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A RADON NIKODYM THEOREM FOR WEIGHTS
ON VON NEUMANN ALGEBRAS

A. VAN DEALE

Let φ and f be normal positive linear functional on a von
Neumann algebra M such that f g φ. Sakai proved the ex-
istence of a unique element he M with 0 ^ / t ^ l such that
f(x) = iφ(hx + xh) for any x e M. A generalization of this
theorem is obtained for weights on von Neumann algebras. Let
φ be a faithful normal semi-finite weight and ψ any weight on
Mmajorized by φ. Then there is a unique element he M with
0 ̂  h ̂  1 such that f(x) = iφ{hx + xh) holds for x in a <τ-weakly
dense *-subalgebra of M. A stronger version is obtained when
ψ is assumed to be a normal positive linear functional. More-
over counterexamples are given to show that in general one
can not expect this relation to hold for every xe M+.

1* Introduction* Let M be a von Neumann algebra with a

faithful normal state φ. Sakai proved that for any positive linear
functional ψ on M such that ψ <̂  φ there exists a unique element
heM such that ψ(x) = \φ{hx + xh) for all xeM [6]. In [10] we
established the relationship of this Radon Nikodym theorem with the
Tomita-Takesaki theory for von Neumann algebras with a separating
and cyclic vector. In fact in this paper we showed that from a slight
generalization of SakaΓs theorem, it follows that the resolvent (Δ — a))'1

of the modular operator A associated with a separating and cyclic
vector ξ0 for M, maps the set M'ζ0 into Mζ0 for any ω eC with | co \ = 1
and ω Φ 1.

Combes has shown [2] that with every faithful normal semi-finite
weight φ on a von Neumann algebra M is canonically associated a
left Hubert algebra. In this paper we use some of the techniques
introduced in [9, 10] and the Tomita-Takesaki theory to obtain a
generalization of Sakai's Radon Nikodym theorem for weights. If ψ
is any weight majorized by φ we construct a Radon Nikodym deriva-
tive heM with 0 ^ h 5g 1. If ^ 9 denotes the subalgebra spanned
by the set {x e M+, φ(x) <oo} we prove that xh + hxe ^ ψ for any x
in a certain σ-weakly dense *-subalgebra of M and that ψ(x) =
\φ{hx + xh). Moreover we give a counterexample to show that in
general we can not expect that xh Λ- hxe^^φ for any xe^Ψ so that
φ(hx + xh) would not even be defined.

If ψ would be invariant with respect to the modular automor-
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phism group associated with φ we would obtain that also the Radon
Nikodym derivative h would be invariant so that φ{hx) = φ{xh) for
any xe^€φ and our result would follow from the one of Pedersen
and Takesaki [5]. However in this case they obtain much stronger
results: they show that the equality ψ{x) = φ(hx) holds for all x e M+,
in some sense, and that a similar result is true even when ψ is not
majorized by φ. So the theorem of Pedersen and Takesaki compares
two normal semi-finite weights on the whole of M+ under the assump-
tion that one is invariant with respect to the modular automorphisms
of the other. Our theorem requires no such condition but assumes
that Ψ <̂  φ and relates the weights only on a dense subalgebra.

For the theory of von Neumann algebras we refer to [4, 6], for
the one of left Hubert algebras to [7, 9], for weights to [1, 8], and
for the connection between the last two to [2, 8]. This work was
initiated while I was a guest of Prof. J. Ringrose at the University
of Newcastle upon Tyne. It was completed during my stay at the
University of Pennsylvania and I would like to express my thanks
to Prof. R. V. Kadison for his kind hospitality. I am also indebted
to Dr. A. Connes who provided the essential idea (Lemma 2.6) for
the counterexample.

2* Some operator equations* Let Δ be a nonsingular positive
self-adjoint operator on a Hubert space Sίf. In this section we will
obtain some operator equations very similar and closely related to
those obtained in [9, 10]. There we expressed Δυ\Δ - a))'1 for ω e
C\[0, co) as an integral

Δυ\Δ - ω)"1 = V"* f(t)4*'dt

where / is a nice L^function on J?, the integral being defined in the
strong operator topology. In some sense we also treated the ana-
logue of this relation for the operators σt: x e ^d(β^) —> ΔuxΔ~u instead
of Δu.

In this paper we are concerned with the operator (Δ — 1)(Δ + I)"1.
We also express it in terms of the unitaries Δu. The main difference,
which turns out to imply the main difficulties in this paper, is that
the corresponding function on R is not anymore an LΓf unction. We
have to use principle values. We show at the end of this section
that in this case the analogue with the σt in general does not define
a bounded operator on ^(J^) anymore. And it is precisely this
trouble that causes the Radon Nikodym theorem only to hold on a
dense subset.
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In this section, a part from Δ, we also fix any element x0 e
with 0 ^ x0 ^ 1 and we define h e S3(<%*) by

S +oo

—

-co e

K t + β-"

in the strong operator topology. It is clear that h is positive. In
fact, as

2 -dt = l

we get also 0 <̂  fo <̂  1. For more details we refer to [9, 10]. The
last equality can e.g. be obtained by the analytic function method of
[9.10] or by replacing Δ — 1 and r = 1 in [9, Lemma 4.3]

NOTATIONS 2.1. By p we denote the real function on R\{0} with
values

/*(«) =

The function is odd and has a singularity at t = 0. For any bounded
continuous function f: R—+C we will write

P\+~p(t)f(t)dt = q
J —oo

where q&C when the limit of

Γ P(t)f(P)dt+ Γ P(t)f(t)dt = ί°°|θ(ί)(/(t) -f(-t))dt
J-oo Je Jε

exists when ε —• 0 and is equal to q. In other words P stands for
the principle value of the integral. Similar notations will be used
for functions / of R to £ίf or ^(^ίf) in which case the topology on
3ί? or S5(JT) will be specified.

LEMMA 2.2. If ζ e ^ (J~ 1 / 2 ) and η e ^r(ΔV2) we have

oΔ-*% η)dt = i(

Proof. As ίe^(z/~1/2) the function aeC—*Δaζ is analytic inside
and bounded and continuous on the strip — J <; Reα <; 0 [5, Lemma
3.2]. Similarly, as ηe&(ΔV2) the function aeC—+Δ"η is analytic
inside and bounded and continuous on the strip 0 ^ Re a ^ J. The
norm topology on £έf is considered. A little thought shows that the
function
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zeC > {xQA-izA~v% A~r*Aί/2η)

is defined, bounded and continuous on the strip 0 <; Im z ^ J and also
analytic inside. On the other hand, the function z e C-+2(eπz + e"**)"1

is also analytic and continuous on this strip, except at the point
z = i/2 where there is a pole with residu (πΐ)~K Moreover this
function tends to zero when z —> oo on this strip. Therefore by
integrating along the boundary we obtain

J —o

= p \+ } ~ 2 i l A x " J ^ ' A~uv)dt + fo& v)
J o β — β

and the lemma follows from the definitions of h and of p.

LEMMA 2.3.

in the strong operator topology.

Proof. Take first f e ^ ( J 1 / 2 ) and apply the same method as in
Lemma 2.2 with the function

zeC
eπz + e~πz
eπz + e'

We obtain

r+°° 2

in the strong operator topology.
From [9, 10] we know that

9 ΛV2 C+oo

+ 1 J-oo e

πt +*t I ^ - J r t

in the strong operator topology.
So that

A +

or

A +



A RADON NIKODYM THEOREM 531

Eeplacing Δ by Δ'1 we obtain for any ηe

liFTiv = p\Zp(t)J~itvdt

ρ(t)Δu7]dt
J —oo

by a change of variable. Again

Δ'1 - 1 ==: _ Δ - 1
J"1 + 1 J + 1

so that

This now holds for any η e &(Δ1/2) and η e &(Δ~υι). Therefore by
linearity it holds for η e &{A1/2) + ^f{A~V2).

Finally the formula

1 - 1 i ^ _ 1 , 1
1 + Δ1'2 1 + Δin 1 + Δin 1 + Δ'1'2

shows that Jg^ = &(Δin) + &(Δ~112) and the proof is complete.

LEMMA 2.4. // ί e ^(log Δ) then

isis. // moreover ξ e &(A~1/2) then hJ~1/2ξ e &(Δυ2) and

Proof. Assume first that ξ e ^(log J). Then

S +oo

ρ(t)ΔuxQξdt exists. As f e
(l ) we have that

is continuous at the point t = 0 in the norm topology. So it is con-
tinuous everywhere and as it tends fast to zero at infinity it is
integrable. The combination of the two results yields the first state-
ment of the lemma. To prove the second statement, assume that
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also ξ e &{A~Vi) and take any η e ^(// 1 / a). Then we have

J-% η)dt

) - i(χoζ, η)

using Lemma 2.2. This shows, as Δ1'2 is self-adjoint, that hΔ~ιnζ e
and

ΔmhΔ~mξ - xoξ = - i

We will now proceed to show that in general one can not expect
Lemma 2.4 to hold for any ζ e S$f. This result will provide a counter-
example in § 4.

LEMMA 2.5. Suppose that for any ζeβ^ there is a vector yξ

S +oo

pify^Xod'^ξdt in the weak topology. Then y is
— 00

a bounded linear operator on

Proof. For any ξ, rj e Sίf we have

(yξ, V) = P p p(tWxo4-% η)dt
J o

p{t){ξ, Δ^Δ-^dt
o

= (£, VV)

where we use the fact that p is real and x0 self adjoint. Therefore
y is symmetric and has a closed extension which is y again because
it is everywhere defined. By the closed graph theorem y is continuous.

LEMMA 2.6. There exists a Hilbert space 3ίf, a positive non-
singular self-adjoint operator A in έ%f and a positive operator x0 e

such that the map

ξ e &r(log A) > P Γ°

is not continuous.

Proof. Take Sίf = L2{R) and let A be defined by

(J"£)(β) = £(* - ί) for ξeL2(R).

Let xQ be defined by (xoξ)(s) = g(s)ξ(s) where
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g(s) = 1 when s < 0

and

g(s) — 0 when s ^ 0 .

For any ξ e L2(R) we have

(Δ*%Δ-Uξ)(8) = (x0A~uξ)(s - t)

= g{s - tχj-"£)(β - t)

- flf(β - *)£(*)

For any η e L2(R) and ξ e &(log A) we have

ξ, η)dt

It follows from Lemma 2.4 that this integral always exists for any
VeL2(R).

If we multiply Ύ] with a suitable function of modulus one, the
integrand would become positive and the integral would still exist.
Therefore the integral converges absolutely and we may apply Fubini's
theorem. Then

^, η)dt

(g(s - ί) - Φ + t))ρ(t)dt}ds

where

ui Jiβi e * — e πt

As p(t) behaves like t i for small t, it is not integrable and
therefore ψ is not bounded. It is easily seen that in this case the
integral cannot be continuous on ξ e ϋ^(log A).

Consider the functions

ξn(t) = α/Texp -{ntf .

Clearly ξn is analytic for Δu and therefore belongs to ϋ^(log Δ). More-

S +oo

ψ{s)ξn(s)v(s)ds clearly tends
- o o
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to oo because ψ is not bounded at the origin when ΎJ is e.g. not zero
in a neighborhood of s = 0.

3* The main theorem* Let φ be a faithful normal weight on
a von Neumann algebra M. The set ^Ϋlp = {xeM\ φ(x*x) < oo} is a
σ-weakly dense left ideal of M. The subalgebra ^fφ = *ΛΊfΛ~ψ is
spanned by its positive elements ^ ^ + and ^/^ — {xeM+ \ φ{x) < oo}.
Therefore φ can be uniquely extended to a linear functional on ^ 9 ,
still denoted by φ. The set ^ is a pre-Hilbertspace with the scalar
product (x, y) = φ(y*x). The completion is denoted by 3t?Ψ. The map
x e <yKψ ~>yxe ^VΨ is continuous with respect to the inner product and
therefore can be extended to a bounded operator πψ(y) on £έfψ. It
follows that πφ is a ""-representation, and from the normality of φ
that πφ is normal. In fact πψ is an isomorphism. The subalgebra
^VΨ Π ^Vφ* turns out to be an achieved left Hubert algebra with left
von Neumann algebra πψ(M).

For more detailed information and proofs we refer to the works
of Combes [1, 2] and Takesaki [8]. The results in this section are
heavily based on the relationship between weights and left Hubert
algebras as described above.

THEOREM 3.1. Let φ be a faithful normal semifinite weight on
a von Neumann algebra M. There exists a σ-weakly dense *-s^δ-
algebra Mo of M such that for any weight ψ on M majorized by φ
there is an element heM with 0 <s h <i 1 such that xh + hxe^ψ for
any xe Mo and ψ(x) — \ψ(xh + hx).

Proof. Without loss of generality we may assume that M is the
left von Neumann algebra Sf{J&) of an achieved left Hubert algebra

and that φ is the canonical weight on Jϊf(jzf). Then for any ζf

e s/ we have π{ffrj) e ^fφ and

φ(π(ζ*y)) = {η, ξ) .

Given any other weight ψ such that ψ(x) ^ <p(x) for any x e M+,
there exists an element x\ e M' such that 0 <; x[ ^ 1 and

?>(*(£*£)) = (sfc f)
for any ζeSsf. [1].

Define

x0 = Jx[J

and

h - Γ°° ? 7Δ
itxJ-itdt
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where J and Δ are the cannonical involution and the modular operator
of Sf. Then x0 and h are in M+. For any ξ e J ^ Π ̂ (log Δ) Q

vr) n ^( log Δ) we have Jξ e &{Δ~m) Π ̂ ( log Δ) as J J J = Δ~ι and
= — log Δ. Therefore we can apply Lemma 2.4 to obtain

that

hΔ~mJξ G

and that

= JΔ1/2hΔ~1/2Jξ = Jxo/f - ί P Γ p{t)JΔitx,Δ-itJζdt.
J —oo

So

(ShSί, ί) = (Jxjξ, ξ) - ίP J ^ pitXJΔ^Δ-ttJξ, ξ)dt.

As α o = Jx[J and α J is positive it follows that

Re (ShSf, ί) - (J^0Jί, ί) = (xfo f) .

Next we show that feSf e Ĵ Γ Therefore take ^ € Stf" and consider

= hπ\η)Sζ =

Knowing that also AS£ 6 ^ ( S ) we obtain hSξ e Stf and π(hSζ) =
Then

So ψ
To complete the proof, observe that for any ζ e J^J, the Tomita

algebra associated with J ^ we have f e ^( log Δ). Moreover τr(ĵ <)
as well as π(j^J)2 generate ^{Saf). Therefore with Mo = π(jzζf we
obtain xh + hx e ^ ψ for x e ikΓ0 and α/r(cc) = \φ{hx + ίc/ι).

In § 4 we will obtain a counterexample showing that in general
one cannot expect that xh + hxe ^ φ for any x e ^ ψ , so that certainly
ψ(x) = \φ{hx + αΛ) will not make sense for some # e ilί+.

Under some conditions we can show that h is unique. Suppose
e.g. that hteM with ht = /̂ * and satisiSes the properties W C J /
and (̂cc) = \φ{hγx + x^) for all x e π(J^) 2 . Then we can show that
ht — h. Indeed for any ξ e J < we have

= Re(ShSf, ί ) .
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When we put a = J(h — h^J then

(aJv% Δ~υ2ξ) = -{aΔ-y% Δ1/2ζ)

and by linearity

% Δυ2ξ)

for any ξ, η e Ĵ C Clearly z/"1/2J^ = J^and therefore (Δ1/2 + z/~1/2)j< =
(1 + Δ)jzζ is dense [7]. As in [9, Lemma 3.3] it follows that the
above relation then holds for any f, η e &{Aι/2) n &(Δ~1/2) and in a
similar way that a = 0.

In the case where ψ is a normal positive linear functional one
can obtain a better result, and it is not necessary to use the results
of §2.

THEOREM 3.2. Let φ be a faithful normal semi-finite weight on
a von Neumann algebra M. For every normal positive linear func-
tional f on M majorized by φ there is a unique element h e ^ ψ with
0 ^ h ^ 1 such that

fix) = \ψ{hx + xh) for all x e ^Vψ n

Proof. Again we may assume that M is the left von Neumann
algebra of an achieved left Hubert algebra J ^ and that φ is the
canonical weight on M. As / is now continuous there is a vector
a 6 Sίf and an operator x'Q e M' with 0 S xΌ ^ 1 such that f(x) =
(xa, a) for all x e M and x[υ2η = π{η)a for all η e j*Γ [1, 2]. So α: G jy"
and 7r'(α) = 41/2 Then /S = x[ι/2a e j#" and Fβ = β and ττ'(/3) = a?;.

Put ξ0 = 2/(J + l)/5, then ξ o e j ^ [7, 9]. From the fact that
Fβ = β and JΔJ = zΓ1 it follows that Sf0 = f0-

For any ξ e J ^ we have

= (xr

= {ξ,t

= i(ί,

'ξ, α)

Γo)-f

+ i(f,

As 7r(jy) = .^ς Π -^ς* we get for any a; e ̂ ΓΨ Π - ^ * that f(x) =
+ feα?) where Λ, = τr(f0).

To continue the proof of our theorem we show that h e ^fφ and
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that 0 ^ h ^ 1.

As h — π(ξ0) and ζ0 e J*f with Sξ0 — £ 0 it is clear that h e Λ^ψ Π

and h = fc*.

Now

f0 = JΔυi— — β

_πt Δi%Jβdt [9, 10] .

It follows that

λ =

o β^ + β - "

As 0 ^ ίcj ^ 1 it again follows that 0 ^ λ ^ 1. Moreover

φ(h) = φ(Jχ'0J) = (Ja, Ja) < oo

by the invariance and the normali ty of φ. Therefore he,

To finish the proof we must show t h a t h is unique. So suppose

ΛΊ e ^ ^ , hy = Λf and

+ x/̂ x) for any x e ^Γφ Π

Let h2 = hy — h and ^ e j / such that 7^) = h2. Then (̂/̂ 2α; + ^ 2 ) = 0
for any x e ^v; Π ^/ς* and therefore (f, ξj + (f 1? Si) = 0 for any ξ e J^r.
As ξ1 = Sξ, this would imply -(£, fx) = (Sflf Si) = 0 for all ξ e ^f and
Sfi e &(F) with FSfx = -&. This would imply f, = 0 as J = FS is
positive.

In the next section we will give an example to show that also
in this case one can not hope that in general f(x) = ^<P(hx + xh) for
all xeM.

4* Two counterexamples* In this section we will obtain counter-
examples to show that the Theorem 3.1 and 3.2 are the best possible
in some sense. In connection with Theorem 3.1 we will construct
two faithful normal semifinite weights ψ and φ on a von Neumann
algebra M with ψ ^ φ and an element x € ̂ ^ such that hx + xh $ ^fφ

where h is the Radon Nikodym derivative. This will show that in
general one can not expect Theorem 3.1 to hold for every xe^fφ.
In the case of Theorem 3.2 we will show that there is a faithful
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normal semi-finite weight φ on a von Neumann algebra M and an
xeM such that xh + hxί^φ for any he^φ. Therefore Theorem
3.2 will not hold for all xeM in general.

Let 3ίΓ be a Hubert space, and k a positive nonsingular self
adjoint operator in J3t~. Let xQ be any positive operator in
As before define

= r+co

J-oo ^

The following lemma is closely related to Lemma 2.5.

LEMMA 4.1. With the above notations, suppose that for any ξe
2) we have hk~1/2ξ e gί(kυ2) and for any rj e &(km) we have

hkυ2η e 3f{kry2) then ξ e &(\og k) -> p[+°° piήk^xjc^ζdt is continuous.
J-oo

Proof. Define two operators αx and a2 by

a,ζ = kυ2hk'υ2ζ - xoξ for ξ e

a2ξ = -k-mhkί/2ξ + xoξ for ξ e

If ξ 6 &(k-ί/2) Π gr(km) then ξ e ^ ( l o g k) and

aλξ = - iP [ +°° p(t)kuxjc'uξdt

by Lemma 2.4.

Similarly, by replacing k by Ar1 we obtain

- 0 , 5 = - ί P ί +~ p(t)k'uxjcuζdt,
J-oo

(Remark that ft remains unchanged.) And by a change of variable

As 3T = ^(fc 1 / 2) + ^(fc" 1 / 2 ) and α ^ = αrf for f e ^(/b 1 / 2) n
we can define an operator a on J ^ by a(ξx + ζ2) = α ^ + α2f2 where
f! e &(k-1/2) and ί2 6 &(kV2).

We will now prove that a is continuous by showing that the
restriction of — a to &(kV2) Π ̂ (fc~1/2) is contained in the adjoint of
α so that a is closed and everywhere defined.

So take

then
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= (k-^hk^v, ξ) - {xtf, ξ)

= (hk^rj, k~ί/2ξ) - (ay?, ξ)

= (kί/2τ], kkrvtξ) - (xoV, ξ)

= (η, Whk-vξ) - (V, aϋ f)

= (V, Oif) = (V, of)..

Similarly (-aη, f) = (rj, aξ) for ξ e &(kυi) and therefore for all ξ e
Finally take ξ e &r{krVί) Π ^ ( l o g k), then

and similarly for ξ e &{kυ2) Π
As again

^-(log Λ) = ^ ( l o g k) Π

The equality holds for any ξ e &(log k). Therefore the lemma follows
from the continuity of <x.

If we combine the previous result with Lemma 2.6 we get,
replacing k by Ar1 if necessary:

LEMMA 4.2. There exists a Hubert space J3Γ, a positive non-
singular self adjoint operator k in J3Γ, an element # O G 2 3 ( J Γ ' ) with
0 ^ x0 ^ 1 and a vector ξ0 e ^(k~1/2) such that hk~1/2ξQ g ^ ( ^ Γ 1 / 2 ) where

J-~ eπt + e-πt

In what follows J%7 k, x0 and ξ0 will be objects satisfying the condi-
tions of this lemma.

Let M= %>{3r) and let φ be the faithful normal weight Tr(ft )
as defined in [5j. We will consider the rank one operators in M and
we will use the tensor product notation. So for any ζfτje 5$Γ the
operator ξ (g) η is defined by

LEMMA 4.3. Let ξ9ηe 3T. Then ξ <g) η e ^fφ iff ζf_η e

Proof. Take first ξt e 3ίΓ and η e D(kί/2) and put x^ζ&η. Then
x* = 7j(g}ξί and x*x = (flf fjiy (g) η. As in [5] let kε = &(1 + efc)""1.
Then &εa;*̂  = (ζlf ξ^kj] ® 57 and Tr kε(x*x) = (ί l f fOflfc.ft 57).
By definition
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φ(x*x) = sup Tr (kεx*x)
e>0

= (ίi, fi) sup (kfl, η)
ε>0

= (£» fi) sup ((1 + eλ;)

So φ(»*») = (ίi, f i)(&1/2>7, &1/2>?) and α? e
So if f, η e &(kυ2) then

V = (fi ® £)*(& <g> ̂ ) when II & || = 1

so that ς (x) 97
Conversely suppose f (g) 27 € ̂ ^ , . Then ί<S>?7G -^? a n ( i the previous

computation shows that

sup {k£η, η) < 00 .
e>0

This clearly implies that η e &(kί/2). On the other hand
so that η (g) ί e ^ and f e

THEOREM 4.4. There exist a von Neumann algebra M, two faith-
ful normal semi-finite weights ψ and φ on M with ψ ^ φ9 and an
element x e ^ ψ such that hx + xhi ^^φ where h is the Radon Nikodym
derivative obtained in Theorem 3.1.

Proof. Let M and φ be as before. Consider elements x0 e
and ξ^e^Γ as in Lemma 4.2.

Replacing x0 by \ + \xQ we may assume that \ <Ξ x0 ^ 1. Indeed
this would induce the replacement of h by £ + \h and ( | + lh)k~1/2ξQ =
hk~v% + iAfc-1/ef0 ί ^(k1/2) as M"1 / 2ί0« ^(A;1/2). This little modification
will make sure that our weight ψ will be normal and faithful.will make sure that our weight ψ will be normal and faithful.

Let ξ, = k-U2ξ0, then ξ1 e ^r(k1/2) but hζ1 g &{kυ2). Take also
&(k~υ2) Π ̂ ( l o g A), and put η, = k~v%. Then η, e ^(A1/2) and

6

If a; = 5?!® fi then clearly by Lemma 4.3 we have x£^ψ, hx =
hVi ® ίi e ^ψ while xh = ^ (x) && ί ^ ^ and therefore hx Λ- xhi ^#9.
Therefore to prove the theorem it will be sufficient to find a faithful
normal semi-finite weight ψ on M such that ψ ^ φ and h is the Radon
Nikodym derivative.

For this purpose we assume again that M is identified with the
left von Neumann algebra J*f(Jϊf) of an achieved left Hubert algebra
S^f and that φ is the canonical weight on £f(j*f). If J is the
canonical involution then ψ defined on M+ by ψ(x) = (Jx0Jξ, ξ) when
x = π(ξ*ξ) with ξ e S/ and ψ(x) = 00 otherwise, defines a weight on
M. The proof is essentially the same as for the canonical weight [2].
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It is clear that \φ ^ ψ <: ψ as \ <̂  x0 ^ 1 and that h is the Radon
Nikodym derivative since the modular automorphisms are given by
σt(x) = kuxk-u [5, Theorem 4.6]. It is also clear that Ψ is faithful
and semi-finite. Therefore it remains to show that Ψ is normal.

Suppose we can show that xQ is the upper bound of an increasing
net of positive elements {xa} in ^/^. For any a we have x'J2 e ΛΊp Π

* = TΓ(J^) so there exists a vector ζa e jxf such that xιj2 = π(ξa).
Then

r ί)
= sup (JxaJζ, ξ)

= sup (τr'(Jf)|α, π'(Jξ)ξa)

It follows that ψ is the upper envelope on ^ , + of normal positive
linear functionals majorized by ψ on ^£^. On the other hand φ is
normal and so is the upper envelope of normal positive linear func-
tionals on M+. As \φ ^ ψ the supremium of the values of the normal
positive linear functionals majorized by Ψ in ikf+V f̂p" is oo. There-
fore f is the upper envelope on all of M+ of normal positive linear
functionals, so that ψ is normal.

It remains to show that xQ is the upper bound of an increasing
net of positive elements {xa} in ^Γφ

+.
Consider the left ideal ^4^ of M generated by the rank one

operators ξ, ® x^1/2ξ2 where ξ2 e &(k1/2) and ξ1 e JίΓ. Those operators
are clearly norm dense in the finite rank operators and hence Λ^l is
(7-weakly dense. By [3, Lemma 2.3] there is an increasing net xa in
(^fς*^ς)+ with supremum 1.

Then x0 = supα xl/2 xaxl/2 and as 4 / 2 ^ ς * £ ^ ς * we have # 0 | xαx5/2 e
y/X"* AS* — ^c// ψ ^yy ψ — Kyro φ.

Finally we turn our attention to Theorem 3.2.

THEOREM 4.5. There exists a von Neumann algebra M, and a
faithful normal semifinite weight φ on M and an element xeM such
that xh + hx$ ^ 9 for any hz^£ψ. So in general Theorem 3.2 will
not hold for all xeM.

Proof. Let M and φ be as in Theorem 4.4. Take ζ e &(k1'2) and
V £ &{kυ2) and put x = ξ (x) η. Then x e ^fς* so that xh e Λ€Ψ because
of Lemma 4.3. Therefore hx +
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