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RELATIONS BETWEEN PACKING AND COVERING
NUMBERS OF A TREE

A. MEIR AND J. W. MooN

Let P, denote the size of the largest subset of nodes of
a tree T with » nodes such that the distance between any
two nodes in the subset is at least £ + 1; let C, denote the
size of the smallest subset of nodes of 7T such that every
node of 7T is at distance at most ¥ from some node in the
subset. We determine various relations involving P, and C;;
in particular, we show that P, + kC,<n if n =k + 1 and that
P 2k — Ck.

1. Introduction. The distance between nodes x and y in a
graph G is the number d(x, y) of edges in any shortest path in G
that joins # and y. (For definitions not given here see [1] or [5].)
A subset & of nodes of G is a k-packing if d(x, y) > k for all pairs
of distinct nodes « and y of &#; the k-packing number of G is the
number P, = P,(G) of nodes in any largest k-packing in G. A subset
& of nodes of G is a k-covering if for every node & in G there is
at least one node y in & such that d(z, y) < k; the k-covering number
of G is the number C, = C(G) of nodes in any smallest k-covering
of G.

Our object here is to establish various relations between P, (T)
and C(T) when T is a tree with n nodes. We consider the case
E=1in §2 and determine those values of @ and B for which there
exists a tree T such that P(T) = a and C(T) = 8. We derive upper
bounds for P,(T) and C,(T) in §3. In §4 we show that P,(T) +
kC(T) = n for any tree T with n nodes when n =k + 1 and we show
that this inequality is, in a sense, best possible. Finally, in §5 we
show that P,, = C,.

The quantities P(G) and C,(G) have been considered before under
different names. For example, P,(G) and C,(G) are called the inde-
pendence number and the domination number of G in [5; Chap. 13];
and they are called the coefficients of internal and external stability
in [1; Chap. 4]. Some inequalities for P(G) and C,(G) are given in
[2; Chaps. 13 and 14] but some of these are unnecessarily weak when
G is a tree.

2. Relations between P, and C,. In what follows T will always
denote an arbitrary tree with n nodes. For convenience, we shall
frequently write P and C for P,(T) and C/(T).
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THEOREM 1. If n = 2, then P+ C < m.

Proof. If & denotes a l-packing of P nodes in T then each
node of & must be joined to at least one node not in & if n = 2.
Thus the n — P nodes not in & constitute a 1-covering of 7. Hence,
C £ n — P, as required.

COROLLARY 1. Ifn=2,then 1=C=(12m=P=n-—1.

Proof. It is obvious that C=1 and P<n—1 when n=2. The
remaining inequalities follow from Theorem 1 and the easily es-
tablished fact that C < P (see [5; p. 211]); they may also be proved
directly by observing that the sets of nodes of 7 whose distances from
a given node x are odd or even, respectively, are both 1-packings and
l-coverings. We remark that the inequalities C(G) £ (1/2)n < P(G)
hold for any nontrivial connected bipartite graph G with » nodes.

THEOREM 2. If n =1, then P+ 2C = n + 1.

Proof. Let & denote a 1l-covering of C nodes of T and let R
denote the subgraph determined by the » — C nodes not in &. If
R has j components and e edges then ¢ = n — C — j (see [5; p. 68])
and it is easy to see that P = j. Since each node of R is joined to
at least one node of & and since T has n — 1 edges altogether it
follows that

e=n—-—1)—(n—-C)=C—-1.
Hence,
Pzj=n—-C—-—e=2n—-C)—(C—-1)=n—-20+1,

as required. (It will follow from Theorem 3 that the inequalities
1/2(n +1 — P) < C < n — P, implied by Theorems 1 and 2 are, in a
sense, best possible.)

The next result is obtained by combining the inequalities P =
1/2)n and P+ 2C=n + 1.

COROLLARY 2. Ifn=1and 0 <N <2, then

P+ xcg—;—(1+%x)n+%x;

wn particular,
1

P+Cz{%—n+3},
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where {x} denotes the least integer mot less than x.

It is not difficult to construct trees for which equality holds in

the last inequality. We remark that it follows from results in [3]

and [4] that the average value of P+ C over the n"* trees with n

labelled nodes is approximately .927xn for large values of =.

THEOREM 3. If @ and B are positive integers such that

(1) az—:lz—n,
(2) a+B=mn,
and

(3) a+28=2n+1,

then there exists a tree T with n modes such that P(T) = a and
(T =B.

Proof. Let y=n—a — B. It follows from (1) that g+ v =
(1/2)n and this implies that n + 1 — 28 — 2v = 1; furthermore, it
follows from (8) that v< 8 —1or 8 —1—v=0. Let T denote the
tree constructed as follows: n — 1 nodes are split into v sets of four
nodes, 8 — 1 — v sets of two nodes, and n + 1 — 2v — 28 sets con-
sisting of a single node; a path is formed on the nodes in each set
and the node at one end of each of these paths is joined to an nth
node. (The tree arising when » = 18, @ = 7, and @ = 4 is illustrated
in Figure 1.) It is not difficult to verify that this construction

FIGURE 1
is indeed possible and that
PMYy=2v+(R—1—-v)+(n+1—-20—-28)=n—B—v=a
and

CTMN=1+v+PB—-1—-y)=24,
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as required.

3. Upper bounds for P, and C,. In what follows k£ and » will
denote arbitrary positive integers.

THEOREM 4. If m = [1/2(k + 3)] then

(4) Py, = [2n/(k + 2)]
iof k is even, and

(5) P, = [2n — 2)/(k + 1)]
if k is odd.

Proof. If x is any node in any k-packing & with P, nodes of
T, let N(x) = {u:we T and d(x, u) < j} where 7 = [(1/2)k]. Since the
tree T is connected and has at least [1/2(k + 8)] = j + 1 nodes, it
follows that |[N(x)|=j + 1 for all xe€ & Furthermore, the sets
{N(z): x € &} are disjoint; for if e N(x) N N(y) where xz # y, then
d(x, y) = d(x, u) + d(u, y) £ 2j <k and this would contradict the
definition of <. Hence,

nz 3 |N@)| =z Pe(f+ 1)

zeP

and this implies inequality (4).

If £ =27 +1 we may further assert that no edge joins a node
u of any set N(x) to a node v of any other set N(y) where x # y;
for if there were such an edge, then d(z, y) = d(x, u) + d(u, v) +
d(v, ¥) £ 27 + 1 = k and this would again contradict the definition of
P, If P,=1 inequality (5) certainly holds. If P, = 2 there must
exist at least one node of T that is not in any set N(x), where x¢
, for T would not be connected otherwise. Hence,

ngl+ezglN(x)lzl+Pk-(j+1)

when k£ = 25 + 1, and this implies inequality (5).

If & is any maximal k-packing of P, nodes in a tree T, then
G is also a k-covering of T; for if there were a node x in T such
that d(x, y) > k for each node y in & then & U {«x} would be a larger
k-packing in T which is impossible. This implies that C, < P, for
any tree T (this result is given in [5; p. 211] when k£ =1, as was
mentioned earlier). Hence, Theorem 4 provides an upper bound for
C, also; a better bound is given in the following result.

THEOREM 5. If n=k + 1, then
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(6) Cr = [n/(k + 1] .

Proof. Suppose one of the longest paths in 7T joins nodes x and
y. Let

D, ={u:ueT and d(x, w) =1 (mod (k + 1))}

for 0 ¢ <k. We may assume D, # & for each ¢, for otherwise
the node « itself would constitute a k-covering and inequality (6)
would certainly hold. We now show that each set D, is a k-covering
of T.

Let z denote any node of 7 and suppose d(x,2)=1. If [ =1
then ¢ +m(k+ 1) <1<+ (m +1)(k +1) for some nonnegative integer
m. Let u denote the unique node on the path joining x and z such
that d(z, u) = © + m(k + 1); then we D, and d(u, z) < k as required.
If I < 4 let v denote the unique node on the path joining 2 and y
such that d(x, ) = ¢; then v€ D, and

d(z, v) = d(z, y) — d(v, ) = d(x, y) — d(v, y) = d(x,v) =1 =k,

as required.

The k-coverings {D,:0 < 4 < k} are disjoint and together they
exhaust the nodes of 7T; hence, at least one of them has at most
[#/(k + 1)] nodes. This suffices to complete the proof of the theorem.

It is not difficult to construct trees for which equality holds in
(4), (5), and (6) for all admissible values of k& and .

4. A relation between P, and C,.

THEOREM 6. If n =k + 1, then
(7) P,+kC,En.

Proof. If k=1 this is the same as Theorem 1, so we shall
assume henceforth that k& = 2.

Let & denote a k-packing of P, nodes in 7. If xe .7 let E(x) =
{fu:ue T and d(u, ) = 1}; these sets are nonempty and disjoint when
k = 2 and no edge joins two nodes of the same set E(x). Select one
node u, from each set E(x) and let R denote the graph obtained from
T as follows: remove each node = of & and all edges incident with
x, and insert new edges joining each node wu, to each of the other
nodes of E(x). It is not difficult to see that R is a tree with n — P,
nodes.

If r and s are nodes in E(x) and E(y), respectively, where z ==
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Y, then d(r,s) =k — 1; for, if d(r,s) <k — 2 then d(x, ¥) < k and
this would contradict the definition of &2 This implies the following
observation:

(*) If a path in R of length at most ¥ — 1 contains a new edge
of the type ru, where »¢€ E(x), then the path does not contain any
nodes of any other set E(y) where y + x.

Let & denote any smallest (k¥ — 1)-covering of R. We shall
show that the nodes of & constitute a k-covering of T. Let z denote
any node of 7. If z2¢ & then ze R and there exists a node ve &
such that d(v,2) <k —1 in R. If there are no new edges in the
path »(v, z) from v to z in R then all the edges of »(v, 2) are in T
and d(v,2) <k — 1 in T also. If there is just one new edge in the
path p(v, z) of the type ru, where re E(x), then d(v,2) <k in T
since the edge ru, can be replaced by the two edges rx and zu, in
T. If there is more than one new edge in the path (v, z) then
these new edges must all join pairs of nodes from the same set E(x),
in view of observation (*). But all new edges of this type are incident
with the node u,. Hence, there can be only two such edges in p(v, 2),
they must occur consecutively, and they must be of the form ru,
and u,s. But then d(v,2) <k — 1 in T also since the edges ru, and
u,8 in p(v, 2) can be replaced by the edges rx and xs in T.

If ze.&” then then there exist nodes re E(z) and ve & such
that d(v, r) <k — 1 in R and the path p(v, r) from v to » does not
pass through any other nodes of E(z). This path cannot contain any
new edges by observation (*). Hence, d(v,2) =d(v,r)+ 1=k in T,
as required.

If n=Fk +1 then C, = P, =1 and inequality (7) certainly holds.
If n=k+ 2, it follows from Theorem 4 that » — P, = k. Hence,
when n = k + 2, we may apply Theorem 5 to the tree R and conclude
that |&°| < (n — P,)/k. Since C, < |Z’|, this implies that P, + kC, <
n, as required.

We now show that inequality (7) is best possible when n = m(k + 1)
for m =1,2, --.. Let H denote the tree with » nodes constructed
as follows: the n nodes are split into m sets of k¥ + 1 nodes each; a
path of length %k is formed on the nodes in each set; and, finally,
the nodes at one end of these paths are joined so as to form a path
of length m — 1. (The tree H arising when » =20 and k =3 is
illustrated in Figure 2.) It is not difficult to verify that P, + kC, =
m + km = n for the tree H. We leave it as an exercise for the
reader to show that there exists a tree with n nodes for which C, =
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k+1=4

m=5
FIGURE 2

[(n — P,)/k] for arbitrary values of » and k such that n» = %k + 1.

No inequality of the type
Q+eP, +k—e)Ci=n,

where ¢ is any positive constant, can be valid for all trees with
sufficiently many nodes. To show this let J denote the tree with n =
m(k + 1) + 1 nodes formed by joining a new node to one of the nodes
of H in the way illustrated in Figure 3 when n =21 and k= 3. It
is easy to see that

FIGURE 3
A+eP,+Ek—eC=Q+e)m+1)+E—m=mn-+¢

for the tree T. It might be of some interest to determine best pos-
sible upper bounds in terms of n for IP, + (k + 1 — I)C, when 1 > 1,

It might also be of some interest to determine best possible upper
bounds in term of n for P, + C,. It follows from Theorems 4 and
6 that P, + C, < 3n/(k + 2) when k is even, but this is probably not
best possible in general.

There does not seem to be any natural nontrivial analogue of
Theorem 2 when &k = 2, at least one that does not involve additional
parameters or assumptions, since it is easy to construct trees for
which P, = C, =1 when k = 2.

5. The equality of P,, and C,.
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THEOREM 7. If k=1, then P, = C,.

Proof. Let & denote a 2k-packing consisting of P,, nodes of
the tree T and let & denote a k-covering consisting of C, nodes of
T. It is easy to see that for each node x in & the set N(x) = {u: ue
T and d(x, w) < k} contains at most one node y in & Since every
node y in & belongs to at least one set N(x) it follows that P, <
C,. It remains to show that P,, = C,.

Let {x, x,, ---, 2.} denote the nodes of any longest path in the
tree T. If m < 2k, then P,, = C, = 1; so we may suppose that m =
2k + 1. Let T’ denote the smallest subtree of T containing all nodes
z of T such that d(x,, 2) > k; that is, T" is the subtree determined
by all nodes v of T such that either d(x,, v) > k or there exists some
node, say z,, such that d(x,, z,) > k and the unique path joing z, and
2, in T contains v. The subtree 7" is nonempty since d(x,, x,) > k.

Let 2’ denote a largest 2k-packing consisting of P;, nodes of
T" and let &’ denote a smallest k-covering consisting of C} nodes of
T'. It is easy to see that & = &’ U {x,} is a k-covering of T con-
sequently,

(8) C,<Ci+1.

Suppose there exists a node ¥ in &' such that d(z,, ¥) < k. Let
B, denote the subtree of 7" determined by all nodes s of T' such
that the unique path from s to x, contains y; in particular, the node
z,, defined earlier, is in B,. We assert that y is the only node of
' in B,. For, if there were a second such node, say w, then d(w,
y) = 2k + 1; this would imply that

>2k+14+m—k—k=m+1,

contradicting the assumption that {x, x,, ---, z,} was a longest path
in T.

The foregoing observations imply that we may replace each node
y in P’ for which d(x,, ¥) < k by a node z, in T for which d(x,,
z,) >k and still have a 2k-packing. We may thus suppose, without
loss of generality, that d(x,, ¥) > k for every node y in Z?’; this
implies that d(x, y) > 2k for every node y in &’. Thus the set
FP' U {x,} is a 2k-packing of T and, consequently,

(9) P,=P,+1.

The tree T’ has fewer nodes than 7 so we may assume, as our
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induction hypothesis, that
(10) P, = C;.

It now follows, by inequalities (8), (9), and (10) that P,, = C,, as
required, and this completes the proof of the theorem.

Theorems 6 and 7 imply the following result.

COROLLARY 3. If n =k + 1, then
P, + kPy = n;
of n> 2k + 1, then
C, + 2kC,, < n .

We remark that in general these packing and covering sets are
not identical; in particular, for arbitrary k& it is easy to construct a
tree none of whose largest 2k-packings are smallest k-coverings.
Furthermore, trees are not the only graphs G with the property
that P,,(G) = C(G) for all k. For example, any graph with a node
joined to all the remaining nodes has this property. It seems difficult
to characterize such graphs in general.
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