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ADJUNCTIONS AND COMONADS IN
DIFFERENTIAL ALGEBRA

WirLiaM F. KEIGHER

It is known that the construction of the ring of fractions
S-tA of a commutative ring A by a multiplicative subset S
of A can be extended to the differential case. This means
that for a given differential ring (4, d), the differential ring
of fractions of (A4, d) by S is constructed simply by defining
a derivation operator on S!A in terms of the derivation
operator d on A. We seek to explain in the categorical
setting of adjunctions and comonads the reasons for which
this and other constructions can be extended to the differential
case. A natural product of this investigation is the construc-
tion of the differential affine scheme of a differential ring.

1. Introduction. Stated simply, there are three points which
explain why certain constructions involving commutative rings can
be carried over to the differential case. These three points are
adjunction, comonad and compatibility. The reader is referred to
[9] for the necessary background on adjunctions and monads (to
which comonads are dual). We add a few words to clarify each of
these points.

By adjunction we mean that each of the constructions we con-
sider is part of an adjunction, i.e., is an adjoint functor. This
point will be made clearer as we discuss each example in §§3, 4

and 5.
By comonad we mean that for each of the categories related to

commutative rings there is a comonad on that category whose coal-
gebras are isomorphic to the differential analogue of that category.
For example, the category Diff of differential rings is isomorphic to the
category Comm, of 2-coalgebras for a comonad 2 on the category
Comm of commutative rings [7]. Since this example is of central
importance for this paper, and since each of the other comonads we
shall discuss is defined in terms of 2, we elaborate on this point
below.

For the remainder of this paper we adopt the convention that
all rings are commutative with unit and all ring homomorphisms
preserve the unit. We also make frequent use of the notation F%:
& —F: A—FA: f— Ff when defining a functor F:.»” — % to
describe its action upon objects A €. and morphisms fe .

The category Diff has as its objects differential rings which are
pairs (4, d) where A is a ring and d is a derivation operator on A4,
i.e.,, d:A— A is additive and satisfies the product rule d(ab) =
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d(a)b + ad(d) for any a,be A. A differential ring homomorphism
fi(4,d)— (4", d') is a ring homomorphism f: A — A’ with d'f = fd.

There is an adjunction (U, G, 7, ¢)>: Diff — Comm where U: Diff —
Comm: (4, d) — A: f—f is the forgetful functor. The right adjoint
G is defined by G:Comm — Diff: A — (wA, d,): f— wf, where for
any ring A, wA is defined as follows. The elements of wA are
countable sequences in A, i.e., of the form (a,) where a,€ A, ne N=
{0, 1, 2, ...}, with operations (a,) + (b,) = (a, + b,) and (@,)-(b,) = (¢.),
where ¢, = >, C, 1aib,,. Here C,, = n!/kl(n — k)! denotes the
usual binomial coefficient. The derivation operator d, on wA is
defined by 0,((a,)) = (@,+.), and for any ring homomorphism f: 4 — A4’,
of: (w4, 0,) — (wA’, 0,) is defined by wf((e,)) = (f(a,). The unit
7: Diff — GU is, for any (A4, d)c Diff and any ac 4, a differential
ring homomorphism 7, 4: (4, d) —(wA4, 3,) given by 7, ,(a) = (d™(a)),
where d™ denotes the %' iterate of d for =1, and d = id,.
The counit ¢: UG — Comm is, for any A€ Comm and any (a,)€ ®wA4,
a ring homomorphism &,: wA — A given by ¢ ((a,)) = @

It follows from [9, p. 135] that the adjunction (U, G, 7, ¢):
Diff — Comm defines a comonad 2 = (, ¢, 0) = (UG, ¢, U7G) on Comm.
If Comm, denotes the category of 2-coalgebras and their morphisms,
the cocomparison functor @: Diff — Comm, which exists by [9, Theorem
1, p. 138] is an isomorphism since U satisfies the hypothesis of the
dual of Beck’s theorem [9, Theorem 1, p. 147]. We need not
concern ourselves herein with the description of either the category
Comm, or the isomorphism @, but only with existence of the isomor-
phism @: Diff — Commy,.

Finally, by compatibility we mean that each of the adjunctions
is compatible with the comonads involved in the sense that the right
adjoint of each adjunction commutes with the comonads. As a
consequence of the main result of §2, the adjunction extends to
one between the coalgebras, which are seen to be the differential
analogues of the categories in the original adjunction. It is in this
sense that the constructions extend to the differential case.

2. Comonad adjunctions. Let & = (G, ¢, d) and &’ = (G, &, ')
be comonads on .~ and .’ respectively. We say that (S, £):
(&, &)— (', &) is a comonad functor if S:.& — . is a
functor and %:SG— G'S is a natural transformation such that
&Sk =8¢ and 'Sk = Gk.kG. S0.

If (S, k): (7, £)— (', £') and (S, £'): (&', &) — (", &)
are comonad functors, the composite (S, £')-(S, k) = (S'S, £'S- S'k):
(&7, €)— (", £") is also a comonad functor. Hence there is a
category Cmnd whose objects are pairs (.97, &) where &7 is a
category and & is a comonad on .97 and whose morphisms are the



ADJUNCTIONS AND COMONADS IN DIFFERENTIAL ALGEBRA 101

comonad functors defined above. If Cat denotes the category of all
(small) categories, there is a functor Coalg: Cmnd — Cat: (%7 &) —
(S, £) — S,, where for a comonad functor (S, x): (¥ ¥)—
(&', €, S o — (). (4, @) — (SA, £,-Sa): f — Sf. Other
purely formal considerations in this direction may be found in
[13].

We say that ((S, k), (T, \), 0, t): (7, £€) — (77, £”’) is a comonad
adjunction if (S,k): (& ) — (¥, &) and (T, \): (¥, &) —
(& €) are comonad functors and o0:.% — TS and 7: ST— &’ are
natural transformations such that

(i) (S, T, o0, 7). & — . is an adjunction,

(ii) MS.-Tk.0G = Go, and

(iii) G7-kT-Sn=z@G.

We also say that an adjunction (S, T, 5, T): &7 — .7 extends
another adjunction (S, T, 0, 7): &7 — .7’ by (U, U) if U: & — &
and U": .o" — &' are functors such that U'S = SU, UT= TU’,
Us=0U and U'T =7U’, or equivalently if (U, U’) constitutes a
map from the first adjunction to the second [9, Proposition 1,
p. 97].

THEOREM 2.1. If (S, k), (T, \),0,7): (¥, &)= (¥, Z’) is a
comonad adjunction, there are matural transformations &, T such
that {S., T, &, 7)., — (") 18 an adjunction which extends
(8, T, 0,7t): % — " by (U, (U),).

Proof. This theorem follows from a theorem of Jean-Pierre
Meyer [10, Theorem 2.2] in the case that & = Cat,, the 2-category
Cat with 2-cells reversed. In this case the natural transformation
G: %7, — T:S; may be defined for any £ -coalgebra (A4, @) byG,a =
04, and similarly T may be defined for any Z’-coalgebra (4/, ') by
Tuway = Tare

Let € = (G, ¢,0) and &’ = (G, ¢, ) be comonads on .7 and
&7’ respectively, and let S:.o — .’ be a functor. We say that
S commutes with & and &’ if G'S = SG, ¢S = Se¢ and 'S = S0,
or equivalently if the identity natural transformation id: SG— G'S
makes (S, id): (] &) — (', £€’) a comonad functor.

THEOREM 2.2. Let & = (G, ¢, 9) and &' = (G, €, §’) be comonads
on S and 7" respectively, and let S, T, g, 7): % — " be an
adjunction. If T commutes with &' and &, there is a natural
transformation k: SG— G'S such that {(S, k), (T, id), 0, t): (4 &) —
(77, €') is a comonad adjunction.
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Proof. Define £ to be the composite zG'S.SA'S.SGo, where
A =id: TG — GT. One may then easily check that {(S, k), (T, id),
o, T) is a comonad adjunction.

REMARK. We observe that the conclusion of Theorem 2.2
remains valid if we replace the hypothesis that T commutes with
<’ and £ by the hypothesis that T commutes with £’ and & up
to an isomorphism, i.e., there is a natural isomorphism \: TG — GT
which makes (T, A) a comonad functor. We do not need the added
generality, however.

We now combine Theorems 2.1 and 2.2 to obtain the main result
of this section. We will use this result in the subsequent sections
to obtain the extensions of the constructions to the differential case.

COROLLARY 2.3. Let & and &' be comonads on &7 and .7’
respectively, and let (S, T, o, 7): & — " be an adjunction. If T
commutes with ' and &, there is an adjunction (S, T, G, Ty:
M = (") which extends S, T, o, t): & — " by (U, (U').).

REMARK. The dual of Corollary 2.3 was discovered independently
by Peter Johnstone [6, Theorem 4].

3. Differential rings of fractions. The reader is referred to
[2] for the basic results concerning rings of fractions. We begin
by defining suitable categories for the adjunctions we develop in
this section.

Let Comm’ denote the category whose objects are pairs (4, S)
where A is a ring and S is a multiplicative subset of A. A morphism
fi(4,8)— (B, T) in Comm’ is a ring homomorphism f: A — B such
that f(S)c T. Similarly let Diff’ denote the category whose objects
are pairs ((4, d), S) with (4, d)c Diff and S a multiplicative subset
of A, and whose morphisms are the obvious ones.

PROPOSITION 8.1. There is an adjunction {U’, G', 7, &'): Diff’ —
Comm’, and the comonad Q' defined by this adjunction is such that
(Comml)gr = Diff’.

Proof. The adjunction is defined in terms of the adjunction
(U, G, 1, ¢): Diff —~ Comm. The left adjoint U’ is given by U’: Diff’ —
Comm’: ((4, d), S) — (4, S): f — f, while the right adjoint G’ is defined
by G': Comm’ — Diff’: (4, S) — (w4, 3,), So): f — wf, where S§,=



ADJUNCTIONS AND COMONADS IN DIFFERENTIAL ALGEBRA 103

e'(S) = {(a,) e wA: a,€ S}. The unit 7: Diff’ - G'U’ and counit ¢":
UG’ — Comm’ are given by (7)o, = Nia,e» a0nd (') 4,5y = €, Observe
that there are faithful functors F: Comm’ — Comm: (4, S)— A: f—f
and F": Diff’ — Diff: ((4, d), S) — (4, d): f — f which forget the multi-
plicative subset and are such that F'G' = GF, FU' = UF', F'y =
PF’, and F¢’ = ¢F. It follows from this observation that <(U’, G',
7, ¢>: Difff = Comm’ is an adjunction. The cocomparison functor
?': Diff’ — (Comm’),, which exists by [9, Theorem 1, p, 138] is an
isomorphism since U’ satisfies the hypothesis of the dual of Beck’s
theorem [9, Theorem 1, p. 147].

We now observe that the construction of S™A4, the ring of
fractions of A by S, is part of an adjunction (L, I, o, 7): Comm’ —
Comm. The left adjoint is defined by L:Comm’— Comm: (4, S) —
S7A: f—f’, where for a morphism f:(4,S)— (B, T) in Comm’,
f':S'A— T'B is the unique ring homomorphism given by f’(a/s) =
f(a)/f(s) [2, Proposition 2, p. 77]. The right adjoint is given by I:
Comm — Comm’: A — (4, A*): f— f, where A* denotes the multipli-
cative set of invertible elements in 4, i.e., the units of A.

LEMMA 3.2. An element (a,) € WA is invertible if and only if
a, 18 1nvertible in A, i.e., (WA)* = 7'(4%).

Proof. Clearly if (a,)€ wA is invertible, then e,((a,)) = a, is
invertible in A. Conversely suppose that (a,) € @A is such that a,
is invertible in A. Let b,€ A be such that ab, =1, and for n =1
define b, inductively by

b, = ~bo<§l Cn,kakbn_,c> .

One checks that (a,)(b,) = 1= (3,,), where 6,,=1 and §,, =0 for
n= 1.

REMARK. Notice that Lemma 3.2 bears a strong resemblance
to a theorem about formal power series rings, i.e., a power series
S a,t” is invertible in the ring A[[t]] of formal power series in
one variable with coefficients in A if and only if the constant term
a, is invertible in A [8, p. 30]. The resemblance is no mere coin-
cidence, however, since for any ring A there is a natural differential
ring homomorphism ¢,: (A[[t]], d/dt)—(wA, 3,) defined by ¢, o, a,.t")=
(n!a,), where d/d¢ denotes the usual termwise differentiation of
power series. Moreover, if A contains the ring of rationals, ¢, is
an isomorphism.
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COROLLARY 3.3. There is an adjunction (L', I', o', z'): Diff’ —
Diff which extends the adjunction {L, I, o, 7): Comm’ — Comm by
(U, U).

Proof. We first claim that I commutes with Q and 2’. The
equality Iw = @'l follows from Lemma 3.2, and since F: Comm’ —
Comm: (4, S)— A: f—f is faithful, it suffices to show that Fle =
Fe'Tand FIo = Fo'l. But FI = Comm, so that Fle = ¢ = ¢FI = F¢'I,
and similarly for the other equation. Now by Corollary 2.3 there
is an adjunction (L, I, G, T): (Comm’),, — Comm, which extends (L, I,
o, 7). Comm’ — Comm. The desired adjunction is induced by (L, I,
o, 7y and the isomorphisms Diff = Comm, and Diff’ = (Comm’),.

REMARK. The functor L’: Diff’ — Diff constructs the differential
ring of fractions of (4,d) by S. Since UL’ = LU’, we see that
L'((4, d), S) = (S7'4,d") for some uniquely determined derivation
operator d’ on S™'A. It is possible to show from what we have
done that d’ is the derivation operator defined for any a€ A and

seS by
d'(a/s) = (sd(a) — ad(s))/s*.

This is the usual quotient rule for the derivative of a fraction
[1, p. 310], [3, p. 198], [8, p. 63].

4. Sheaves of differential rings. In this section we adopt the
notation and conventions of [11]. In particular, if X is a topological
space and . is an .F-category, then & (H,.%”) denotes the
category of sheaves in &7 over X.

If S: & — < is any continuous functor between .#-categories,
there is an induced functor S*: ¥ (H, ¥)— ¥ (H, Z#): F— SF:
a— Sa. This follows from the observation that if S is continuous
then S preserves the equalizer property which characterizes the
sheaves among the presheaves. In particular, if S has a left adjoint,
there is an induced S*.

PropPOSITION 4.1. For any topological space X there 1is an
adjunction U*, G*, p*, e*): & (X, Diff) — & (X, Comm), and the
comonad 2% defined by this adjunction is such that F (X, Comm),. =
Z (X, Diff).

Proof. From the adjunction <{U, G, 7, ¢): Diff =~ Comm we see
that G has a left adjoint U, and since U is an algebraic functor it
also has a left adjoint [12, Theorem 18.5.3. p. 238]. Hence by the
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observation made above there are induced functors U* and G*. If
we define »* and ¢* by (¥*), = nF and (¢*), = ¢F, then it is easy
to see that (U* G* 7* ¢*) is an adjunction. The cocomparison
functor @*: & (X, Diff) — . (X, Comm),. which exists by [9, Theorem
1, p. 138] is an isomorphism since U* satisfies the hypothesis of the
dual of Beck’s theorem [9, Theorem 1, p. 147].

Recall from [11, Theorem 5.1, p. 253] that if .o~ is an . -category
and f: X— Y is a continuous map, there is an adjunction {f*, fx,
6, v F (Y, &)~ F (X, ). The left adjoint f* is called the
inverse image functor, while the right adjoint f, is called the direct
image functor and is defined for any sheaf F in .o over X and
open set Vin Y by (f.F)NV) = F(f(V)).

LEMMA 4.2. If S: &/ —<Z is a continuous functor between
F-categories and if f: X — Y is continuous, then S*f. = f.S*.

Proof. Let F be a sheaf in .& over X and let V be open in
Y. Then (S*f)EFNV) = S((f«F)V)) = SF(f7(V)) = (f:SF)V) =
(F<SYENV).

COROLLARY 4.3. If f: X — Y ts continuous, there is an adjunc-
tion  {f* f«, 8, ¥>: F (Y, Diff) —~ 7 (X, Diff) which extends the
adjunction {f*, f«, ¢, v>: F (Y, Comm) — Z (X, Comm) by (U*, U*).

Proof. It follows from Lemma 4.2 that f,:. ¥ (X, Comm)—
& (Y, Comm) commutes with the relevant £*’s. Hence from
Corollary 2.3 there is an adjunction {f*, fx, &, ¥>: F# (Y, Comm),. —
Z (X, Comm),.. But & (?, Comm),. = & (?, Diff) by Proposition 4.1,
which gives the desired adjunction.

REMARK. We observe from Corollary 4.3 that direct and inverse
images of sheaves of differential rings over a topological space X
are constructed by forming direct or inverse images of the sheaves
of the underlying rings, and the derivation operator on any section
is then uniquely determined in terms of the derivation operator on the
section of the original sheaf of differential rings.

We now observe that, for any complete and cocomplete category
%7, topological space X and ze€ X, there is an adjunction {S,, K,,
o, 7): ¥ (X, %) — 7, where S, is the stalk functor, defined for
any sheaf F' in & over X by S,F = F,=lim F(U), the colimit
taken over all open sets U in X which contain ¢. The right adjoint
K, is sometimes called the skyscraper sheaf functor, and is defined
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for any object A and open set U in X by K,A(U) = A or 1 depending
whether ze U or z¢ U, where 1 is the terminal object in .7

COROLLARY 4.4. For any topological space X and any ze€ X,
there 1s an adjunction {S,, K,, 0, t): & (X, Diff) — Diff which extends
the adjunction {S,, K,, 0, t): # (X, Comm) — Comm by (U*, U).

Proof. The right adjoint K,: Comm — & (X, Comm) can be seen
to commute with £ and 2*, and hence by Corollary 2.3 there is an
adjunction <S,, K,, G, 7): & (X, Comm),. — Comm,. The desired
adjunction follows from Proposition 4.1 and the isomorphism o:
Diff — Comm,.

REMARK. It follows from Corollary 4.4 that the stalk of a
sheaf of differential rings over a point xe€ X is a differential ring
whose underlying ring is the stalk of the sheaf of the underlying
rings over 1z, and the derivation operator on that ring is again
uniquely determined.

5. Differential local ringed spaces and the differential affine
scheme of a differential ring. In this section we show that an
adjunction which is of fundamental importance in modern algebraic
geometry is a comonad adjunction. The induced adjunction on the
coalgebras gives the construction of the affine scheme of a differential
ring. A second related adjunction yields the differential affine scheme
of a differential ring.

For most of this section the notation and terminology will be
consistent with that of [4]. We begin by stating several lemmas
concerning local rings and local ring homomorphisms [2, p. 102].
A* will denote the units of the ring A.

LEMMA 5.1. (i) Let f: A— B be a ring homomorphism such that
fU(B*) = A*., Then if B 1is local, so is A, and f is a local ring
homomorphism.

(ii) Let A and B be local rings and let f: A— B and g: B— A
be ring homomorphisms with gf = id,. Then if g is local, so is f.

LEMMA 5.2. Let (A, $s5.) be a directed system of rings, and let
A = lim A, be the direct limit. Then the A¥ form a directed system

of sets with respect to restrictions of the ¢s., and we have A* =
lim A}.

We will say that a sheaf F in Comm over X is local if for
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each z€ X, F, is a local ring, and a morphism a: F— F’ of local
sheaves in Comm over X will be called local if «,: F,— F, is a
local ring homomorphism for each x€ X. The following proposition
says that the comonad 2* = (w*, ¢*, 0*) on & (X, Comm) of Proposi-
tion 4.1 restricts to the subcategory of local sheaves and local
morphisms.

ProrosiTION 5.3. Let F be a local sheaf im Comm over X.
Then w*F is also a local sheaf in Comm over X, and &f: w*F— F
and 0F: 0*F — w*w*F are local morphisms. Moreover, if a: F— F’
s a local morphism, so is w*a: w*F — w*F’.

Proof. To show that w*F and ¢} are both local, it suffices by
Lemma 5.1 to show that (¢});(F¥) = (w*F)¥ for any e X. Taking
all lim over the directed system %/, of open sets U in X containing
z, Wwe see that (eX)I(F*) = () (lim F(U)* € D (en): (lim F(0)* ) @
lim &1, (F(U)*) ® lim @ F (V)" @ (lim " wF(U))* = (0*F)*. Here the
equatwns (1) follow v from Lemma 5. 2, (2) since inverse images in the
category of sets, Ens, are really pullbacks, hence finite limits, and
that in Ens finite limits commute with colimits over directed sets
(%, in this case) [9, Theorem 1, p. 211], and (3) from Lemma 3.2.
Now from the comonad equations we have &*.;.0% = id,.r, and since
exr is local by the above argument, Lemma 5.1 shows that ¢} is
local. Finally, suppose that a: F— F’ is a local morphism of local
sheaves. Then since &% - w*a = a.&f and (W*F)¥ = (e3);'(FF), we
see that (w*a);*(w*F")¥) = (w*F)¥, so again by Lemma 5.1 w*a is
local.

We will denote the category of local ringed spaces and their
morphisms [4, p. 92-93] by Loc. We define a differential local ringed
space to be a pair (X, ©%) where X is a topological space and &
is a sheaf in Diff on X such that U*? is local, i.e., (U*%), =
U, is a local ring for each x€ X. Observe that we are not yet
requiring the maximal ideal in U7, to be a differential ideal. If
(X, &%) and (Y, &%) are differential local ringed spaces, then (v, 6):
(X, &%) — (Y, &%) is called a morphism of differential local ringed
spaces if ¢:X-—Y is continuous and 0: 7 — & is a local -
morphism of sheaves in Diff, i.e., 0: & — ¥+ is a morphism in
Z (Y, Diff) such that U*0: U*Z, — U*9 % = ¥y U*P% is a local
morphism in & (Y, Comm). If (v, 0): (X, &%) — (Y, &%) and (¥, 8):
(Y, &%) — (Z, ;) are morphisms of differential local ringed spaces,
then their composite is given by (v, 8')- (¥, 6) = (¥'y, ¥i0.0'):
(X, &%) — (Z, &;). The category of differential local ringed spaces
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will be denoted by Diff Loc.

We have seen that the adjunction (U, G, 7, ¢): Diff — Comm
defines the comonad 2 on Comm with Comm, = Diff, and similarly
the adjunction (U*, G*, n*, ¢*): & (X, Diff) = # (X, Comm) defines
the comonad 2* on & (X, Comm) with & (X, Comm),. = . (X, Diff).
We extend the parallel to differential local ringed spaces.

THEOREM 5.4. There is an adjunction <{G°, U’ &, 17°): Loc —
Diff Loc, and the monad 2° defined by this adjunction is such that
Loc®’ = Diff Loc.

REMARK. We note that differential local ringed spaces are
algebras for a monad, rather than coalgebras for a comonad as
differential rings and sheaves of differential rings have been. This
is due to the nature of the morphisms in Loc and Diff Loe, i.e.,
W, 0): (X, &%) — (Y, &) with 0: & — .7 backwards (literally!).

Proof. The right adjoint is defined by U’ Diff Loc — Loc:
(X, &) — (X, U*%): (¥, ) — (v, U*6), while the left adjoint is
defined by G°: Loec — Diff Loc: (X, &%) — (X, G*%): (v, 6) — (¥, G*6).
Note that by Proposition 5.3 if (X, %) is a local ringed space then
U*G*?y = w* is a local sheaf over X, and if (v, 0) is a mor-
phism of local ringed spaces then U*G*0 = w*# is a local morphism
of sheaves over Y, so that G° is well defined. Define the unit &%
Loc — U°G® and counit 7°: G°U°— Diff Loc by & ., = (idy, €2,)
and 7’y = (idy, 7%,). Again by Proposition 5.3, ¢  is local and
&oy » UM%, = idys,, 80 that by Lemma 5.1, U*nZ, is also local.
It is clear that the adjunction equations for (G°, U° ¢, 7*) follow
from those for (U*, G*, n* ¢*> and the (backward) composition of
morphisms in both Loc and Diff Loc. It remains to show that the
comparison functor @°: Diff Loc — Loc® which exists by [9, Theorem
1, p. 138] is an isomorphism, and for this we use Beck’s theorem
[9, Theorem 1, p. 147].

Let (¥, 0.): (X, &%) — (Y, &%), 1=1,2, be a parallel pair in
Diff Loc for which U°(yy, 6,) = (v, U*6,) has a split coequalizer in
Loc, say

(4’19 U*Ox) (qr 6) —
X, U*Tx) —= (Y, Ury) == (Z,7)
1 (Ye, U%02) | . 2)
(k» 7’)

Using the rule (f', )-(f, 0) = (f'f, fi0-6") for composition in Loec,
it is not difficult to see that
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= € N U*qx0,
Ty = U*q% 3 U*q.(v)« %
' qxlt 1 U*qs0s |
qx(Wn)xr

is a split equalizer in % (Z, Comm). Now since the cocomparison
functor @*: # (Z, Diff) — & (Z, Comm),. is an isomorphism by Pro-
position 4.1, the dual of Beck’s theorem implies that U* creates an
equalizer for the parallel pair q.6,, ¢.6,in % (Z, Diff). Hence &, =
U*2, and e = U*0 for a unique &, € . (Z, Diff) and a unique 0: &, —
0+ in F(Z,Diff), and 6 is the equalizer of g¢.0, and ¢.0, in
Z (Z, Diff). It follows that (q, 6): (Y, %) —(Z, &7,) is the coequalizer
of (v, 0,),7=1,2, in Diff Loc, and from Beck’s theorem we now
conclude that @°: Diff Loc — Loc” is an isomorphism.

Recall now from [4] that there is an adjunction which enjoys a
central role in modern algebraic geometry and which gives rise to
the fundamental notion of the affine scheme of a ring. This adjune-
tion will be denoted by <{(Spec, I, 6, o): Comm — Loc’?, where Loc*”
is the category dual to Loc. Its left adjoint is the (contravariant)
functor Spee: Comm — Loc®?, which defines the affine scheme (Spec (4),
A) of a ring A [4, 1.6.1, p. 209]. The right adjoint of the adjunc-
tion is the (contravariant) global sections functor I': Loe¢’” — Comm:
(X, &%) — 7x(X): (v, 6) — I'(6). We also observe that the unit
@: Comm — I" Spec of the adjunction is a natural isomorphism [4,
1.3.7, p. 199].

COROLLARY 5.5. There is an adjunction {Spec’, I'', ¢, 0’>: Diff —
Diff Loc® which extends the adjunction <{Spee, I, 6, p>: Comm —
Loc®?, and 6': Diff —I"" Spec’ is a natural isomorphism.

Proof. We first note that by the dual of Theorem 5.4 there is a
comonad, which we shall denote by £°, on Loc®® such that (Loc*”)g =
Diff Loc’®. Furthermore, the right adjoint I" of the adjunction
{Spee, I, 6, p>: Comm — Loc®® commutes with the comonads £2° and
2. By Corollary 2.3 there is an adjunction (Spec, I, 4, p): Comm, —
(Loc®”),0 which extends {Spee, I, 6, 0): Comm — Loc°?, and the desired
adjunction may be defined in terms of the adjunction (Spec, I, 4, p):
Comm, — (Loc’?)q and the isomorphisms Comm, = Diff and (Loc®)z =
Diff Loc’®. Finally, since (Spec’, [, ¢, p’> extends {Spec, I, 0, o) by
(U, U°) we see that U8’ = 60U is a natural isomorphism. But U re-
flects isomorphisms, so that 6’ is a natural isomorphism.

For any differential ring (A4, d), Spec’ (4, d) = (Spec (4), (4, d))
is called the affine scheme of the differential ring (4, d) and has
many properties in common with the affine scheme of a ring. For
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example, we see from Corollary 5.5 that 6’: Diff — I Spec’ is a
natural isomorphism. This means that the differential coordinate
ring of the affine scheme of any differential ring is naturally iso-
morphic to the differential ring, which in the non-differential case
is a well known result. Moreover, one can easily show that the
sheaf (A4, d) on Spec(A) is such that for any e Spec(4), (4, d), =
(4., d,), where A, is the local ring of fractions S™'4 with S= 4 — 7,
and d, is the derivation operator on A, defined by

d.(afs) = (sd(a) — ad(s))/s*

for any ac A, s¢ j,(cf. §3).

Recall from [1, p. 315] that a local differential ring is a differ-
ential ring (4, d) whose underlying ring A is a local ring and whose
maximal ideal m, is a differential ideal, i.e., d(m,) Cm, or equivalently
d(A*) c A*. We now define an LDR-space to be a differential
local ringed space (X, <) such that for any xze X, Z%,, is a local
differential ring. The full subcategory of Diff Loc consisting of the
LDR-spaces will be denoted by LDR.

ProOPOSITION 5.6. LDR s a coreflective subcategory of Diff Loc.

Proof. We show that the inclusion functor K: LDR — Diff Loc
has a right adjoint D: Diff Loc — LDR. For any (X, &) € Diff Loc,
define D(X, &) = (X,, & | X,), where X, = {xeX: T%,, is a local
differential ring} with the subspace topology and x| X, is the
restriction of ~7 to X,. Note that (% | X,), = %, for any ze X,,
so that (X, &% | X)) e LDR. Now let (i, 6%): (Xy, % | Xo) — (X, &%)
denote the canonical injection, where ¢y: X,— X is the inclusion of
the subspace and ¢y: Py — (1x)«(Px | Xo) = (1x)«(ix)*Px is the unmit
of the adjunction {(ix)*, (ix)«, ¢, ¥v»: F (X, Diff) = & (X,, Diff) from
Corollary 4.3. To see that D is a functor, let (v, 0): (X, &%) —
(Y, &%) be a morphism of differential local ringed spaces. Then if
xe€ Xy, T%., is alocal differential ring, so that d; (% .) C &%, Where
d, denotes the derivation operator of <% ,. Since 0% Ty yw) — Tr.e
is a differential ring homomorphism it follows that (6})7'd;*(Z%%..) =
A7, (08 (%) < (087 (%,), and since (v, 6) is a morphism in Diff
Loc we see that (6})(Z%.) = P¥yw. Hence dyin(FFyw) C ¥ pw:
so that &% v, is a local differential ring and +(x)€ Y,. Therefore
there exists a unique continuous +r,: X,— Y, such that -7y = iy « 9.
One checks that 6: &% — .y also restricts properly to give 6] Yy
Ty | Yo— (v0)«(Z% | X,) by observing that & | X, = (12)*C% T | Yo =
(iy)* and 4 -ty = iy -r,. Hence D is a functor, and clearly DK =
idipr. There is also a natural transformation 7: KD — idpis Loc With
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components %z, = (ix, ¢x): (Xoy Zx | Xo) — (X, %) as above. Finally,
one checks that (K, D, id, ¢>: LDR — Diff Loc is the desired adjunction.

COROLLARY 5.7. There is an adjunction <{Specp, I'p, Op, Op):
Diff — LDR*.

Proof. By the dual of Proposition 5.6 there is an adjunction
{D, K, i, id): Diff Loc’” — LDR?, and by Corollary 5.5 there is an
adjunction {Spec’, I/, &', 0'>: Diff — Diff Loc’”. The two adjunctions
can be composed [9, Theorem 1, p. 101] to give the adjunction
{Specy, I'p, Op, Poy = {D Spec’, I'"K, I''i Spec’ - ¢, id - Do'K ): Diff —
LDR.

REMARK. We observe that the adjunction {(Spec,, I'p, Op, 0p):
Diff —~ LDR® does not extend {Spec, I, 6, 0>: Comm — Loc”*, and
more importantly that 6,: Diff — ", Specp, is not a natural iso-
morphism. The latter observation follows since 6, = I"i Spec’-¥¢',
and while #': Diff — "' Spec’ is a natural isomorphism, ¢ is not an
isomorphism.

The adjunction of Corollary 5.7 has considerable significance for
differential algebraists, since the basic objects that one usually
considers in differential algebraic geometry do not involve all the
prime ideals in a differential ring but rather only the prime
differential ideals. We claim that for any differential ring (4, d),
Specy, (4, d) is exactly a basic object. By definition, Spee, (4, d) =
D Spec’ (4, d)=D (Spec (A), (4, d))=(Spec (A),, (4, d)|Spec (4),), where
Spec (A), = {x < Spec (A): (4, d), is a local differential ring}. But
(4, d), = (4,, d,) is a local differential ring if and only if m, = j,4;,,
the maximal ideal of A4,, is a differential ideal, and this is so if
and only if j, is a differential ideal. Hence Spec (A4), consists of
the prime differential ideals of (A4, d), and we denote this subspace
of Spec (4) by Spec, (4).

We will call Spec, (4, d) = (Specy (4), (4, d)*) the differential
affine scheme of the differential ring (A4, d). We observe that since
Spec, is part of an adjunction, (Specy(4), (4, d)*) has many pro-
perties in common with the affine scheme (Spec(4), (4, d)) defined
earlier. Moreover, these differential affine schemes will be the basic
objects used to define differential schemes which are the differential
analogue of schemes. The definitions and important properties of
differential schemes will be the topic of a separate paper.
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