
PACIFIC JOURNAL OF MATHEMATICS
Vol. 61, No. 2, 1975

OSCILLATION OF EVEN ORDER DIFFERENTIAL
EQUATIONS WITH DEVIATING ARGUMENTS

TSAI-SHENG LIU

The purpose of this paper is to give some oscillation
criteria for even order differential equations with deviating
arguments.

A continuous real-valued function f(t) which is defined for all

large t is called oscillatory if it has arbitrary large zero, otherwise

it is called nonoscillatory.

Our work extends some results obtained by Ladas and Lakshmi-

k a n t h a m [3] and Chiou [1] for second order equations.

1. In this section, we are concerned with the equation

(1.1) y(n)(t) - Σ Pi(t)y(gi(t)) = 0 , n ^ 2 an even integer ,

where the following assumptions are assumed to hold:

(11) 9i(t) <£ t on [a, oo), j = 1, 2, , m and gk(t) < t for some

1 ^ k <> m; g'ά(t) ^ 0 on [α, oo) and gs(t) —> oo as t-+ oo, j = 1, 2,

• , m.
(12) Pi(t) ^ 0, p;(t) ^ 0 on [α, oo), i = 1, 2, , m and pfc(t) > 0

on [α, oo] for the same k as in (/j).

We shall give a sufficient condition for all bounded solutions of

(1.1) to be oscillatory. Our result extends Ladas and Lakshmikatham's

Theorems 2.1-2.4 in [3] to a r b i t r a r y even order equation (1.1).

LEMMA 1.1 (Lemma 2 in [2]). If y is a function, which together

with its derivatives of order up to (n — 1) inclusive, is absolutely

continuous and of constant sign on the interval [a, oo) and yln)(t)y(t)^O

on [a, oo), then either

y^(t)y(t)^O, ί = 0,1, • • - , " ,

or there is an integer I, 0 <* I <ί n — 2, which is even when n is even

and odd when n is odd, such that

y<>χt)v(t) ^ o , i = o, l, ••-, i,

and

(-iy+ψ>\t)y(t) ^ 0 , j = I + 1, , n

for t in [a, oo).
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THEOREM 1.1. If(t — gk{t))nvkit) ^> n\ for all sufficiently large
t, then every bounded solution of (1.1) is oscillatory.

Proof. Let y be a nonoscillatory bounded solution of (1.1).
Without loss of generality, we can assume that y(t) > 0 for t ^ 2\.
There is a Γ2 ^ ϊ\ such that gP(t) > 7\ (j = 1, 2, , m) for £ ̂  Γ2.
There is a T3 ^ T2 such that 2/(i)(£) (i = 1, 2, , w - 1) is of constant
sign for £ ̂  Γ3. By Lemma 1.1 and since y is bounded, we have

(1.2) (-l)tyΛ(ί) > 0 (i = 0, 1, • , n - 1) for ί ^ T3 .

It follows from (1.1) that

for t ^ T3.
By Taylor's theorem, there is a £ between τ and £ such that

(1.3) y^Xτ) = ^ - " ( t ) + ?/(Λ)(ί)(τ - t)

^ ^ - " ( t ) + 2/ίIι)(ί)(7 - t)

= y""1'^) - (t - ±

for τ ^ T3 and t ^ Γ3.
Integrating (1.3) with respect to τ from s to ί > s, we have

- 8) ^^lL±

- s) -iLzj£Pk(t)y(gk(t))

or

i/(κ"2)(s) ^ y<M-2)(i) - y(n-Ht)(t - s)

+ ^r^-Pk(t)y(gk(t))

In a similar way repeatedly, we shall have

y'(s) ^ y\t) - y"(W - s) + »"'(*) i

(w — 2)!

- Pk(t)y(gk(t)) ? ~ S)"",1 for ί > s ^ Γ 3.
(» - 1)!
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Integrating (1.4) from gk(t) to ί, we obtain

v(t) - y(gk(t)) ^ y'(t)(t - gk(t)) - y"(t)

or

:

+ Γi - p'(m - β'mr]vMt)) - »(t) a o

for all sufficiently large t.
It follows from (1.2) that

or

(* ~ 9k(t))npk(t) > n\ for all sufficiently large t .

This is a contradiction and the proof is then complete.

EXAMPLE 1.1. If we consider the equation

(1.5) y«>(t) - W * 2 L y ( t - τ) = 0 , τ > 0 , & = 1 , 2 , . .-,

then #>(£) = (2A;7r)4r~4 satisfies the assumption and every bounded
solution of (1.5) is oscillatory. A bounded oscillatory solution of
(1.5) is y(t) = sin (2kπ/τ)t, k = 1, 2, . . . .

COROLLARY 1.1. Consider the equation

(1.6) y< >(ί) - Σ y ( ί - Tj) = 0 , r, ^ 0 (i = 1, 2, , m) .

J/ τk ^ Λ̂ 'λi! /or some 1 ^ fc ^ m, ί/̂ β^ every bounded solution of (1.6)
is oscillatory.

2* We shall consider the equations



496 TSAI-SHENG LIU

(2.1) »<•>(«) + p(t)f(y(t), y(g(t))) = 0

and

(2.2) y{n)(t) + F(t, y(t), y(g(t))) = 0 , w ^ 2 an even integer ,

with the following conditions:
(Hi) g(t) is a continuous function on [a, °o) such that g(t) —> oo

a s ί —> oo.

(112) p(£) is a nonnegative continuous function on [a, oo).
(113) f(u, v) is a continuous function on B2 and has the same

sign as t h a t of u and v if uv > 0.
(114) ^ ( t , u, v) is a continuous function on [a, oo) x ϋί2, non-

decreasing in u and in v for each fixed t and has the same sign as
t h a t of u and v iί uv > 0.

In this section, we shall give conditions which will ensure t h a t
every extensible solution y of (2.1) or (2.2) is either oscillatory or
y"{t)y{t) > 0 for all sufficiently large ί. This generalizes to higher
order equations some results due to Chiou [1, Theorems 2.2, 2.6, 2.8,
2.9, 2.12, 2.14, 2.15, 2.18, 2.19, 2.20, 2.22 and 2.23].

LEMMA 2.1 (Lemma 1 in [2]). If y is a function which together
with its derivatives of order up to (n — 1) inclusive, is absolutely
continuous and of constant sign on the interval \a, oo) and y{n)(t)y(t)^O
on [a, oo), then there is an integer I, 0 <ί I ^ n — 1, which is odd
when n is even and even when n is odd, such that

^ 0 , i = 0 ,1 , . . , l ,

and

(- l ) +i-yΛ(t)y(ί) ^ 0 , 3 = I + 1, ' ' , n

for t in [a, oo).

LEMMA 2.2 (Corollary 2.3 in [4]). //

(2.3) (°V-\F(ί, 7, 7) dί = ± oo / o r eαcft 7 ^ 0 ,

£fcew ei erT/ bounded solution of (2.2) is oscillatory.

In a similar way, we have

LEMMA 2.3. / /

(2.4) [°° tn~ιp(t)dt = oo ,
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then every bounded solution of (2.1) is oscillatory.

THEOREM 2.1. Assume that
( i ) there exists a positive function q{t) such that

(2.5) q(t) ^ min {g(t), t), q\t) > 0 and q"{t) S 0 for t ^ a .

(ii) there exist positive functions h{t) and hx(t) for t ^ a > 0
and a constant M > 0 such that

(2.6) TΓT< °° a n d l i m i n f

h(v) »-><»

hj,cv)f{u, v)

h(v)
ε > 0

/or u > Λf, every c > 0 αwcϋ /or some ε = ε(c).

extensible solution of (2.1) is either oscillatory or y"(t)y(t)>0
eventually.

Proof. Let 2/ be a nonoscillatory solution of (2.1). Without loss
of generality, we may assume that y(t) > 0 for t ^ Tx. There is a
T2 ^ 2\ such that g(t) ^ Γx for t ^ T2. It follows from (2.1) that

y{n)(t) ^ 0 for t ^ Γ2. There is a Γ3 ^ Γ2 such that each yιί)(t),
j = 1, 2, , n — 1, is of constant sign for £ ̂  JΓ3. By Lemma 2.1,
y\t) > 0 for t ^ Γ3.

If ^//;(ί) > 0 for t ^ Γ8, then our proof is done. Assume that
y"(t) < 0 for t ^ Γ3. Then, by Lemma 2.1, we have

(2.8) (~1)J-Yj)(t) > 0 (j - 1, 2, , n - 1) for t ^ Γ3.

Since (2.7) implies (2.4) and since y\t) > 0 for t ^ Γ8, it follows
from Lemma 2.3 that #(£) —* oo as έ-^oo,

Integrating (2.1) repeatedly from t to tf > 2t ^ 2Γ3 and using
(2.8) as well as integration by parts, we have

(2.9) y\t) ^ - X Γ (te - t)*"p(u)f(y(u)9 y(g(u)))du .
(n — 2)! J*

Dividing (2.9) by h(y(g(t)))f we have

(n - 2)!

Since ^z'(ί) is decreasing for t ^ Γ3, there exist Γ4 ^ Γ3 and c > 0
such that c#(£) ̂  ί for t ^ Γ4. From (2.5) and (2.6) we have
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(2 11)

p(u)f(y(u), y(g(u))) ^ p(u) Kjcyigju^fiyju), y(g(u)))
)) h(y(g(u)))

It follows from (2.10) and (2.11) that

y'(t) > ε [*' (u - ty-*p(u) ,

(2 12) KvW))) ~ <n ~ 2)! ]t UtM)

> ^ Γ ***> du.
~ (n-2)\ ht hMu))

Since q(t) ^ ί, q'(t) > 0 and «"(ί) ^ 0, we have

(2 13) V'(q(t)W(t) ^ y'(t)q'(t) ^ εq»-*(2t)q'(2t) Γ p(u)
h(y(q(t))) ~ h(y(q(t))) ~ 2^(n - 2)1 L hJig(u

Integrating (2.13) from Γ4 to T > T4 and using integration by
parts, we get

dy(g(s)) > &Γ\2T) Γ p{u) , _
((())) ~ 2n1{ 1)1 ) h&i))h(y(q(s))) ~ 2n~1{n -1)1 )*τ h&giv)) 2n~\n - 1)!

hι{g{2t))
X Γ Vto du + ! Γ r-X2t)p(2t)

J« « hMn)) 2*~\n - 2)\ U
" p(u) d u ε

h{{)) 2 " 2 (

X

Using (2.12) for t = T4, we have
rτ dy(q(s)) ^ εq«-χ2T4) y'(T4) (n - 2)1
^ h(y(q(s))) ~ 2- 1(n - 1)! h(y(q(T4))) εTΓ2

e Γ qn-ί(2t)p(2t) ^

Let Γ—* oo and obtain

This contradicts (2.7) and the proof is complete.
If y(t) —• co as ί —><>o, then by the monotonicity of F(t, u, v), there

exist a > 0 and Γ > 0 such that

t, »(*), ίKff(t))) ^ ^(ί. α, α) > 0 for ί ^ Γ.

By using this fact and Lemma 2.2 instead of Lemma 2.3 in the proof
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of Theorem 2.1, we can prove the following

THEOREM 2.2. Assume that (2.5) is satisfied and that there exist
positive nondecreasing functions h(t) and h^t) for t ^ a > 0 and a
constant M > 0 such that

(2.14) (" - ^ - <
J h(v)

and Urn inf
htcv)F(t, u, v)

Hv)
a > a ) > 0

for u> M, every c > 0 and for some ε = ε(c) αwZ a > 0. 7/

(2.15)

extensible solution y of (2.2) is either oscillatory or
y"{t)y{t) > 0 eventually.

The following example presents the occurrence of the case
V'\t)y{t) > 0 for all sufficiently large t.

EXAMPLE 2.1. If we consider the equation

(2.16) y*(t) + if (t - τ)-3/2(έ - 2r)" 5 / 6 [^ - r)]1/3 - 0 ,
lo

then F(t, u, v) = (15/16)(ί - τ)-3/2(έ - 2τ)-6/ev1/s and flr(ί) = t-τ satisfy
conditions (II4) and (ΠO Let q{t) = t — τ, h{v) = v5'* and h^v) = v.
Then conditions (2.5), (2.14) and (2.15) are satisfied and y(t) = (ί - r) 5 / 2

is a nonoscillatory solution of (2.16) with y"(t)y(t) > 0 eventually.

EXAMPLE 2.2. If we consider the equation

(2.17) ym(t) + vit) + — ^ j — y{git)) = o ,

6 - 1 ,

then F(t, u, v) = u + (6/(6 - (l/2)ττ))t; and g(t) = ί - (l/2)τr satisfy con-
ditions (II4) and (ΠJ. Let q(t) = tv\ h(v) = v3/2 and λ^v) = v. Then
conditions (2.5), (2.14) and (2.15) are also satisfied. In fact, y{t)—t sin t
is an oscillatory solution of (2.17) which is not bounded. Lemma 2.2
does not cover this example.

By using the techniques given in [1] and the modification in the
proof of Theorem 2.1, we can prove the following theorems. We
shall omit their proofs here.

THEOREM 2.3. Let 0 < g(t) ^ t. Assume that there exist positive
nondecreasing continuous functions h(t), h^t) and h2(t) for t ^ a > 0
and that u ^ v implies
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dv <

Kv)
oo and
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lim inf K{cu)h2{

h(u)hJ
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at
g{t)

V

v)

)

> 0

for every c > 0 ami /or some a > 1 ami ε > 0. 1/

r
g(t)

then every extensible solution y of (2.1) is either oscillatory or
y"{t)y(t) ^ 0 eventually.

THEOREM 2.4. Let 0 < g(t) ^ t. Assume that there exist positive
nondecreasing continuous functions h(t), h^t) and h2(t) for t ^ a > 0
and that u > v implies

—— < oo and lim inf hγ(cu)h2{u)F{t, u, v)

for every c > 0 araί /or some a > 1, β > 0 ami ε > 0. //

iΪΛ-S " ^ 5 d f =

then every extensible solution y of (2.2) is either oscillatory or
y"{t)y(t) > 0 eventually.

THEOREM 2.5. Let g(t) satisfy (2.5) and q(t)-+°° as t—>oo.
Assume that there exist a positive nondecreasing function hγ{t) for
t ^ a > 0 and a constant M > 0 such that

lim inf , v) 0

/or every c > 0 αnώ /or some ε > 0. // (2.4) hold and

then every extensible solution y of (2.1) is either oscillatory or
y"{t)y{t) > 0 eventually.

T H E O R E M 2.6. Let q(t) satisfy (2.5) and q(t) —• ©o a s £—•oo.

Assume that there exist a positive nondecreasing function h^t) for
t ^ a > 0 ami a constant M > 0 swcfo
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lim inf h1(ev)F(t9 u, v) t: εF(t, a, a) > 0

for every c > 0 and for some a > 1 and e > 0. // (2.3) hold and

lim sup qn~ι{t) °° F^s' a> ^ ds > ^ ~
ί h^gis)) ε

! for every a > 0 ,

then every extensible solution y of (2.2) is either oscillatory or
y"{t)y{t) > 0 eventually.

THEOREM 2.7. Let 0 < g(t) ^ t. Assume that there exist positive
nondecreasing continuous functions hx{t) and h2(t) for t Ξ> a > 0 and
that u ^ v implies

lim inf
hλ(cu)h2(u)f(u9 v)

uU-ZLv
> 0

for every c > 0 and for some a > 1 and ε > 0. If (2.4) hold and

lim sup ί - f- ΈίSΪ ds > ^ f r ~ !)•' .
*tΊ\S )/i'2\ ~—Γ" I

\gf(s)/

ίΛβw every extensible solution y of (2.1) is either oscillatory or
y"(t)y(t) > 0 eventually.

THEOREM 2.8. Lei 0 < g(t) ^ £. Assume that there exist positive
nondecreasing continuous functions h^t) and h2(t) for t ^ a > 0 and
that u ^ v implies

, u, v)lim inf

for every c > 0 and for some a > 1, β > 0 α îd ε > 0. // (2.3) hold
and

lim sup t - > 2-(n - Dl

extensible solution y of (2.2) is either oscillatory or
V"(t)y(t) > 0 eventually.

REMARK 2.1. In a similar way, corresponding to Theorems 2.6,
2.12, 2.18 and 2.22 in [1] we can establish the same results as those
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of Theorems 2.1, 2.3, 2.5 and 2.7 for the equation

y{n)(t) + Σ PsWMt), V(ffi(t))) = 0, n ^ 2 an even integer ,

where p, , g, and /,- are continuous functions, p0) ^ 0, ^(έ) —• oo as
£—•00 and fj(u, v) has the same sign as that of u and v if uv > 0,
i = 1, 2, •••, m.

REMARK 2.2. If n = 2, then the case of y"(t)y{t) > 0 for all
large £ couldn't occur. Consequently, under the assumptions in each
theorem all extensible solutions of (2.1) or (2.2) with n = 2 are
oscillatory [1, pp. 384-397].
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