aiia

where

PP+ja+(@—1)
Ftd+a)j+a’

u,(j)=

and

A
Pr+a)j+a

uj) =

We now estimate |u,(j)| and |u,(j)| for large j. Since |u,(j)| tends
to zero as j 7 it follows that there exists an M >0 such that

2.7) usi)] = Tl‘f for j sufficiently large.
Concerning |u,(j)| we obtain, upon dividing,
w(j) = (1 —]1) +]3 Im(a)i + O().
Thus |u,(j)]?=1-2/j + O(7?, and hence by a direct calculation,

|u,(n|=1—}+ 0G™).

For ¢ >0, we note that |u,(j)|=1—¢& ' for j sufficiently large if and
only if —1< —§ or £ <1. Hence we have
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(2.8) lu,(H|=1 —%:, for j sufficiently large
and 0<é<1.

Using (2.6), (2.7), and (2.8) we obtain, for j sufficiently large,

lai| ==& g |+ Mj~?| g
=(1-& '+ MjM(), 0<¢<l,

where M(j) = max{|a,./,|a|}.
Thus, for sufficiently large j, we have

(2.9) [aji| = (1= i YM(j),
where 0 <y = £/2 <. :

Now consider the expression (1—vyj~)(j —1)"'», where p is a
positive integer. This is dominated by (j + 1)™'” for j sufficiently large
if and only if

U py F D S

Hence, if and only if —py+1< -1 or —py<-2. Since y >0,
p >2/y. Thus we have

2.10) (=4 G- =G+ D" p >—§— -

We now show that there exists a positive constant K for which
la;|=Kj™' for j=1. Let j, be such that (2.9) and (2.10) hold for
j>j. Let K=max;s,|q|j" so that |aq;|=Kj™"” for j =j,. Using
(2.9) it follows that

| @i | = (1= v TYM()),
where

M (j,) = Max (Kj 7", K(j,— 1))
=K, D"

Hence,

|| = (1= vi7) KG— D7,
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and using (2.10) we have
2.11) la,.|= K@, +1)7".
We now proceed inductively to establish
(2.12) la | = KG, + k), k=23,

Let

K, = max |q;|j"

=i+t

=max{K,K(j,+1)"""} =K,
making use of (2.11). Using (2.9) we have
lg o= —y(+ DM@+ 1),
where,

MG, +1)= Max(|ai|+ll, lai:')
=Max (K@, + 1", K({)™"")
= K(jl)—”p-

It follows from (2.10) that

| a2 ==y + DHKG)™
=K@, +2)".

Continuing on in this manner we establish (2.12). Hence any
solution 27, a;z’ whose coefficients satisfy (2.4) is in #. To complete
the proof we have only to deal with the case where jw + B vanishes for
some positive integer j.

We now consider the case when jo + B vanishes for some positive
integer n. The analytic solution obtained from (2.3) by taking a,= a, =
.-+ =gq, =0, and solving recursively for a,.,, a,.3, * - *, in terms of a,., is,
as we have seen, in #. If there were a second analytic solution
corresponding to a, # 0 it would be in % as well, and m* (m~) would be
2. We now show that this is not the case, i.e., m*=m~=1. To do
this we make use of the following result.

Let u be such that Im(n) >0 and let & be the nullspace of the
operator S* — . Then the dimension of 9, is equaltom*. Similarly,
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let Im(n) <0 and let 9, be the nullspace of the operator S* — u, then
the dimension of &, is equal to m~, [1, p. 1232].

Using this we see that m* is just the number of linearly independent
solutions of L = u¢ in ¥ for any w such that Im(u)>0. Similarly,
m ™ is the number of linearly independent solutions of L$ = u¢ in ¥ for
any u such that Im(u) <0. Hence, if we can show that there exist u
such that Imu >0 (Imp <0) for which there is no analytic solution
corresponding to a,# 0 we will have shown that m*=m™~=1.

Consider (2.3), where A is now u/c,, and suppose that B =
—nw. Takingj=1,2,---,n we obtain the following set of n + 1 linear
equations in a, thru a,:

— nwa, = Aa,

(] + 1)(] —n)waj+l+(j2+ja +a-— l)aj—l = /\a,-,
j= 1,2,"',”_1

(n*+na +a — a,_ = Aa,.
Thus we are led to consider the homogeneous system

—Aa,— nwa, =0
2aa,— Aa,+ 22— n)wa, =0
(n’+na —2n)a,.,— Aa,.,— nwa, =0
(n*+na+a-a,.,—Ara, =0

Since the parameter A = w/c, appears only on the diagonal the system
determinant D,(A) is a polynomial in A of degree n + 1,

D,l(/\)=(—1)"+lA"+]+"'.

Thus D, (A) vanishes at most n + 1 points in the complex plane, and we
can find u in the upper half-plane and lower half-plane for which
D,(u/c,) #0. Thus a,=a,=---=a, =0 and there is only one analy-
tic solution of L¢ = uo.
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