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INFIMUM AND DOMINATION PRINCIPLES
IN VECTOR LATTICES

PETER A. FOWLER

The main purpose of this paper is to demonstrate (a)
that the potential theoretic notions of infimum principle and
domination principle are meaningful in a setting of a vector
lattice with a monotone map to the dual space, and (b) in
this general setting these two principles are equivalent under
very weak hypotheses.

THEOREM 1. If T: L -> 1/ is a strictly monotone map, L
a vector lattice, then the infimum principle implies the domi-
nation principle.

THEOREM 2. If T:B-> Bf is a monotone, coercive hemi-
continuous map, B a reflexive Banach space and vector lattice
with closed positive cone, then the domination principle implies
the infimum principle.

1* Introduction* The results herein improve theorems proved

earlier by the author [7], and are motivated by work of Calvert [4]
and Kenmochi and Mizuta [11, 12]. The paper [4] deals with the
Sobolev space WL>m and a monotone operator satisfying certain further
conditions. The papers [11, 12] deal with functional spaces whose
intersection with either <& (continuous compact support functions)
or U is a dense subspace and with a monotone operator which is the
gradient of a certain convex function.

The present paper shows that the relationship between the
infimum and domination principles is independent of the specialized
properties of the above mentioned spaces. This relationship depends
more on the lattice structure in a linear space in one case and on
the lattice structure in a reflexive Banach space in the other case.
Results on monotone operators of Browder [2, Theorem 1] and Hartman
and Stampacchia [10, Theorem 1.1] are employed in the Banach space
case.

2* Difϊnitions* Let L be a vector lattice with partial order
<, and L+ = {x e L | 0 < x}. The symbol x A V denotes the infimum
of x and y. Let U be a subspace (possibly improper) of the algebraic
dual of L. The usual bi-linear form on L x V is denoted < , •>> and
L'+ = {feL'\ (x, /> ^ 0 for all x e L+}.

DEFINITION 1. A map T:L—*L' is monotone if for all x,yeL,
(x — y, Tx — Ty) ^ 0; T is strictly monotone if T is monotone and
(x — y, Tx — Ty) = 0 implies x = y.
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In many treatments of kernel-free potential theory in Hubert
or Banach functional spaces L, pure potentials are associated with
those elements ue L which satisfy Tue L'+. See, for example,
Beurling and Deny [1], Fowler [8, 9], Kenmochi and Mizuta [11, 12].
We are thus led naturally to the following definition.

DEFINITION 2. The triple (L, T, U) satisfies the infimum princi-
ple if for each pair x, y e L such that there exists z' e L' with Tx —
z' e L'+ and Ty - zf e L'+, it follows that T(x A y) - z' e L'+.

Suppose L = <^{X, ξ) is a functional space with L n ^ 7 dense
in L and ^ as per Example 1, § 4. If we insist that z' = T(z) with
z e L a potential, then the above infimum principle is that embodied
in Theorem 3.2 of Kenmochi and Mizuta [11].

Recall that the cone L'+ induces a partial order •< on L'. By
adding certain hypotheses it can be assured that U is a vector lattice
under this order. See, for example, Day [5, pp. 98-99] or Namioka
[13, Theorem 6.7, Corollary 7.3, Theorem 8.7]. If L' is a vector
lattice, then the above infimum principle is equivalent to the condition:

[Tx A Ty) < T(x A y) for all x, y e L .

(The symbol Λ is used for infimum in both L and I/.) To see this
equivalence, merely put z' = Tx A Ty. The Lp spaces, 1 <; p are
examples of this phenomenon.

DEFINITION 3. The triple (L, T, U) satisfies the domination
principle if for each pair x, ye L such that there exists z' 6 U with
Tx-z'e Lf+ and Ty - z' e Lf+ and <(α> - y)+, Tx - z'> = 0 it follows
that x < y.

This is essentially the domination principle of [11, Theorem 3.3]
and [4, p. 480] stated in an arbitrary vector lattice.

In the next two definitions we assume that L is a Banach space
with norm || ||, and U is the continuous dual.

DEFINITION 4. A map T: L—+L' is hemi-continuous if it is con-
tinuous from each line segment in L to the weak* topology in L'.

DEFINITION 5. A map T: L—>Lf is coercive if for all we L,
(v - w, Tυ)/\\v\\-> +oo as || v | | -* +°o.

3* Theorems*

THEOREM 1. Let L be a vector lattice. If T:L-+L' is strictly
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monotone and the triple (L, T, L') satisfies the infimnm principle,
then it satisfies the domination principle.

Proof. Let x,yeL,z'e U with Tx - z', Ty - z' e L'+ and

(1) <(x~y)+, Tx-z'} = 0.

By the infimum principle, T(x A y) — z' e L'+ so

(2) <(χ-y)+, z'- T(xΛy)}^0.

Adding (1) and (2) yields

(3 ) <(α? - y)+, Tx - T(x A y)> ̂  0 .

But (x — y)+ = x — x A y, so (3) becomes

(x - x A y, Tx - T(χ A y)) ^ 0 .

Since T is strictly monotone, x = x Ay, i.e., x < y.

REMARK. The proof of Theorem 1 is essentially that of [4,
Proposition 1.4]. However, it is not required that any notion of
infimum exist in the dual space.

We now replace L by a reflexive Banach space B and let Bf

denote the continuous dual. Again, < denotes a lattice order on J5,
and B+, Bt+ are as above. We do not assume that the norm of B is
a lattice norm [13, p. 41] nor a monotone norm [13, p. 18]. However,
for our main result we require that the positive cone B+ be closed
in B. As shown in [13, Cor 4.2], this requirement is equivalent to
the condition that xeB+ if and only if <a?, /> ̂  0 for all / 6 Br+.

For the purposes of Theorem 2 below, we wish to extend [2,
Theorem 1] to a closed convex set E not containing the origin. This
will assure the existence of a solution xoe E to the variational
inequality

(x0 - x, TxQ) ^ 0 f or all x e E .

The following lemma permits this simple extension. It is essentially
the result given for separable Banach spaces in [6, p. 274].

LEMMA. Let weB be fixed and E = K + w where Kis a closed
convex set in B with 06 K. Let T\B—*B! be monotone, hemi-con-
tinuous and coercive as defined in § 2. Then there exists xoe E such
that

(x0 - x, Tx0) ^ 0 for all xeE.
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Proof. Define A:B-+B' be A(u) = T(u + w). Clearly A is mono-
t o n e a n d h e m i - c o n t i n u o u s . I f \\v\\ ^ \\w\\ w e h a v e f o r u = v — w,

(v — w, Tv) < <t; — w, Tv)

2 II v II = IMI + IMI
= (u, T(u

\\u\\

Thus the coercive condition on T entails (u, Au)/\\u \\ —̂  +00 as
[114II —> 4-oo# Since OeiΓ it follows from [2, Theorem 1] that there
exists uoe K such that

(u0 — y, Au0) <£ 0 f or all y e K .

Put x0 = u0 + w, x = y + w. Then a?, ίc0 € E, TxQ — AuQ and the result
follows.

THEOREM 2. Let the triple (B, T, B') satisfy the domination
principle with B a reflexive Banach space and vector lattice, B+

closed, and T a monotone, hemi-continuous, coercive map. Then
(B, T, Bf) satisfies the infimum principle.

Proof. Let x, y e B, z' e B' with Tx - z', Ty - z'e B'+. Define

E=xΛy + B+ = {ueB\xΛy<u}.

It is immediate that E is convex and closed. Define S: B—»B' by
Su = Tu — zι'. Clearly S is monotone, hemi-continuous and coercive
since T has these properties. By the lemma applied to S, there
exists x0 G E such that

(4) (u - x0, Sxo) ^ 0 f or all u e E .

But for any veB+, v = (v + x0) — x0 and v + x0 e E, so (4) entails
Sxo£ Bf+, i.e.,

(5) Tx0- z'eB'+ .

It remains to show x0 = xΛy. Now x0Λx<x0, so x0—(x0 Λx)s B+,
and (5) entails

(6) <£0 - (α?0Λα), Tx0 - z'> ^ 0 .

But xoe E, xe E and the definition of 2?imply a?Λ y < #0 and a?Λ y < a?,
so ccΛί/C^oΛ^, i.e., xQ/\xeE. Thus (4) entails

(7) <#o - aJo Λ x , Tx0 - z ' ) ^ 0 .
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By (6) and (7) we see (x0 - x0 A x, Tx0 - zf) = 0, i.e., ((x0 - x)+, Tx0 -
z') = 0. Thus, (5) and the assumption that Tx — z' e B'+ and the
domination principle yield x0 < x. Analogously, x0 < y, so x0 < x A y.
By definition of x0 e E we have x A y < α?0 Since a lattice order is
necessarily anti-symmetric, it follows that x0 = x A y and thus
T(xΛv) - z'eB'+.

4* Examples*

EXAMPLE 1. Lex X be a locally convex Hausdorff space with
countable base and ξ a positive Radon measure on X. Let ^ =
<£f(x, ξ) be a reflexive Banach functional space as in [11, p. 744].
For 1 < m < oo let Φ be a strictly convex real valued function on
<?j? satisfying

Φ(0) - 0

Φ(u) ^k\\u\\m for all ue 31?,

k a positive constant. Also, let Φ be bounded on bounded sets and
the gradient VΦ exist at each u e

<v, PΦ(u)) = lim
ί 0 +ί->0+

Then VΦ\ <%f—*<%f' is a strictly monotone, hemi-continuous and coercive
operator. See [11, 12]. Necessary conditions for the infimum and
domination principles to hold are therein discussed at length.

EXAMPLE 2. Let ΩaRn be open. For 1 < p < oo the space
WlP(Ω) is the closure of 2$(β), the test space for distributions, in
the Sobolev space WUP(Q) in norm

\\u\

It was shown in [9, p. 322] that the spaces W\'p and W1>p are uniformly
convex, smooth functional spaces and vector lattices and thus satisfy
the requirements of Example 1 above.

EXAMPLE 3. For p > 1, 0 <a <1 and 2n/(n + 2a) < p, the

fractional Sobolev space Lζ{Rn) is the set of feLp(Rn) such that
&afeLp(Rn), where

= \ \f(χ)-f(y)
I x _ y |*+2«

The norm is || / ||α = (|| / \\>, + || &a\\bfi*. In [9, p. 324] it is shown
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that Ll is a smooth, uniformly convex Banach-Dirichlet space [9,
p. 311] and thus a vector lattice satisfying the requirements of
Example 1.

EXAMPLE 4. Let B be a reflexive Banach space with continuous
dual B'. Let T:B—*B' be a duality map, i.e.,

<u, T(u)) = \ \ u \ \ \ \ T u \ \ = ! | u \ \ φ ( \ \ u \ \ ) f o r a l l u e B

where φ R1—+R1 is a continuous, strictly increasing function with
φ(0) = 0 and limr_+α) φ(r) = + oo. Then Γ is coercive because for
fixed w G β,

(v - w, Γv>/|| v || ^ || Tv || - I1 " !l T "
IMI

= φ(\\v\\)(L - \\w\\/\\v\\)-* +<*>

as || v || —> +oo. It is shown in [3, p. 368] that T is monotone, and
if B is strictly convex then T is strictly monotone. Further, if B
is smooth, then corresponding to each φ in the definition of duality
map, there is a unique, hemi-continuous duality map 2V
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