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NONLINEAR INTEGRAL EQUATIONS
AND PRODUCT INTEGRALS

ALVIN J. KAY

B. W. Helton has studied linear equations of the form

(1)

this paper extends some of his results to a nonlinear
setting. Let 5 be a linearly ordered set, {G, + ,|| ||} a complete
normed abelian group, H the set of functions from G to G that
take 0 to 0, Osd and CM classes of functions from 5X5 to H that
are order-additive and order-multiplicative respectively and
satisfy a Lipschitz-type condition, and % be J. S. Mac Nerney's
reversible mapping from Osd onto CM. If {V, W} is in <£, we
show the collection of all functions that are differentially equiva-
lent to V is the same as the collection of functions that are
differentially equivalent to W - 1. This analysis is used to
prove existence theorems for product integrals which we show
solve (1).

1. Introduction. In his 1966 paper, Integral Equations and
Product Integrals [2], B. W. Helton obtained product integral solutions
of linear integral equations of the form (1) where the integration is
directed along intervals in some linearly ordered system, the functions
involved have their values in a complete normed ring, and the right-left
integral is of the subdivision-refinement type.

We extend some of these results to the nonlinear setting developed
by J. S. Mac Nerney in [7]. As in [7], 5 denotes some nondegenerate
set, with linear ( ^ ) ordering ΰ\ {G, + ,|| ||} denotes a complete normed
abelian group with zero element 0, and H denotes the class of all
functions from G to G to which {0,0} belongs, with identity function
1. Os$+ denotes the class of all ^-additive functions from 5X5 to the
set of nonnegative real numbers, and OM + denotes the class of all
ΰ- multiplicative functions from 5X5 to the set of real numbers not less
than 1.

The class ϋst consists of all functions V from 5X5 to H such that
(i) V is ΰ- additive in the sense that, for each {*, z, P} in 5X5XG, if

{jc,y,z} is an (^-subdivision of {JC,Z} then

V(x, y)P+V(y,z)P= V(x, z )P, and
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(ii) there is a member a in Ostf+ such that if {x,y} is in 5X5 and
{P,Q} is in GXG then

\\V(x9y)P-V(x,y)Q\\^a(x,y)\\P-Q\\.

The class CM consists of all functions W from 5X5 to H such that
(i) W is ^-multiplicative in the sense that, for each {JC,Z} in 5X5

and P in G, if {x,y,z} is an (^-subdivision of {x,z} then

W(x,y)W(y,z)P= W(x,z)P, and

(ii) there is a member μ of UM+ such that if {x,y} is in 5X5 and
{P,Q} is in GXG then

In [7], Mac Nerney establishes that there is a reversible function %
from Grf onto CM such that if V is in Osί and IV = %{V) then, for
{jc,y,P} in SXSXG,

M/(jc,y)P = x Π y [ l + ^ ] P and V(x,y)P = £ W- 1]P.

If {V, V̂ } is in %, we show the collection of functions that are
differentially equivalent to V is the same as the collection of functions
that are differentially equivalent to W - 1 (i.e., functions M and N from
5X5 to H are differentially equivalent only in case there is a function k
from 5X5 to the real numbers such that xΣ

yk =0 and
\\M(x,y)P-N(x9y)P\\^k(x,y)\\P\\ for each {jc,y,P} in 5X5XG
[6]). This analysis is used to prove existence theorems for product
integrals of the form

where {jc,y,P} is in 5X5XG and there is a {V,, V2} in CsdXϋd such that
K and M are differentially equivalent to Vx and V2

respectively. Product integrals of this form were introduced in the
linear case by Helton in [2]. In addition, we show that if Vχjc,y)P =

xΣ
y {[1 - M Π 1 + K] - \}P for each {JC,y,P} in SXSXG, then {V, W} is

in %. Finally we show if / is a function from 5 to G that is of bounded
variation on each 0-interval of 5 then W(x,a)f(a) solves (1) and as in
[7, §3] it is shown that the theory of the seemingly more general
equation

u(x) = Pτ + iRL) Γ(Ku+Mu)+ V(JC,C)P2

J c

is subsumed in this treatment.
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In [7, p. 624] Professor Mac Nerney defines sum and product
integrals in this setting. We indicate the definitions: if g is a function
from 5X5 to G, h is a function from SXS to H and {x,y,P} is in

SXSXG, xΣg~ Σ>(ί/-i>'i) and j f [h]P~ { Π > ( W y ) } ^ (func-

tional composite) where {ί/}S is an ̂ -subdivision of {jc,y}.
Let Φ denote a function from Osί such that if V is in ΰsέ then Φ( V)

is the set to which K belongs only in case K is differentially equivalent
to V.

Let φ denote a function from CM such that if W is in CM then
ι^(W) is the set to which K belongs only in case K is differentially
equivalent to W - 1.

REMARK. In [2, p. 299] Professor Helton defines function classes
OA\ OM° and OB\ In the linear case, our Φ(Osd) includes the
common part of OA ° and OB° and ψ(0M) includes the common part of
OM° and OB°.

2. φ [ <? ] = Φ . In this section we prove two theorems that will
be used in the proofs of later theorems. In the first theorem we prove
that if K is in φ(€M) then the sum and product integrals of K exist and
in the second theorem we prove that if {V, W} is in <£, the collection of
functions which are differentially equivalent to V is the same as the
collection of functions which are differentially equivalent to W—l.

THEOREM 2.1. If {V, W} is in % and K is in ψ(W) then
(1) W(x,y)P = xll

y[l+ V]P = xU
y[l + K]P for every {x,y,P} in

SXSXG, and
(2) V(x,y)P = xΣ

y[W-l]P = xΣ
y KP for every {x,y,P} in SXSXG.

Proof (1) Let W be in CM and K in ψ(W), A: be a function from
5X5 to the real numbers such that for {Jc,y,P} in SXSXG

\\K(x9y)P-[W(x,y)-l]P\\^k(x,y)\\P\\

and xΣ
yk = o, and μ be a member of ΰM+ such that for each {x,y} in

5X5 and{F?Q} in GXG

\\[W(x,y)-l]P-[W(x,y)-l]Q\\£[μ(x,y)-l]\\P-Q\\.

Suppose c is a positive number and {x, y,P} is in SXSXG. There is
an (9-subdivision s of {x,y} such that if {ίJS is a refinement of s then
Σϊk(ti-ι,tJ)<cl2μ(x,y)2 and Exp[Σϊk(tj-ί,tj)]<2. By Lemma 1.2 [7,
p. 623]
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K(tM,t,)]P- <Π

" M,*,)] - i l l

(2) For each 0- subdivision {/,}; of {x,y} in SXS

Since xΣ
y/c + xΣ

y (μ - ί)-a(x, y) = 0 the proof is complete.

REMARK. The proof of the following theorem is similar to the
proof of Theorem 3.4 [2, p. 301] of which this theorem is an extension.

THEOREM 2.2. ψ[%] = Φ.

Proof. Part I. Let V be in ϋsΰ and S(V)= W and X be in
Φ(W); there is a μ in CM + such that for each {x,y} in SX5 and {P, Q} in
GXG

\\{W(x,y)-l}P-{W(x,y)-l}Q\\£[μ(x,y)-ll\\P-Q\\.

Also there is a function k from SXS to the real numbers such that

xΣ
yk = 0 and

\\{l + K(x,y)}P- W(x,y)P\\ ^ k(x,y)\\P\\.
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By Corollary 1.1 [7, p. 626]

K(x,y)P-xΣ [W-ί]P K(x,y)]P-W(x,y)P\\;

hence

so K is in Φ(V).

Part 2. Let K be in Φ(V); there is an a inϋ^+ such that if {x,y} is
in 5X5 and {P,Q} is in GXG then

\\V(x,y)P-V(x,y)Q\\^a(x,y)\\P-Q\\

and there is a function h from 5X5 to the real numbers such that
||V(jc,y)P-.K(jt,y)P||:SΛ(jc,y)||P|| and xΣ'h = 0. By Corollary 1.1
[7, p. 626]

[1+ V(x,y)]P-xYΪU + V]P|| + || V(jc,y)P-K(jc,y)P||

^ [ J ϊ ' [1 + «] - α(x, y) - 1 + h(x, y)] | |P|| therefore K is in φ(V(V)).

3. Existence theorems. In this section we will prove that
if each of K and M is in Φ{ΰs4) and [1 -M(x,y)]"'P exists and is
bounded sufficiently there is a member V of ϋsέ such that

is in Φ(V); hence XIP [1 + K][ί -M]'P = xΠ
y [1 + V]P for every

{x,y,P} in SXSXG. This extends existence theorems proven by J. S.
Mac Nerney [7], B. W. Helton [3], J. V. Herod [5] and J. C. Helton [4].

THEOREM 3.0. // each of α, and a2 is in Osί+ and a2(x,y) < 1 for
each {x,y} in SXS, then

(1) a(x,y) = xΣ
y {[1 + α,][l - αJ- - 1} exists for each {x,y}inSXS

and a is in
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(2) μ(x,y) = ,ΓP [1 + α,] [1 - a2]'' exists for each {x,y} in SXS and
μ is in €M + ; and

(3) μ(x,y) = XΠ> {1 + a} for each {x,y} in SXS.

Proof. Let β = [1 + α,] [1 - a2]'1 - 1; if {r,s,t} is an <9-subdivision
of {r,t} in 5X5,

Hence a(x,y) = xΣ
yβ = G.L.B.Σ,β ^ 0 for all ©"-subdivisions t of {x,y}

in 5X5. β is in Φ(α) and from Theorem 2.2 /3 is in ψ(^(α)). Hence
from Theorem 2.1 μ(jc,y) = ,ΓF [1 + /3] = XIP [1 + a] for all {x,y} in
5X5, and the proof is complete.

REMARK. AS noted by Herod [5, p. 188] and proved by Neuberger
[8, p. 101], if T is in H and 0 < t < 1 and || TP - TQ || S 11| P - Q || for all
{P,Q} in GXG then (1 - T ) r is in H, (1 - Γ ) 1 = 1 + Γ(l - Γ)"1, and for
each such {P,Q} ||(1 - Γ Γ ' P - ( 1 - T ) ' Q | | ^ ( 1 - tyι\\P- Q\\. These
and closely related inequalities are used in the sequel, usually without
explicit reference.

THEOREM 3.1. // each of V, and V2 is in Os£ and each of a, and a2

is in UM + such that for {x, y} in SXS and {P, Q} in GXG, a2(x, y) < 1,

- < ? | | and
\\V2(x,y)P-V2(x,y)Q\\^a2(x,y)\\P-Q\\,

then

(1) V{x,y)P = xΣ
y {[\ + V,] [1 - VJ-1 - 1}P exists for each {x,y,P}

in SXSXG and V is in ΰd
(2) W(x,y)P = xYly[l + V , ] [ l - V2]-'P exists for each {x,y,P} in

SXSXG and W is in ΌM and
(3) {V,W} is in %.

Proof. (1) Note that [ 1 + V,] [ 1 - VJ"1 - 1 = [ V, + V2] [ 1 - V2Γ
and if {x,y,P} is in SXSXG and {x,s,t,y} is an ϋ-subdivision of {x,y}
then

\\U - V2(x,y)ΓP -[\ - V2(s,t)ΓP\\

= II V2(x,y)[\-V2(x,y)ΓP-V2(s,t)[\-V2(s,t))->P

± V 2(jc,y)[l-V 2(s,ί)r 'P| |

^a2(x,y)\\[l-V2(x,y)ΓP-[l-V2(s,t)ΓP\\

+ [a2(x,y)- a2(s,t)][ϊ - a2(s,t)]-'\\P\\
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For each {x,y,P} in SXSXG and 0-subdivision {ίJS of {x,y}

^ x , y ) Γ P - Σ f [ V, + V2] x [1 - VJ-'P||

«.(*, y) + «2(x,y)] [1 - α2(jt,y)Γ - Σ,ί«i + «d x

If follows that if s is a refinement of t

Hence, by the completeness of {G, + ,\\ ||} and Theorem 3.0
V(jt, y)P = ,Σ y [ V, + VJ [1 - V2]-ψ exists. For each {jc,y} in 5X5 and
{P,Q} in GXG \\V(x,y)P- V(x,y)Q\\^a(x,y)\\P- Q\\ where α is
defined as in Theorem 3.0. Therefore V is in ϋsi and, with β as in the
proof of Theorem 3.0, considerations of β - a may be seen to show that
[ 1 + V , ] [ l - V J - ' - l is in Φ(V). (2) and (3) follow from (1) and
Theorems 2.1 and 2.2.

THEOREM 3.2. If each of Vt and V2 is in Osέ, and each ofat and a2

is in OsΓ such that for each {x,y} in 5X5 and {P,Q} in GXG
a2(x,y)<l,

| |V 1(jc,y)P-V 1(jc,y)Q||gα 1( Jc,y)| |p-Q||, and

\\V2(x,y)P-V2(x,y)Q\\^a2(x,y)\\P-Ql

then

(1) V(jc,y)P = xΣ
y {[1 - vy-'Π + Vt] - \}P exists for each {x,y,P}

in SXSXG, and V is in OsA\
(2) W(x,y)P = ,IP [1 - VJ-'[1 + V,]P exists for each {x,y,P} in

SXSXG and W is in €M and
(3) {V,W} isinΈ.
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Proof. (1) Note that

[1 - V2]-'[l + Vι]-l=Vί+V2[l- V2]-'[l + Vx] and if {*,y,P}

is in SXSXG and {x, s, t, y} is an €- subdivision of {x, y} then

| | [1- V2(x,y)Γ[l+ V,(x,y)]P-[l- ^ , ί ) Π l + V,(s,t)]P\\

'[l + V,(x, y)]P

Vt(x, y)]P

= || V,(x, y)P - V,(s, t)P + V2(x, y)[l - V2(x,

- V2(s, t)[\ - V2(5, t)Y\\ + Vt(s, t)]P

± V2(x,y)[\ - V2(s,t)Γ[l + V,(ί,ί)]||

^ [α,(jc, y) - α,(j, ί)] | | P | | + «2(x, y)IIΠ -

-U-V2(s, O Π l.+ V,(M)]P||

+ [α2(x, y) - a2(s, ί)][l - α2(s, ί )Γ[ l +

For each {x,y,P} in SXSXG and ^-subdivision {ί,}3 of

|| V,(JC, y)P + V2(JC, y)[l - V2(x, y)]-[l + V,(JC, y)]P

- V2(x,y)Γ[l+ VXx,

, y)]

The rest of the proof is identical to the proof of Theorem 3.1.

THEOREM 3.3. Suppose
(1) each of Vι and V2 is in ΰsi, and each of α, and a2 is in Osi*

such that for each {x,y,P,Q} in SXSXGXG

|| V,(JC, y )P - Vt(x, y)Q || S a}(x, y) || P-Q\\ and

|| V2(x, y)P - V2(JC, y)Q || Si α2(x, y) || P - Q ||

(2) K is in Φ(VΛ) and M is in Φ(V2) and each of h and k is a
function from SXS to the real numbers such that for each {x, y, P} in
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SXSXG, xΣ»k=O, \\K(x,y)P- Vi(x,y)P\\^h(x,y)\\P\\, xΣ>h = 0 and
\\M(x,y)P- V2(x,y)P\\^h(x,y)\\P\\;

(3) there is a number a < 1 such that for each {x,y} in SXS
a2(x,y) + h(x,y)^a; and

(4) /3=[l-α 2 l- I [ l + α,l and γ = [1 - a2- h]~'[l + «, + * ] .

Conclusion:
(1) ||[1 - V2(jc,y)]-'[1 + V,(jt,y)]P-[1 - V2(x,y)Γ[l + ^ ( jcy)]^ | |

=g [1 - α2(JC,y)]-[l + α,(jc,y)] || P - Q || for every {x, y} in SXS and {P, Q}
in GXG.

(2) \\[l-M(x,y)Γ[l + K(x,y))P-[i- K2(x,y)r'[l+ V,(JC,y)]P||
( , y) - β (x, y)] || P \\ for every {x, y} in SXS and P in G.
(3) xW[l-M]-t[l + K]P = xΠ

:'[l-V2r
1[ί+Vι]P for every

{x,y,P} in SXSXG.

Proof. Let {x,y} be in SXS, {P,Q} be in GXG and A =
[1 - V2(x,y)Y][l + V,(jc,y)]. First note that A = 1 + V,(jc,y) +
V2(x,y)A.

Q|| + α2(x,y)| |AP-AQ||;

and assertion (1) follows. Let B = [1 -M(x,y)]~ι[l + K(x,y)];

\\BP-AP\\ =

\\[1 + K(x,y) + M(x,y)B]P -[1+ Vi(x,y)+ V2(x,y)A)P
±V2(x,y)BP\\

^k(x,y)\\P\\ + h(x,y)\\BP\\ + a2(x,y)\\BP - AP\\

£k(x,y)\\P\\ + Λ(x,y)[l + α,(Jt,y)][l- a2(x,y)Γ\\P\\

+ [h(x,y) + a2(x,y)]\\BP-AP\\

which, except for minor algebraic manipulation, establishes (2).

For each ϋ- subdivision t of {x,y} it follows from Lemma 1.2 [7, p.
623] that

||Π [i-M]ι[i + K]P-U [l - vj-ci + v^pll ̂  (Π r - Π is}
II * t II I t t )

By Theorem 3.2 [2, p. 300] and hypothesis (3) of this theorem, there is a
number b such that
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y y

Since X2J k =0 and XZ, h =0 the proof is complete.

THEOREM 3.4. // V is in UM, a is in Osέ+, a(x, y) < 1

| |V(jt,y)P- V(x,y)Q\\^a(x,y)\\P-Q\\andxΣ>a2 = Oforeach {x,y}
in SXS and {P,Q} in GXG, then for each {x,y,P} in SXSXG

(1) j f π - ^ J " lP = χΠy[ί +

(2) ,Πy[i + ̂ ]-fp = , Π y [ i -

(3) ,ΓΊy[l -V2]P = P; and

(4) H ' Π

Indication of proof of (1). For each {x,y,P} in SXSXG

= || V(x,y)[\ - V(x9y)]-ιP-V{x,y)P\\

^ a(x,y)\\V(x,y)[\-V(x,y)]-ιP\\

Similar inequalities can be established for (2), (3) and (4).

4. The integral equations. Let each of R and L denote
a function from SXS into S such that R(x,y) = y and L(jc,y) = x for
each {jc,y} in 5X5.

REMARK. This notation due to W. L. Gibson in [1] provides a more
precise notation for left and right integral process than that used
before. Hence

(RL) Γ (Kf + Mf) becomes Γ (Kf[R] + Mf[L]).
J X J X

As in [7] 2P(c,P) denotes the class of all functions / from S to G
such that f(c) = P and there is a member β of Od* such that
| | /(y)-/(*)N0(jr,y) for each {jc,y} in 5ΛΓ5 (i.e., / is of bounded
variation on each 0-interval of 5).

REMARK. The construction of the proof of the next lemma is
similar to that of Lemma 2.2 [7, p. 623].

LEMMA 1. Suppose
(1) each of Vx and V2 is in OM andax and a2 is in €sί+ such that for

each {x,y} in SXS and {P,Q} in GXG
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\\Vι(x,y)P-Vι(x,y)Q\\^aι(x,y)\\P-Q\\ and

\\V2(x,y)P-V2(x,y)Q\\^a2(x,y)\\P-Q\\;

(2) fis in &(c,P); and
(3) for each {x,y} in SXS

jC(x,y) = jjVίf[R]+V2f[L]}- Vι(x,y)f(y)- V2(x,y)f(x).

Conclusion. For each {x,y} in SXS

Proof. Let β be in Osi+ such that || df || ^ β, {x,y} be in SXS such
that {x,y,c} is an 0-subdivision of {x,c} where c is in S, and {ί,}S be an
0- subdivision of {JC, y}; then

i-.) - Σ'

C, f/-ι) + Σ "

Let

,c)[J?]-α,(x,y)/3(y,c).

Since xΣ
yα2j8( ,c)[L] and xΣ

yatβ( ,c)[R] exist for every {x,y} in
5X5 (as in [7, p. 629]) and each is real valued then by a theorem of
Kolmogoroff's [6, p. 668] aΣ

bh = 0 for all {a,b} in 5XS and the proof is
complete.
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LEMMA 2. Suppose
(1) each of V, and V2 is in ΰd, each of a, and a2 is in ϋsd+ and there

is a number a <\ such that for each {x,y} in SXS and {P, Q} in GXG

I V,(JC,y)P- V,(x,y)Q\\^a,(JC,y)\\P-Q\\ and

\\V2(x,y)P-V2(x,y)Q\\^a2(x,y)\\P-Q\\^a\\P-Q\\;

(2) C is a function from SXS to G such that for each {x,y} in SXS,
||

(3) xΠ
y [1 - V2]-'[l + V,]P exists for every {x,y,P} in SXSXG; and

(4) A(x,y)P = [1 - V2(x,y)]"{[l + V,(x,y)]P + C(x,y)} for each
{x,y,P} in SXSXG.

Conclusion. XW[\- V2]'ι[\ + V,]P = xΠ
y AP for every {x, y, P} in

SXSXG.

Proof. First note from Theorem 3.3 that

^[1 - a2(x,y)Y' || C(x,y)\\ for each {x,y,P} in SXSXG. Let {x,y,P} be
in SXSXG and t be an (9-subdivision of {x, y}. Using Lemma 1.2 [7, p.
623], | | Π ( ^ P - a [ l - V J - 1 [ l + V 1 ] P | | ^ a ϊ l - α J - I { [ l + «ι] + l | C | | } -
Π,[l-α 2]' '[l +α,] ; from Theorem 3.2 [2, p. 300] and our hypothesis
there is a number b such that the difference between these last two
products does not exceed b Σ, || C ||, which completes our proof.

THEOREM 4.1. Suppose
(1) each of V, and V2 is in ϋsi,
(2) K is in Φ(V,) and M is in Φ(V2),
(3) fis a function from S to G that is bounded on each ϋ-interval of

S, and

(4) for each {x,y} in SXS Γ(V,/[J?]+ VJID) exists.
J x

Conclusion. For each {x,y} in SXS

!'(Kf[R] + Mf[L])= ί\vιf[R}+ V2f[L]).
Jx Jx

Proof Let each of h and k be a function from SXS to the real
numbers such that for each {x,y,P} in SXSXG, xΣ

yk=0,
\\K{x,y)P-Vx{x9y)P\\^k{x,y)\\P\l ^yh =0, and

- V2(x,y)P\\ =g Λ(
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Pick {x,y} in SXS and a number b such that if {x,z,y} is an
©'-subdivision of {x,y} then \\f(z) || S b. Let {ίjj be an (^-subdivision of
{x,y}; then

REMARK. The construction of the proof of the next theorem is
similar to that of Theorem 5.1 [2, p. 310].

THEOREM 4.2. Suppose
(1) each of V{ and V2 is in ϋsi and each of ax and a2 is in Osί+ such

that for each {x,y} in SXS and {QUQ2} in GXG

\\Vι(x,y)Qί-Vι(x9y)Q2\\ϊ*aι(x9y)\\Qι-Q2 || and

\\V2(x,y)Qι-V2(x9y)Q2\\£a2(x9y)\\Qι-Q2\\;

(2) K is in Φ(Vj) and M is in Φ(V2) and each of h and k is a
function from SXS to the real numbers such that for each {jc,y,Q} in
SXSXG, xΣ

yfc=0, ||VI(x,y)Q-K(x,y)Q||^fc(jc,y)||Q||, ,ΣyΛ=O,
II V2(x,y)Q-M(x9y)Q\\^h(x,y)\\Q\\ and there is a number a < 1 such
that a2(sj) + h(sj)<a for all {sj} in SXS;

(3) {c,P} is in SXG.

Conclusion. The following statements are equivalent:

(1) fisin&(x,P)andf(x) = P+ Γ(Kf[R] + Mf[L])foreachxin
Jx

S;
(2) f(χ) = xn

c [1 - M]-'[l + K]P for each x in S; and
(3) // for each {a, b, Q} in SXSXG
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b

V(a,b)Q=aΣ

then f(x) = xUc [1 + V]P for each x in S.

Proof. (1—»2): If {x,y,c} is an ϋ-subdivision of {x,c} then by
Theorem 4.1

fix) = P + fC (Kf[R ] + Mf[L ]) = P + IC (V,f[R ] + VJ[L ])
J x J x

= f(y)+ί\vtf[R]+V2f[L]).
J X

Hence if {ίy }S is an ©-subdivision of {x9 c} and / is an integer in [ 1, n ] then

/(fj-i)-/(*/)=['' (VJ[R]+V2f[L]) and

+ C(ί/.,,ί ί)

where C^-πί,) = f' (V,/[J?] +
Jί;-.

ίί) + C(ίM,ί,).

/(ί,.,) = [1 - V2(ίy-,,ί,)]"'{[ 1 + V,(ίj_1,ίί)]/(ί,)

Let A(x,y)Q = [1 - V2(jc,y)]-'{[1 + V,(jc,y)]<? + C(x,y)}. By iteration
j = n, n - 1, n — 2, • , 1, in order, we obtain

Using our Lemmas 1 and 2 and Theorem 3.3

fix) = >l\V- VJ-[1 + V,]P = . Π ' [1

( 2 ^ 1): If {x,c} is in SXS and {ί,}S is an C-subdivision of {x,c} and
/ is an integer in [l,n] then from Theorem 3.3
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where D(i,_,,i,) = ,,_,Π' [1 - V2Γ[l + Vx]

- [ 1 - V2(ti-l,ti)]-'[ί+

but

-•)-/(f«) = V,(ί i_I,ίt)/(ίί)+

ίC{Vp,/[J?]
Jx

+

because

,-., ί,) ii D(t,.lft,)f(tt) ι ι + Σ ;

where d(α,i>) = βΠ* [ l - α J " I [ l + αi]-[l-α ϊ(fl,fr)Γ l[l + α,(fl,ί»)] for
each {a, b}in SXS. The preceding inequality follows from the proof of
Theorem 3.2, and it follows from Theorem 3.0 and [6, p. 668] that

aΣ"d = 0 for each {a, b} in SXS.

Hence f(x) = (VJ[R] + (X/[J?] + Mf[L]).

It follows from Theorems 3.2 and 3.3 that (3) is equivalent to (2) and
the proof is complete.
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REMARK. From the foregoing argument it is evident that each of
the following statements is equivalent to those in the conclusion of the
preceding theorem:

(4) / is in &(c,P) and

f(x) = P+[\vιf[R]+V2f[L])
J X

for each x in 5; and
(5) f(x) = XΠ

C [1 - V2Γ[\ + VX]P for each JC in S.

THEOREM 4.3. Suppose
(1) each of V\ and V2 is in Θs£ and each of α, and a2 is in ΰsέ* such

that for each {x,y} in SXS and {Qi,Q2} in GXG

^ α,(jc,y) || Q, - Q2 | | and

(2) K is in Φ( Vx) and M is in Φ( V2) and each of h and k is a
function from SXS to the real numbers such that for each {x,y,Q} in
SXSXG, xΣ

yk =0,

\\VAx,y)Q-M(x9y)Q\\Sh(x9y)\\Q\\9

and there is a number a < 1 such that a ^ s j ) - ^ k ( s , ί ) = a for all {s,t} in
SXS'

( 3 ) K'(y,x)Q = K(x,y)Q, M'{y,x)Q = M(x,y)Q for each {x,y,Q}
in SXSXG;

(4) {c,P} is in SXG.

Conclusion. The following statements are equivalent:

(1) fisin&(c,P)andf(x) = P+ Γ(Kf[R] + Mf[L]) forx inS;

(2) f(x) = XW [I - KV[l + M']P for each x in S; and
(3) if V(a,b)Q = aΣ

6 {[1 - K']-'[l + M'] - \}Q for each {a, b, Q}
in SXSXG, then

f(x) = xTίc [1 + V]P for each x in S.
The proof of this theorem, except for minor algebraic manipula-

tions, is the same as the proof of the previous theorem.
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5. A seemingly more general integral equation. In
[7, pp. 632-633] Mac Nerney showed that the theory he developed in

solving an integral equation of the form f(x) = P + (R) I Vf could be
J X

used to solve a seemingly more general equation of the form

We repeat that procedure here by using the theory developed in the
preceding section to solve an equation of the form

f(x) = P, + f* (Kf[R ] + Mf[L ]) + V(x, c )P2,

and the solution of this equation in the purely linear case is shown to
include the solutions Helton obtained in Theorems 5.1-5.4 [2, pp.
310-314].

Let {GXG, + , || ||}, UM" and OM" be defined as in [7, p. 632]. Let
Φ" and ψ" be the mappings corresponding to the mappings Φ and
φ. The following theorem is a reinterpretation of Theorem 4.3. We
will not state the corresponding reinterpretation of Theorem 4.2.

THEOREM 5. Assume the hypothesis of Theorem 4.3 with K and M
as defined there. Let P be in GXG, V be in ϋsd and each of K" and M"
be in Φ"{ϋd") such that

K"(x,y)Q={K(y,x)Q{,0} and
M"(x,y)Q={M(y,x)Qι+V(y,x)Q2,O}

for each {JC, y} in SXS and Q in GXG. If u is a function from S to G, the
following are equivalent:

(1) {M(JC),P2} = XΠC [1 - K T ' Π + Af"]P for each x in 5, and
(2) u is in 3F(c,Px) such that for each x in S

(Ku[R] + Mu[L])+ V(x,c)P2.

The next corollary shows that in the purely linear case this theorem
includes the solutions Helton obtained in Theorems 5.1-5.4 [2, pp.
310-314].

Let {JV, +, , I I} be a complete normed ring.

COROLLARY. Suppose
(1) each of K and M is a function from SXS to N that is in the

common part of OA° and OB° [2, p. 299];
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(2) there exists a number a < 1 such that for each {x,y} in SXS

' *Σ I K I = a a n d

M'ix,y) = Miy,x) and K'ix,y) = Kiy,x); and
(3) c is in S and each off and h is a function from S to N such that

fie) = hie) and dh is in OB°.

Conclusions.
(1) The following two statements are equivalent:
(a) df is in OB° and

fix) = hix)+\X(J[R]K+f[L]M) for each x in S; and

(b)

for each x in S.
(2) The following two statements are equivalent:
(a) df is in OB° and

= h(x)+Γ(Kf[R] + Mf[L]) for each x in S; and

(b)

+J"e\π π - j m i + Λ
for each x in S.

(3) The following two statements are equivalent:

(a) df is in OB° and

fix) = hix) + ί* iKf[R]+f[L]M) for each x in S; and

(b) fix) = xΠ
c[l-K'Y'fic)cn

x[\ + M]

+ Γ ,IΓ [1 - KΎι[R](dh),nx [1 + M][R]

for each x in S.

(4) The following two statements are equivalent:
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(a) df is in OB° and

f(x) = h(x)+ !'(f[R]K + Mf[L]) for each x in S; and

(b) /(*) = ,IT [ l+M']/(c) c IF[ l- .Kr l

+ f \lΓ [1 + M'][R](dh),W [1 - KΓ[R]
Jc

for each x in S.

Indication of proof.
(1) For each {x,y} in 5X5 and Q in NXN

= {QrK(y,x),O} and

M"(x,y)[Q] = {<?, M(y,x)- dh(x,y)Q2,0}.

Let P be in NXN such that P, = Λ(c) and P2 = 1;

h(x) + f'{f[R]K+f[L]M)

= P, + Γ(K"f[R] + Aί"/[L]) + ( - dΛ)(c,x) P2,

and for each (?-subdivision {ίy}5 of {x,c}

Π [1 -^(ίi-i.ί/W-'tl + M^ίy^

(2) K"(x,y)[Q] = {K'(x,y)-Qι,O} and

for each {x,y} in 5X5 and Q in NXN.

(3) K"(x,y)[Q] = {K'(x,y) • Qu0} and

M"(x,y) [Q] = {Q, • M(y,x)- dh(x,y) • Q2,0}

for each {x,y} in 5X5 and Q in NXN.
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(4) K"(x,y)[Q] = {QrK(y,x),O} and

M"(x9y)[Q] = {M'(x9y) Qι-dh(x9y) Q2,O}

for each {x, y} in S x 5 and Q in N x N.
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