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VARIETIES OF ORTHODOX BANDS OF GROUPS
MARIO PETRICH

The principal aim of the present work is a determination of
the lattice of all varieties of semigroups in the title as a direct
product of the lattice of all varieties of bands and the lattice of all
varieties of groups. The paper also contains certain informa-
tion concerning lattice properties of these varieties and their
defining identities.

1. Introduction. A considerable amount of literature is de-
voted to varieties of groups, a systematic study of this subject is the
book [7] by H. Neumann. Varieties of semigroups have also attracted
wide attention, most of the known results are summarized in the survey
article [2] by T. Evans. The lattice of all varieties of bands was
determined by Birjukov [1], Gerhard [4] and Fennemore [3]; some
preliminary work in this direction was first performed by Kimura [6] and
the author [8].

A semigroup S is completely regular if for any a € S there exists
x € S such that a = axa, ax = xa. It follows at once that then there
exists a unique y € S such that a = aya, y = yay, ay = ya; we write
a~'=y and observe that S is a union of its (pairwise disjoint) maximal
subgroups G, and that for a € G,,a™' is the group inverse of a in
G.. We consider S as a universal algebra with two operations, viz., the
binary operation of multiplication, and the unary operation of inversion,
a — a”', satisfying the identities

-1 1

a, a'=a'aa’’', aa

(1) a=aa =a'a.

The class & of all such universal algebras forms a variety. A semi-
group S in R is orthodox if the set E; of all its idempotents forms a
subsemigroup. The class & of all orthodox semigroups in & is a
subvariety of & and as such can be characterized by the identity

() ab = abb'a'ab,

as follows easily from ([9], IV.3.1). A semigroup S in ® in which
Green’s relation # is a congruence is a band of groups and
conversely. The class % of all bands of groups is a subvariety of ®
and as such can be characterized by the identity
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3) (a*bcH(a*bc?) ™' = (abc)(abc)™,

as follows easily from ([9], IV.1.7).

Let € = € N % so that € is the variety of universal algebras with
an associative multiplication and an inversion satisfying the identities
(1), (2), (3). In fact, we can define €, within R, by a single identity as
follows.

PrOPOSITION 1. Forany S € R, we have that S € € if and only if S
satisfies the identity

(aa™)(bb™") = (ab)(ab)™".

Proof. Necessity. Let a,b €S, S€ €. Then a¥aa”', b¥*bb™'
and hence ab#1a 'bb~' since Green’s relation # is a congruence.
Now ab# (ab)(ab)™" so that (aa')(bb ") (ab)(ab)”"'. But Es is a
subsemigroup of S and aa™', bb~', (ab)(ab)™' € Es and thus aa'bb~' =
(ab)(ab)™.

Sufficiency. Let a,b,c €S, SER and a%b. Then aa™'=bb™'
and hence

(ac)(ac)™' =(aa™")(cc™)=(bb™")(cc™")=(bc)(bc)™,

i.e., ac¥#bc. This shows that # is a right congruence. The proof that
H is a left congruence is similar. If e, f € Es, then ef =ee”'ff' =
(ef)(ef)7', so that (ef)’=ef. Thus Es is a subsemigroup of S.

The class @ of all bands is evidently a subvariety of € and as such
can be characterized by the identity a = a’>. The class ¢ of all groups
is another subvariety of € and as such can be characterized by the
identity aa™'=bb~'. If ¥ is any variety of universal algebras, £(7")
denotes the lattice, under inclusion, of all subvarieties of V. One of the

principal results of this paper states that
L(E)=L(B)X L(9).

We will also establish certain properties of some subvarieties of €. In
addition to the notation established above, we will use the notation,
terminology and results from [9]. The meet in all our lattices will be
the set theoretical intersection, the join will vary and will be denoted by
v. For any semigroup S, we denote by E; the set of all idempotents of
S with the partial multiplication induced by S. For e € Es, G, denotes
the maximal subgroup of S having e as its identity.
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2. Main result. The following lemma is crucial for a large
portion of this paper.

LemMA 1. For any 7V € £(€), we have
V=V NBYv(V NG).

Proof. LetS € V. According to [10], S is a subdirect product of
a band B and a semilattice of groups T = U,y G,. Since B is then a
homomorphic image of S, we have B € ¥ N B. The conjunction of
([91, IV.4.3) and ([9], II1.7.2) yields that T is a subdirect product of
semigroups {T, }.ev, where either T, = G, or T,=G?, the group G, with
a zero adjoined. Since T is a homomorphic image of S, we have T € V'
and thus also G, € V" for all « €Y.

Assume that S is completely simple. Then S =L X G X R where
L is a left zero semigroup, G is a group and R is a right zero semigroup,
according to ([9],IV.3.3). Clearly LXRE YV NB and G € V"' N § and
thus S (V" NB)v (V' NEG).

Suppose next that S is not completely simple. It is easy to see that
in S we can find two comparable idempotents, say e >f. But then
Y,={0, 1}, the two-element chain, must be contained in 7. Now let
G € ¥ N ¥4, and let p be the Rees congruence on Y, X G associated with
the kernel {0} x G of Y,x G. It follows that

G'=(Y,XxG)lp eV NBYV(V NYE).

We have seen above that T is a subdirect product of semigroups T,
where either T.=G, or T,=G.. Consequently T e
(V' NB)v(VY NE). Finally S is a subdirect product of B and T and
thus SEV NB)v(V NEG).

Therefore V" C (V' N RB) v (V' N 9), the opposite inclusion is trivial.

LeEMMA 2. Let T be a completely regular semigroup which is a
subdirect product of a band B and a group G, and let S be a band and a
homomorphic image of T. Then S is a homomorphic image of B.

Proof. Let ¢ be a homomorphism of T onto S. We may suppose
that TCBXG. Let (b,g),(bh)ET and let g=(b,g)p, h=
(b, h)e. Since T is completely regular, we have (b, h ') € T, and thus

g§=(b,g)e =[(b,h)(b,h™")(b,g)l¢ =(b,h)o(b,h e (b,g)¢
=(b,h)e(b,g)¢ = hg.
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A similar argument shows that i = hg and thus g = h. It follows that
the mapping ¢ defined by

y:b—>(bgle if (b,g)ET (bEB)

is single-valued, and thus evidently a homomorphism of B onto S.

LeEMMA 3. Let T be a semigroup which is a subdirect product of a
band B and a semigroup C, and let S be a left cancellative semigroup and
a homomorphic image of T. Then S is a homomorphic image of C.

Proof. Let ¢ be a homomorphism of T onto S, and suppose that
TCBXC. Let(a,c),(b,c)ET. Then

(a,c)(b,c)=(ab,c*)=((ab)b,c? = (ab,c)(b,c)
where (a, ¢?), (ab,c?) € T and thus
[(a,c)e = (a,c?)e =(ab,c*)¢ =(a,c)e(b,C)e.

Left cancellation in S now implies that (a,c)¢ =(b,c)¢. It follows
that the mapping ¢ defined by

Y:c—(a,c) if (a,c)€T (c€C)
is single-valued, and thus evidently a homomorphism of C onto S.
THEOREM. The mapping x defined by
X: V-V NB,VNYEG) (Ve¥)
is an isomorphism of £(€) onto £(B) X L(9).

Proof. 1Tt is obvious that y is inclusion preserving. Let 7' €
FL(B)and V'€ L(4), and let V=Y"v V". Then

VYNB=V'VV" ) NB2V' NV =9".

In order to establish the opposite inclusion, we let S € ¥ N AB. In view
of ([8], §23, Theorem 3), there exist B € V', G € V", a completely
regular semigroup T which is a subdirect product of B and G, and a
homomorphism ¢ of T onto S. Hence by Lemma 2, S is a homomor-
phic image of B and thus S € ¥%’. Consequently Y NAB =7". A
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similar argument, using Lemma 3, shows that ¥ N¢ = 7. It follows
that ¥ € € and that ¥y = (¥, V"), proving that y maps Z(%€) onto
F(B)x £(%). Now Lemma 1 easily implies that y is one-to-one and
that y ' is inclusion preserving. Therefore x is a lattice isomorphism.

CorOLLARY. For any SE€ €, V'€ L(B), V"€ £(9), we have
SeVY'vV" if and only if Es€ V' and G, € V" for all e € Es.

Proof. This follows without difficulty from the proof of the
theorem and the proof of Lemma 1.

3. Further results. We consider first the following problem:
if V'eL(B)and V"€ L(%) are given by their defining identities, can
we set up a system of defining identities for 7"’ v ¥"? We now proceed
to describe such a system.

Let u = v be an identity on %. Substitute every variable x that
occurs in u =v by xx”'. We then obtain an identity on €, to be
denoted by i = v.

Let w = z be an identity on 4. We may suppose that both w and z
contain the same set {x,, Xx,, - - -, x, } of variables. Consider w =z as an
identity on €, and let e = (x, X, - - x,)(x,x,-- - x,)”". Substitute each
occurrence of x; in w = z by exie. We then obtain an identity on €, to
be denoted by w = 2. Note that e depends on the choice of writing the
variables, but any single choice will do.

ProposITION 2. Let V' (resp. V") be the variety of bands (resp.
groups) defined by a system of identities {u,=v,} (resp.
{ws = 2z5}). Then V' v V" can be defined by the system {i, = 0,, W =
2}

Proof. By the above corollary, V" = %' v V" consists of all S € €
for which Es€ %' and G, € V" for all e e Ec. Let S€ V. Then E;
satisfies u, = v, and hence S satisfies @i, = ¥,. Next consider w; =

zg. Let{x,,x,, -+, x,} be the set of variables occurring in w; = z,. For
any a € S, we denote by N, the class of the least semilattice congruence
on S containing a. Let a,d,- - ,a, €S and e=

(a\a,- -+ ay)(a,a,---a,)”". Then for any 1 =i =n, eae € G, since
eae € N,.=N.,N,N, =N,

and N. is completely simple. Observing that each G, satisfies the
identity w, = z5, we deduce that S satisfies the identity w, =
2, Consequently each S € V" satisfies all the identities i, = ,, W =
Zp.
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Conversely, let S € € satisfy all the identities i, = 0,, W =
2,. Then E; satisfies each u, = v, so that Es € ¥’. Further, for every
e € Es, G, satisfies each w, = Z,, and hence also w, = z; since G, has
only one idempotent. Thus G, € ¥". By the above corollary we
conclude that S€ V' v¥V"=19.

For example, if ¥’ is the variety of all rectangular bands and 7"” the
variety of all groups, then ¥ = ¥’ v ¥” can be defined by the identity
xx "= xx""yy 'xx~', which is evidently equivalent to x> = xyy 'x. This
identity defines the subvariety of rectangular groups.

As another example, we may take ¥’ to be the variety of all bands
and 7" the variety of all abelian groups. Then 7" =7"v ¥ can be
defined by the identity xx 'xyxx ™' = xx'yxxx~', which is evidently
equivalent to x’yx = xyx’. This identity defines the subvariety of
orthodox bands of abelian groups.

We consider next the following question: which subvarieties of €
are simultaneously subvarieties of the variety & of all semigroups? For
an identity u = v on ¥, we denote by [u = v] the variety of semigroups
defined by u = v. If x is an element of a semigroup S, (x) denotes the
cyclic subsemigroup of S generated by x.

ProposITION 3. The following conditions on a subvariety V' of €
are equivalent.

i) YV eEZLP).

(i1)) Y C[x =x"] for some integer n > 1.

(i) YNNG C[x =x"] for some integer n > 1.

iv) ¥YNYe LS.

Proof. (i) implies (ii). Let x€S and SE€ 7. Then (x)E YV
since V€ £(¥ . But then ¥ € £(€) implies that (x) E € which is
possible only if (x) is a finite group. Hence x = x" for some n >
1. Assume that the set

{fnx)|x"®=x, xe€8, Se¥}

is unbounded. Hence there exists an infinite sequence (x,), (x,), - - - of
cyclic semigroups such that n(x,) <n(x,)<---. The element (x;) of
the direct product S =TI, (x;) is clearly of infinite order. Since S € 7,
this contradicts to. what we have proved above. Thus there exists
n >1 such that ¥V C[x =x"].

Items (ii) and (iii) are obviously equivalent. Item (ii) implies item
(i) since with x = x" in any semigroup S, x"~' is the identity of the cyclic
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group generated by x. The equivalence of (iii) and (iv) follows simi-
larly as the equivalence of (i) and (ii).

We now elucidate another relationship between £(%) and £(¥).

PropoSITION 4. LetV € (€)andU € L(F . ThenUNE =V
ifandonly if UN94$=YN%Gand UNB =Y NA.

Proof. If U N€ = ¥, then

UNG=UNENE)=(UNE)NYG=TNYG
and analogously U4 N B =V N B.

Conversely, suppose that U4NY=9N% and UNRB=
¥ NB. The join in € will be now denoted by v and the join in & by

v. Using Lemma 1, we obtain

TNBYVUNG =(VNB)YV(V NG =Y
so that
@) YV NB)Y U NE.

In order to establish the opposite inclusion, we first let G €
WNBYVU)YNY In view of ([5], §23, Theorem 3), there exist

BEVN®B, CE€U a subdirect product T of B and C and a
homomorphism of T onto G. By Lemma 3, G is a homomorphic image
of C and thus G € U. Consequently GEU NG =V NY Next let

BEW(VNB)VvU)NRB. Then

BE(UNBYVUNB=UNB =V NAB.
It follows that

[((YNBYVAYNBIVIV NBYVU)NEGICYV
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and thus by Lemma 1, we have
) VY NBYVUYNECY,
The conjunction of (4) and (5) yields

(6) (VOB UYNE =7,

where (VNB)VUEL(S . But YNB=UNRB implies that

(V' NB)v U =92 which by (6) gives U N € = ¥, as required.

Note that Proposition 4 implies the following statement: if ¥ €
L(€)and V=W NE€ for some U EL(F ,then Y NE=UNY A
converse of this statement can be phrased thus: If 7' € £(%) and
U € L(F , does there exist V" € L(F such that

V'V@UNEG =V NE?

An answer to this question is open. However, we have the following
simple result. For any class 9 of semigroups, let 9, denote the
variety of semigroups generated by %.

PropPoSITION 5. Let ¥V € £(€). Then there exists U € L(F
such that V=AU N € if and only if V. N € = 7.

Proof. Necessity. Let S€ Y, N €. According to ([5], §23,
Theorem 3) S is a homomorphic image of a subsemigroup T of some
semigroup H in 7. It follows that HE % N € and thus T € % and
hence also S € U. Consequently S € % N ¥ = V. This proves that
V4 N € C Y, the opposite inclusion is trivial.

Sufficiency. Take U = V.

For example, for 7" =% or the varieties of all left, right or
rectangular groups, we have the inequality ¥, N €# V. This shows, in
particular, that these subvarieties of € cannot be defined, within €, by
semigroup identities alone. To see this, let G be the additive group of
all integers, T the subsemigroup of G consisting of all nonnegative
integers, S the multiplicative semigroup {0, 1}, and ¢ be the mapping
defined by: 0p =1, no =0 for all nE€T, n#0. Then SZ ¥ and
SeY,NE.
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