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SECOND ORDER DIFFERENTIAL OPERATORS
WITH SELF-ADJOINT EXTENSIONS

ARNOLD L. VILLONE

Let 'M denote the Hubert space of square summable analytic
functions on the unit disk, and consider those formal differential
operators

which give rise to symmetric operators in 3€. Examples have
been given where the symmetric operators associated with these
formal operators have defect indices (0, 0) and (2, 2) and hence
are either self-adjoint or have self-adjoint extensions in W. In
this note a class of symmetric operators with defect indices (1,1)
is given.

Let sA denote the space of functions analytic on the unit disk and $?
the subspace of square summable functions in si with inner product

( / 'g )"/l<, fWsWdxdy.

A complete orthonormal set for $f is obtained by normalizing the
powers of z. From this it follows that %t is identical with the space of
power series Σ™=Qanz

n which satisfy

(1.1)

Let L be such that it maps polynomials into Sίf and has the property
n,zm) = (zn,Lzm), n, m =θ, l ,2 , . Let SD0 be the subspace of

polynomials and set Tof = Lf for / in 3)0. Then To is symmetric and the
defect indices m+ and m" of its closure, 5, are just the number of
linearly independent solutions of Lu = in and Lu = - iu respectively
which are in $?. See [2]. In [2] and [3] examples of such symmetric
operators 5 with defect indices (0, 0) and (2, 2) are provided. We now
give a class of operators with defect indices (1, 1).
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2. Consider the operator L9

(2.1) L = ( c 1 z 3 + c 1 z ) ^ + ((c2 + 3 c 1 ) z 2 + c 2 ) ^ + 2c2z.

In [3] it is shown that L gives rise to symmetric To. Concerning the
defect indices of its closure 5, we have the following.

THEOREM 2.1. Let L be the operator of (2.1) then S has defect
indices m + = m~ = 1.

Proof. The idea of the proof is to show that the equation Lφ =
±iφ has precisely one power series solution φ(z) = Ί^=Qaiz

i and that
there exists a K > 0 and a positive integer p such that | α, f = Kj~ιlp for /
sufficiently large. Consequently the series ΣJL0|αy |

2/(j + 1) converges
and φ belongs to 9€, and m+ = m~ = 1.

Dividing Lφ = ± ίφ by c, we have the differential equation

(2.2) (z3 + ωz)φ" + [(3 + α)z2 + β]φ' + lazφ = λφ,

where ω = cjcu a = c2/cu β = c2lcl9 and λ = ±//c,.
Substituting ΣJ=oajz

i into (2.2) we obtain

(2.3) 00, + Σ [(/ + l)(ω/ + β)aj+ι + (/2 + /α + α - l

If β = 0 we have a0 = 0 and (2.3) can be solved recursively for
α2, #3, * * *, in terms of αj since ωj + β never vanishes. Thus we have
but one analytic solution

If β 7̂  0, we have α, = λao/β and (2.3) can be solved recursively for
α2, α3, etc., provided that (ωj + β) never vanishes for j =
1,2, . Thus we are able to obtain the single formal power series
solution φ(z) = 1 + axz + α2z

2 + . The case when (ωj 4- β) van-
ishes for some positive integer / presents some complications and will
be considered later in the proof. Solving (2.3) for aj+ι we have
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But βlω = c2lcι = α, hence (2.4) becomes

( 2 A)

Thus we obtain the estimate

(2.5) k+i|^Λ
\ω\

Since | ω | = 1 we have

(2.6) \aj+]

where

and

_ j 2 + ja -f (α -

We now estimate | w,(/)| and | w2(/)| for large /. Since | u2(j)I tends
to zero as j~2 it follows that there exists an M > 0 such that

(2.7) I u2(/)| = — , for / sufficiently large.

Concerning |MIO#)| we obtain, upon dividing,

«,(/) = (l - j ) + j Im(α)i + OO"2).

Thus I iiiθ')|2 = 1 ~ 2// 4- O(j~2), and hence by a direct calculation,

For ξ >0, we note that |ιii(j)| = 1 - ί/"1 for j sufficiently large if and
only if - 1< - £, or ξ < 1. Hence we have
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(2.8) I u^j) I ^ 1 - 1 , for / sufficiently large

and 0 < £ < l .

Using (2.6), (2.7), and (2.8) we obtain, for j sufficiently large,

w h e r e M(j) = max{\a]-]\,\aj\}.
Thus, for sufficiently large /, we have

(2.9) \aj+ι\^(\-y

where 0 < γ =ξ/2<l
Now consider the expression (l — γj~ι)(j — l)~ιlp, where p is a

positive integer. This is dominated by (j 4- l)"1/p for j sufficiently large
if and only if

Hence, if and only if - pγ + 1 < - 1 or - py < - 2. Since γ > 0,
p > 21 y. Thus we have

(2.10)

We now show that there exists a positive constant K for which
\a}\^Kj-ιlp for j ^ 1. Let j , be such that (2.9) and (2.10) hold for
/ > /,. Let K = max^y, | α, \j1/p so that | α; | ^ Kj~υp for / ^ /,. Using
(2.9) it follows that

where

Hence,
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and using (2.10) we have

(2.11) | f l J i + I | ^KGΊ+ir 1 / p

We now proceed inductively to establish

(2.12) | f l / l + k |^K0i + *r I / p , fc=2,3, .

Let

Kλ = max \aAjVp

making use of (2.11). Using (2.9) we have

where,

M ( / i + D = Max (I aiι+ιl\ah\)

It follows from (2.10) that

Continuing on in this manner we establish (2.12). Hence any
solution ΣJ=oa}z

i whose coefficients satisfy (2.4) is in $f. To complete
the proof we have only to deal with the case where jω 4- β vanishes for
some positive integer /.

We now consider the case when jω 4- β vanishes for some positive
integer n. The analytic solution obtained from (2.3) by taking α0 = ax =
• = an = 0, and solving recursively for an+2, cιn+3, , in terms of an+] is,
as we have seen, in 3€. If there were a second analytic solution
corresponding to a0^ 0 it would be in IK as well, and m*(m~) would be
2. We now show that this is not the case, i.e., m+ = m~ = 1. To do
this we make use of the following result.

Let μ be such that Im(μ)>0 and let 3)+

μ be the nullspace of the
operator S* - μ. Then the dimension of 3)+

μ is equal to m +. Similarly,
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let Im(μ) < 0 and let 3)~μ be the nullspace of the operator S* - μ, then
the dimension of S)~ is equal to ra~, [1, p. 1232].

Using this we see that m + is just the number of linearly independent
solutions of Lφ = μφ in ffl for any μ such that Im(/x)>0. Similarly,
m " is the number of linearly independent solutions of Lφ = μφ in $f for
any μ such that Im(μ) < 0. Hence, if we can show that there exist μ
such that Im μ > 0 (Im μ < 0) for which there is no analytic solution
corresponding to a0^0 we will have shown that m+ = m~ = 1.

Consider (2.3), where A is now μ/c2, and suppose that β =
- nω. Taking j = 1,2, , n we obtain the following set of n + 1 linear
equations in α0 thru αn:

0' + 1)0' - n)ωaj+ι + (j2 + ja + a - ί)aM = λah

j = l , 2 , , n - l

(n2 + na + a - l)an-\ = λan.

Thus we are led to consider the homogeneous system

- λa0- nωaλ = 0

2aa0- λdi + 2 ( 2 - n)ωa2 = 0

(n2+ na -2n)an-2- λan-x - nωan = 0

(n2+ na + a - X)an-\ - λan = 0

Since the parameter λ = μ/c2 appears only on the diagonal the system
determinant A (A) is a polynomial in λ of degree n + 1,

Thus Dn (λ) vanishes at most n + 1 points in the complex plane, and we
can find μ in the upper half-plane and lower half-plane for which
Dn(μlc2) ¥" 0. Thus a0 = ax = = an = 0 and there is only one analy-
tic solution of Lφ = μφ.
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