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COMMUTATIVE CANCELLATIVE SEMIGROUPS
WITHOUT IDEMPOTENTS

H. B. HamiLToN, T. E. NORDAHL AND T. TAMURA

A commutative cancellative idempotent-free semigroup
(CCIF-) S can be described in terms of a commutative cancel-
lative semigroup C with identity, an ideal of C, and a function
of C X C into integers. If C is an abelian group, S has an
archimedean component as an ideal; S is called an %-semi-
group. A CCIF-semigroup of finite rank has nontrivial
homomorphism into nonnegative real numbers.

1. Introduction. In this paper, a commutative cancellative
semigroup without idempotent is called a CCIF-semigroup (in which,
by “IF” we mean “idempotent-free”) and a commutative cancellative
semigroup with identity is called a CCI-semigroup. In particular,
an N-semigroup is an archimedean CCIF-semigroup. The structure
of N-semigroups has been much studied [1, 2, 3, 6, 7, 8] and also it
is well known that every CCIF-semigroup is a semilattic of -semi-
groups. In this paper CCIF-semigroups will be studied by means of
the representation by the generalized .- and @-functions and also
through homomorphisms into the nonnegative real numbers.

Throughout this paper, R denotes the set of real numbers; R
the set of rational numbers; R, the set of positive real numbers; R’
the set of nonnegative real numbers; Z, the set of positive integers
and Z9 the set of nonnegative integers. Each of these is a semigroup
under the usual addition. If S is a semigroup and if X is a sub-
semigroup of the group R, then the notation Hom (S, X) denotes the
semigroup of homomorphisms of S into X under the usual operation.

At the end of §1 we show that if S is a CCIF-semigroup,
Hom (S, R) = {0}, and the homomorphism group is transitive in some
sense. In Section 2 we shall try to generalize the representation of
RN-semigroups to CCIF-semigroups. It will be understood as the so-
called Schreier’s extension to build up complicated CCIF-semigroups
from simpler CCIF-semigroups. Most of the results in [7] will be
extended to CCIF-semigroups. In §3 we shall treat the important
case, i.e., the case where the structure semigroup is a group. Such
a CCIF-semigroup will be called an N-semigroup. In §4 we shall
show that every CCIF-semigroup of finite rank has a nontrivial
homomorphism into R%. In particular we will characterize CCIF-
semigroups S having the property Hom (S, R,) = &.

(1.1) Let S be a CCIF-semigroup. Then x #+ xy for all x, y € S.
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Proof. Suppose, for some z, y €S, we have x=xy. Then zy =
2zy® which implies ¥y = y* by cancellation. This is a contradiction.

ProposiTION 1.2. Let S be a CCIF-semigroup.

(1.2.1) Hom (S, R) is a nontrivial vector space over the field R.

(1.2.2) For each a€S and each reR,r +0, there is an
h eHom (S, R) such that h(a) = r.

Proof of (1.2.1). Let S be a CCIF-semigroup. Let Q(S) be the
quotient group of S (i.e., the group of quotients of S), and D(S) be
the divisible hull of Q(S)

(1.2.3) D(S) =@ E.® g C(p~) .

D(S) is a direct sum of copies R, of the group of rational numbers
under addition and quasi-cyclic groups C(p=) with respect to prime
number p. We view S as a subsemigroup of D(S). Let z, be the
projection of D(S) upon R, for each ael'. Let x be an element of
S. Suppose 7, (x) = 0 for each ael'. It follows that = ¢ @,., C(»),
a torsion group. This is a contradiction as x has infinite order.
Thus, for some a,€ I', m,(x) # 0. Note that z, € Hom (S, R) and is
not the trivial homomorphism. It is obvious that Hom (S, R) is a
vector space over R in the usual way.

Proof of (1.2.2). Let ae S and r€ R be given. In establishing
(1.2.1), we have shown that there exists &, € Hom (S, R) with h,(a) = 0.
Let s = h(a). Now define h by h = (7/s)h,. Then h(a) =7, and
h e Hom (S, R).

2. Schreier Extension. We consider the following problem.
Let C be a CCI-semigroup and & be its identity. Given C, find all
CCIF-semigroups S such that there is a homomorphism & of S onto
C satisfying the condition.

xeS| P@)=¢=2Z,.

In this section we shall show that S always exists for every C and
shall deseribe S in terms of elements of C, integers and a certain
function of C x C into the integers. The extension S is called a
Schreier extension (of Z,) by C. (The terminology is due to [5].)
Schreier extension by C is significant because we shall see that every
CCIF-semigroup is isomorphic to a Schreier extension by some CCI-
semigroup C.

THEOREM 2.1. Let C be a CCl-semigroup and C, a proper ideal
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of C. (C, can be empty.) Let I: C X C— Z be a function which
satisfies
2.1.1) Ia, B)eZ if ap¢ C,
2.1.2) e, B) = I(B, ) for all o, BeC
2.1.3) Ia, B) + KaB, v) = Ia, BY) + LB, 7) for all &, B,7€C
(2.1.4) I(s, @) = 1 (¢ the identity element of C) for all acC.
Given C, C,, I, the set (C, C;; I) with its operation is defined by

C,CsI)={(x,)eZ X CixeZ! if aeC}

(2.1.5) (x, o)y, B) = (x + ¥ + Ia, B), ap).
Then (C, C;; I) is a CCIF-semigroup.

Conversely if S is a CCIF-semigroup, then (S = C, C;I) for
some C, C, I.

Proof. It is routine to prove that (C, C; I) is a commutative
cancellative simigroup. To show idempotent-freeness, assume (z, a)’=
(z, ), that is, a* = a« and 2z + I(a, ) = x. It follows that a = ¢
and # +1 = 0. Since C, is a proper ideal of C, ¢¢C,, hence z =0
and we arrive at a contradiction.

Conversely assume that S is a CCIF-semigroup. Let a€S, and
define a relation p, on S by

(2.1.6) zp,y iff a™x = ay for some m, n€ Z,.

It is easy to see that o, is a congruence relation. To show that
S/p. is cancellative, assume 2zz0,42. Then a™xz = a"yz for some
m,n€Z,.. Since S is cancellative, we get a™r = a"y, i.e., z0.Y.
Obviously axp,x for all xe S, that is, the p,-class containing ¢ is
the identity of S/p,. Let C = S/p,. C is a CCI-semigroup. In each
o.~class define ©x <,y by x = a™y for some mecZ’ where a'y = ¥.
Because of cancellation, each p,-class forms a chain with respect to
=.. Let T= Ny, a"S and let C, be the image of T under the natural
homomorphism S— C. If T+ @, it is a proper ideal of S (since
a¢ T) and thus C, is a proper ideal of C. TUnder the homomorphism
S — C we have a partition of S: S = U S:. If £eC\C, S; contains
a maximal element with respect to <,; but if £¢eC, S, contains no
maximal element. For each £eC, define p, to be a <,-maximal
element in S, if £¢C\C,, and p, to be arbitrarily chosen from S, if
£eC,. 8Since C, is a proper ideal, ¢ ¢ C,, hence p, = a because of (1.1).
Then every element of S has a unique expression

x = a™p, where meZ if ¢eC;meZ! if £eC\C,.
Define I: C X C— Z as follows:

— pylla,
DaPp = @' PD.p .
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It is easy to see that I satisfies (2.1.1), (2.1.2), (2.1.3) and (2.1.4). S
is isomorphic to (C, C;; I) under the map a™p, — (m, &).

The representation (C, C,; I) of S depends on the choice of a.
The element @ is called the standard element of the representation
(C,C; I) of S. S/p, is called the structure CCI-semigroup of S with
respect to a; C is the structure CCI-semigroup of (C, C,;; I), and (0, ¢)
is the standard element. A function I: C x C— Z satisfying (2.1.1),
(2.1.2), (2.1.8), (2.1.4) is called an _“-function on (C, C).

THEOREM 2.2. Let C be a CCl-semigroup, and C, be a proper
1deal of C. (C, can be empty.) Assume that @: C— R satisfies

(2.2.1) P(a) + P(B) — P(ap) € {gg ZZ Zg Z g

2.2.2) @) = 1.
Given C, @, and C,, define ((C, C,; ®)) by

(2.2.3) (G, Cs9) = {((z + Pla), @):aeC,xeZ xeZ, if a¢C}
and

(2.2.4) ((x+ 2(a), )Xy + P(B), B)) = ((x + y + P(a) + P(B), aB)).

Then ((C, C;; ) is a CCIF-semigroup.

Conwversely every CCIF-semigroup is isomorphic to ((C, C,; ®)) for
some C, @ and C,, that is, (C, C;I)= ((C, C; ®)) under (x, a)—
((x + (), @), L(a, B) = P(a) + P(B) — P(aB).

Proof. Assume S is a CCIF-semigroup. By Theorem 2.1, we let
S = (C, C; I) for some C, I, C,. By (1.2.2), thereis an 2 € Hom (S, R)
such 7(0, €) = 0. Define #: C— R by
_ k0, @)
2.2.5 =2 =/
(2.2.5) P(a) 70, 9)
If (e, B) = 0, then (0, &)(0, B) = (0, €)*#(0, «B) implies

10, @) + h(0, B) = I(a, B) - h(0, &) + h(0, aB) .
If I(a, B) < 0, then (0, @)(0, B)0, &)~ *# = (0, @B) implies
0, &) + h(0, B) — I(a, B) - h(0, €) = h(0, ap) .

In both cases, using (2.2.5), we have

2.2.6) I(a, B) = p(a) + #(B) — ¢(aB) for all a, BeC. It iseasy
to see that @ satisfies (2.2.1) and (2.2.2); and S=(C,C; I)= ((C, C;; ®))
under (x, @) — ((z + P(@), @)).

Conversely assume @ satisfies (2.2.1) and (2.2.2), define ((C, C;; #))
by (2.2.3) and (2.2.4), and define I by (2.2.6). Then we can see that
T satisfies (2.1.1), (2.1.2), (2.1.8) and (2.1.4), and ((z, a))— (z — (@), @)
gives an isomorphism of ((C, C; ¥)) to (C, C; I).
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A function @: C— R is called a defining funection on (C, C)) if it
satisfies (2.2.1) and (2.2.2); let Dfn(C, C,, R) denote the set of all
defining functions on (C, C,). If @ satisfies (2.2.6) for a fixed I, @ is
called a defining function belonging to I, and the set of all  belonging
to I is denoted by Dfn; (C, C,, R).

COROLLARY 2.3. S s a CCIF-semigroup if and only if S 1is
isomorphic to the subdirect product of a CCl-semigroup C and «
subsemigroup of R by means of @ on C (i.e., by means of @ with
(2.2.1) and (2.2.2) in the sense of (2.2.4)).

COROLLARY 2.4. Let S be a CCIF-semigroup. S is a subdirect
product of a subsemigroup P of R and a CCl-semigroup C if and
only if there exists h € Hom ((S, R’) with h == 0.

The problem posed at the beginning of the section is solved, that
is,

Z: ((x + pla), @) — a

has kernel K = {((x + 1,¢)):2€ Z} and K= Z, under ((x + 1, ¢))—
x+ 1.
Let S = (C, C; I).

PROPOSITION 2.5. Let @, Dfn,(C, C,, R) be fixed. If fcHom(C, R)
then @ = @, + f€Din,(C, C,, R). Ewvery element @ of Dfn,(C, C,, R)
can be obtained in this manner.

PROPOSITION 2.6 (2.6.1). Let @,eDfn;(C, C, R) be fixed and
feHom (C, R). Define h: S— R by

Mz, @) = stz + pfa) + f(@)), scR.

Then heHom (S, R) Every element h of Hom (S, R) satisfying
h(0, €) = 0 can be obtained im this manner.

(2.6.2) Let p: S— C be the natural homomorphism. Then every
h of Hom (S, R) satisfying h(0, e) = 0 is obtained by h = fp where
f€Hom (C, R).

Proof (2.6.1). As the former half is easily proved, we prove
the latter half. By (1.2.1) Hom (S, R) # {0}, so there is h such that
nO0,e) #0. If =0,

Iz, @) = h((0, €)*(0, @)) = x - k(0, €) + (0, @)
= (0, )= + P(@)) = s(x + P(x))
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where s = (0, ¢); P(a) = 1(0, a)/h(0, €), » € Dfn, (C, C, R). If 2 =0,
(0, ¢)” is regarded as void. If x <0, —x —1 =0, then

k0, @) = h((—x — 1, e)(x, a)) = (0, &) *(x, @))
= (—x) - h0, &) + h(x, @)

hence iz, a) = h(0, e)(x + ®(«)). By Proposition 2.5, @ is expressed as
®, + f. Thus we have the conclusion.

Proof. (2.6.2) Let heHom (S, R) with h(0,¢)=0. If =0,
Mz, a) = z-k(0, &) + h(0, &) = h(0, @). If <0, k0, @)= (—2x)-h(0,e) +
Wz, @) = h(z, @). Hence h(x, ) = k0, a) for all (z, ®)eS. Define
f:C— R by f(a) = h(x, ) where (x, ®) € S. By the above result, f is
well defined. Now

fo(x, o) = f(a) = h(zx, @), hence I = fp.

It is easy to see that fp € Hom (S, R) with fp(0, ¢) = 0.

By the notation S = (C, C;; I) = ((C, C; #)) we mean that S has
representation (C, C;; I) and ((C, C; ®)) identifying (z, &) of (C, C,; I)
with ((z + @(a), a)) of ((C, C; @)).

PRrOPOSITION 2.7. Let S be a CCIF-semigroup. If a€ S and if
there s an h € Hom (S, R%) such that h(a) + 0, then C, = @ using o
as the standard element.

Proof. Let S = (C, C;I)=((C, C; ) and let a denote (0, ¢) in
(C, C; I) and at the same time ((1, ¢)) in ((C, C;; ®)). Let a € C,. Then
(x, ®)e(C, C; I) for all xe€ Z. By Proposition 2.6

Mw, @) = (0, e)x + P(a)) .

Sinece 1(0,¢) >0 and 2z is arbitrary, A(x,a) <0 if, z < —p(a); a
contradiction to the assumption. Hence C, = ¢&.

A subsemigroup T of a commutative semigroup S is called confinal
if, for every x € S, there is a ¥ € S such that 2y e T. Let S=(C, C; I).
The following are easily obtained.

LEMMA 2.8.

(2.8.1) If C\C, contains a cofinal subsemigroup of C, then
C, = @.

(2.8.2) If C is an abelian group, then C, = Q.

We will now make a further investigation into defining functions
and C..
Let U denote the group of units of C. Let @ be a function
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C— R. Define a set Dy®) by

De(p) = {ae C: p(&) + 2(1) — p(a) < 0
for some &, ne C with a = &7} .

We define defining functions from the point of C.

DEFINITION 2.9.

(2.9.1) A function @: C— R is called a defining function on C
if it satisfies

Ple) =1.
p(a) + P(B) — p(aB)e Z for all a, BeC.
Dyp) = C\U .

The set of defining functions on C is denoted by Dfn (C, R).

(2.9.2) A defining function on C is called a normal defining
function on C if Dy®) = @, and a nonnormal defining function on
C if Dyp) # @. Dy®) is called the nonnormal domain of @. The
set of normal defining functions on C is denoted by NDfn (C, R).

ProposiTION 2.10. Let @: C— R be a defining function on C.
Let C, be a proper ideal of C such that DJ®)< C,.. Then @<
Dfn(C, C, R). Conversely every defining function on (C, C) 1s a
defining function on C.

The following three cases are possible:
(i) @ is normal and C, = &

(ii) @ is normal and C, # @

(iii) @ is not normal and C, = &.

DEFINITION. In each case we consider the CCIF-semigroup
(G, C; ). ((C, C; @) is called a normal representation in case (i);
seminormal representation in case (ii); nonnormal representation in
case (iii). In case (i), ((C, C;; ®)) is denoted by ((C; #)). When @ is
normal (nonnormal), the _#-function I defined by I(«, 8) = P(a) +
?(B) — @(ap) is called normal (nonnormal); the corresponding semi-
group is denoted by (C, C;; I), in particular (C; I) in case (i).

ProprosiTiON 2.11. Let S = ((C, C;; ®)) with standard element a.
Then ((C,C; ®)) is a normal representation if and only if i, a*S=D.

PROPOSITION 2.12. For every CCl-semigroup C there exist normal
defining functions on C. If C is a CCl-semigroup and C, is a non-
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empty proper ideal of C, there exist monnormal defining functions
® such that the nonnormal domain of ® is contained in C,.

ExampLEs 2.13. Let C be a CCl-semigroup.
(2.13.1) Define @ by

Py =1 for all xeC.
Then @ € NDfn (C, R), and ((C; ®)) = Z, x C.

(2.13.2) Let U be the group of units of C. Let @, be a non-
negative integer valued normal defining function on U. Define
. C— 7% by

o) if xeU

Pla) = ic if aeU

where ¢ is a constant nonnegative integer. Then ® is a normal
defining function on C.
(2.18.3) Let C, be a nonempty proper ideal of C. Define @ by

1 a¢C,

gv(a):{_—l ae(C,

The @ is a nonnormal defining funection on C such that D (@) < C.
(2.13.4) Assume that ¢ is the only unit of C. Suppose @,: C\{e}—R
satisfies, for all a, BeC\{e}.

¢O(a) + @0(:8) - QDO(CXB) eZ.
Define ¢: C— R by

(@) = e
PO o) axe.

Then @ is a defining function on C.

As another example, consider the case C = Z..

(2.14) Let C= Z!. Let 0:Z,— Z be a function with 6(1) =0
and let » be a real number. Define @: Z! — R by

(m) = m =0
Plm) = mr —dm) m>0.

If Dy(p) + @, take a proper ideal G, with C, 2 Da(%). Then @¢
Dfn(C, C; R). Every defining function on C is obtained in this
manner. In particular if ¢ satisfies

o(m) + o(n) < o(m + n) for all m,neZ,,
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then @ is a normal defining function on C.

We are interested in the important case, i.e., case where C is a
group. In the next section we discuss the structure of ((C, ®)) where
Cis a group. Then we will see that Example (2.14) is isomorphic to
a Schreier extension by a group.

3. N-Semigro ups.

DEFINITION 3.1. If Sis a commutative semigroup and v €S such
that for all x €S there exist me Z, and ye S with »™ = zy, then S
is called a subarchimedean semigroup and the element v is called a
pivot element of S.

DEFINITION 3.2. An 9t-semigroup is a subarchimedean CCIF-
semigroup.

LEMMA 3.3. The pivot elements of a subarchimedean semigroup
form an archimedean component and ideal of the semigroup.

Proof. Let A be the set of pivot elements of a subarchimedean
semigroup S. Let ve A and xe€S. There exist me Z, and y €S such
that »™ = xy. Then (vz)" = x(yz™) for every z€S; hence vze A.
Thus A is an ideal of S. To see that A is archimedean, let u, v € A.
Then there exist meZ, and yeS such that +™ = uy, therefore
™ = y(yv) and yve A. Therefore A is archimedean. Let A, be
the archimedean component containing v € A. Obviously 4 £ A4,. Let
wed, so u*=vy for some neZ, some yeS. Let ze€S. As
vEA, v* = 2t for some ke Z,., some te€S. Then u"* = v¥y* = z(ty*),
hence we A, A, & A. Thus we have proved 4 = A4,.

LEMMA 3.4. A homomorphic image of a subarchimedean semi-
group is a subarchimedean semigroup.

Proof. Let S be a subarchimedean semigroup, and f a surjective
homomorphism of S onto a semigroup 7. Let v be a privot element
of S. Then for all x€S there exist me Z, and yeS such that
v™ = xy. Hence (f(v))™ = f(x)f(y), and we see that f(v) is a pivot
element of T.

LEMMA 8.5. Let S be a CCIF-semigroup. S is subarchimedean
if and only if S/p. is subarchimedean for (some) all a€S.

Proof. If S is subarchimedean then S/o, being a homomorphic
image of S is subarchimedean for all ¢ € S by Lemma 3.4. Conversely,
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if aeS and S/p, is subarchimedean let Z denote the p,-class of x € S.
Let ¥ be a pivot element of S/0,. Then for all ZeS/o, there exists
meZ, and §eS/p, such that o™ = Zy. Hence, by the definition of
0. we have vma* = xya' for some k,lcZ.. Therefore, (va)"** =
2(yat*™v*) and we see that va is a pivot element of S.

LEMMA 3.6. If S is an N-semigroup then Hom (S, R’.) # {0}.

Proof. By Lemma 3.3, S contains an RN-semigroup A which is
an ideal of S. By [2, 7, 8] Hom (4, R,) = {®}. Let hcHom (4, R.).
Then h # 0. Define #:S— R by h(x) = h(ax) — h(a) for ac€ A and
x€S. Leta,beA, and xeS. Then i(ax)+h(b)= h((azx)b) = h((bx)a) =
h(bx) + h(a), so h(ax) — h(a) = h(bx) — h(b). Thus h is well defined.
Also, R(zy) = Ma*xy) — Wa?) = h(ax) — h(a) + k(ay) — h(a) = h(x) +
h(y), hence h is a homomorphism. If A(x) < 0 for some x €S, choose
neZ, such that h(a) + nh(x) <0. Since ax”c A4, h(ax") > 0, but
Wax™) = h(a) + nh(x) < 0, a contradiction. Hence heHom (S, R%).
As h|A = h + 0, Hom (S, R%) = {0}.

LEMMA 3.7. Let S be an RN-semigroup. Then ac€S is a pivot
element if and only if S/p. is an abelian group.

Proof. Let A be the archimedian ideal of pivot elements of S,
and let a€ A. Then A/(0,| A) is an abelian group, and for all x€ S
we have (z, xa) € p, where za€ A. Hence S/p, = A/(0.| 4) and S/p,
is an abelian group. Conversely if S/o, is an abelian group then for
all ¢ €S there exists y € S such that @ = Zy7 in S/p,. (See the notation
in the proof of Lemma 3.5.) Thus a™=xya' for some m,l € Z,. Hence
a€A.

THEOREM 3.8. Let S be a CCIF-semigroup, and for acS let o,
be defind by (2.1.6). The following are equivalent:

(8.8.1) S is an N-semigroup.

(3.8.2) S/p, is subarchimedean for all acS.

(3.8.3) S/p. is subarchimedean for some a¢cS.

(3.8.4) Some archimedean component of S is an ideal of S.

(3.8.5) S/p, is an abelian group for some acS.

(83.8.6) S=(G;I) where G is an abelian group and I is an
S -function on G.

(8.8.7) S is isomorphic to a subdirect product of an abelian
group G and a subsemigroup of R'. by means of a defining function
® on G.

Proof. By Lemma 3.5, the first three conditions are equivalent.
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By Lemma 3.7, (3.8.1) implies (3.8.5); obviously (3.8.5) implies (3.8.3).
By Lemma 3.3 and Lemma 3.7, (3.8.5) implies (3.8.4). Assume (3.8.4).
Let I be the ideal and archimedean component, and let a €1, x €S.
Since ax € I, @™ = axy for some m € Z,. and some y € I, hence a™ = x(ay),
that is, a is a pivot element of S. By Lemma 3.7, (3.8.5) holds. By
Theorem 2.1 and Lemma 2.8, (3.8.5) implies (3.8.6). Conversely
if S=(G;I), then G = S/p,.,. Thus the first six conditions are
equivalent. To see that (3.8.1) and (3.8.6) imply (3.8.7), let S be an
N-semigroup. By Lemma 3.6, there exists a nontrivial homomorphism
h of S into RY%, and by (3.8.6), S = (G;I) for some abelian group
G and an _“-function I. Let @(a) = h(0, a)/h(0, ) for all aeG.
(Clearly we can assume (0, ¢) = 0.) Then by the proof of Theorem
2.2 we have (3.8.7). Finally if we.assume (3.8.7), S = ((G; ®)) for
some @: G— R',, then when we define I(«, 8) = p(a) + @(B) — P(a, B),
we have S = (G;I) as before. Hence (3.8.7) implies (3.8.6). The
proof has been completed.

COROLLARY 3.9. Let S be a CCIF-semigroup. S is an N-semi-
group if and only if S/o, is an abelian group for all a€S.

Proof. Let A be the set of pivot elements of S. If S is an
N-semigroup then S = A and so S/p, is an abelian group for all e € S.
Conversely if S/po, is an abelian group for all ¢ €S then S = A by
Lemma 3.7. Hence S is archimedian, hence an Jt-semigroup.

4. Homomorphisms into R’. As seen in §3 every -
semigroup has a nontrivial homomorphism into R’. The following
question is raised.

Is a CCIF-semigroup nontrivially homomorphic into R’? We
cannot answer this question in general, but in some special case it
is affirmative.

Let S be a CCIF-semigroup. As defined in §1, Q(S) denotes
the quotient group and D(S) the divisible hull of Q(S).

D(S) = @ C) B @ R.

where R, is a copy of the additive group of rationals and C(p~) is
a quasicyclic group. The cardinality | I'| of I" is called the rank of
S. In the present case the rank of S is not zero since @@,., C(p~) is
torsion while S is torsion-free.

In particular, assume that S is of finite rank. Let T be the
torsion subgroup of D(S), then D(S) = TPH R, P --- @ R, where n is
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the rank of S. We can assume R, = {0} for 4 =1, ---,n. Let P,=
RO ---R,foreachi=1,2, .--,n. Then P, =P, PR, if n>1;
and DS)=T&P, if n=1. Let «,d,o0, 7, z, be the respective
projection homomorphisms:

a:DS)— T, 6:DS)—>P,, 0=d|S,
Tcn:Pn___—)Pn—lr T:P/n—_>Rn (ngl)

THEOREM 4.1. If S is a CCIF-semigroup of finite rank, then
Hom (S, R°) = {0}). (R is the additive semigroup of nonnegative
rationals.)

Proof. S is viewed as a subsemigroup of D(S). We will prove
the theorem by induction on n. Let V,=mx,0(S), W,=7,0(S), V=0(S),
T =aS). As D(S)=T& P,, we have

S=T®,V,andif n>1, V=V, ®.W,,

where @, denotes a subdirect sum, V<SP, V, < P,_,, W.S R,, and
T'S T, hence T' is a torsion group. First we prove

(4.1.1) V does not contain 0.

Suppose V contains 0. There is « € T’ such that (z, 0)€S. Since
T' is a torsion group, max=0 for some me Z.. Then (0, 0)=(x, 0)"eS.
This is a contradiction as S has no idempotent.

In case n=1,S =T @, W, where W, = VCR,. By (4.1.1), W,
must be isomorphic to a positive rational semigroup R;, say, under
f, l.e., f(W)) = R], hence fr,oc € Hom (S, R%)\{0}.

Assume n > 1 and that the theorem holds for all semigroups of
rank ¢ such that ¢ < n — 1. As denoted above,

S=Te,V, V=V, W,

where V, S P,_,, W,= R,. We can assume V, # {0}, otherwise it is
reduced to the case n = 1.

If V, is a CCIF-semigroup, V, has a nontrivial homomorphism
f from V, into R% by the induction assumption, hence frm,0¢
Hom (S, E%)\{0}.

If V,is a CCI-semigroup which is not a group, then V, =V, UH
where V.= @, H+ @, V. is an ideal of V, and it is a CCIF-semigroup,
and H is a group. Define §' by S’ = ((z,0) (V.))NS and W, = 7,0(S’).
Then S’ is an ideal of S and

S=V.B, W, .

' By the preceding paragraph, Hom (S’, R%) contains a nontrivial



COMMUTATIVE CANCELLATIVE SEMIGROUP 453

element f. However, since S’ is an ideal of S, f can be extended to
FfeHom (S, R%). In fact f is obtained by defining f(z) = f(ax) — f(a)
where z€8S,aeS. It is easy to show that f is well defined and a
homomorphism. Suppose f(x,) <0 for some z,€S. There exists
m e Z, such that mf(x,) + f(a) < 0. However

mf(@,) + fla) = flaxr) =0

since axr e S’. This contradicts the assumption. Therefore f(x) =0
for all x € S. Hence Hom (S, R%) # {0}. Assume V, is a group. Let
W, =1{0,2):2e W,}n V. Itis obvious that W, is a subsemigroup
if W,= @. If xeV,x has the form z = (x,2)eV, BW,, €V,
z,e¢ W,. Since V, is a group, there exists y,e W, such that y =
(—x, ¥,)€ V. Then zy = (0, 2, + y,) € W,. This proves that W, = @
and it is cofinal in V. Suppose zeV and a,xzac W,. We write
z = (x, x), @ =(0,a,) viewing them as in V,@, W,. Then zxa =
(,, %, + a,) € W, implies z, = 0, hence xz € W,. Thus W, is unitary
in V. Since W, does not contain (0, 0) by (4.1.1), W, is isomorphic
to a positive rational semigroup R, under f: W,— R.,. By (4.1.2)
below, f extends to feHom (V, R%). Therefore fo e Hom (S, R%)\{0}.

(4.1.2) Let S be a CCIF-semigroup and let U be a unitary cofinal
subsemigroup of S. Then every homomorphism of U into R’ extends
to & homomorphism of S into R°.

This is immediately obtained from [4].
The proof of Theorem 4.1 has been completed.

REMARK 4.2. Let S =R, B (Puer B,) Where |I'| = o, R, is the
group of rationals. We note that Hom (S, R%) == {0}, yet S is not of
finite rank. Thus the converse of Theorem 4.1 does not hold.

Next we consider the relation between nontriviality of Hom (S, R%)
and the property

(4.3) 6 a"S =@ for some aeS.

ProPOSITION 4.4. If Hom (S, RY) = {0}, then there is an clement
ac S satisfying (4.3).

Proof. Let heHom(S, R%), h+# 0. There is aeS such that
h(a) # 0. Choose a as a standerd element. We have C, = @ by
Proposition 2.7 and then have (4.3) by Proposition 2.11.

The converse of Proposition 4.4 is still open.
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Problem 4.5. Let S be a CCIF-semigroup. If N, a"S = @ for
some a €S, then is the following true

Hom (S, R",) +# {0}?
However, we give a few examples with respect to the related

problems.

ExAMPLE 4.6. Let Ny-,a"S = @. There does not necessarily
exist # € Hom (S, R%) such that (a) = 0.
Let S = ((Z%; ®)) where @: Z? — Z is defined by

P(m) =1 —m*.

It can be easily shown that @ is a normal defining function on Z2°,
and that if ¢ = ((1, 0)), N3, ¢"S= @. Every element f, of Hom(Z?, R)
has the form

fi(m) = tm teR,
but there is no ¢ satisfying
o(m) + f(m) =1 —m*+tm =0 for all meZ! .

By Proposition 2.6, (2.6.1), there is no € Hom (S, R’) with h(a) = 0.
However the projection A,: S— Z! is a nontrivial element of Hom (S, R?,)
such that hia) = 0. Thus Hom (S, R%) = {0} and so Example 4.6 is
not a counterexample to the converse of Proposition 4.4. In fact the
semigroup S is an N-semigroup.

ExXAMPLE 4.7. We exhibit an example of a CCIF-semigroup S
which satisfies

ﬁa"S;ﬁ @ for all €S,

and hence Hom (S, R’) = {0}.
Let S={(a, +++, @n):Mm,a,€Z,,a;€%, 1 <1 < m}
and define a binary operation on S as follows: if m < =,

(a'n % a'm)(bu *t % bn) = (bu ) bn)(a'u ) a'm)
= (0'1 + bu vy Ay T+ bm’ bm+1’ ] b%) .
Then, with this product, S is a CCIF-semigroup. Let S, = Z, and

S, =2Z"*%x Z, for ¢t >1. Then S is the union of the infinite chain
of S’s, S=Ux, S, and S;S; = 8S;if 1 <j. If aeS, then

NaS=US..

i>m
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DEFINITION 4.8. A semigroup S is called an -semigroup if S
is isomorphic to a subsemigroup of an N-semigroup.

THEOREM 4.9. Let S be a CCIF-semigroup. S is an N-semigroup
if and only if

Hom (S, R,) # @ .

Proof. Assume that S is a subsemigroup of an -semigroup 7.
By [6, 7] there is an he Hom (T, R,). Let h, be the restriction of A
to S. Then h, € Hom (S, R.).

Conversely let Hom (S, R,) # @. By Proposition 2.7, C, = @.
By Theorem 2.2 and its Corollaries, S = (C; #) where C is a CCI-
semigroup and @ € DNfn (C, R); and S is isomorphic to a subdirect
product of a subsemigroup P of R, and C,S= P x C. Let Q@ be
the group of quotients of C. Then P X;C is a subsemigroup of
the direct product R, X @, but the last direct product is an N-
semigroup. Consequently S is an '-semigroup.

The two concepts, N-semigroup and W'-semigroup, are independent
of each other.

ExAMPLE 4.10. Let S=Z,U(Z x Z,). A Dbinary operation is
defined to be the same as Example 4.7, that is, S is a subsemigroup
of the semigroup in Example 4.7. Sis an W-semigroup, but we prove
Hom (S, R,) = @ as follows:

Letxe Z, and (a, a;) € Z X Z,. There exists (b, b,) € Z X Z, such
that
x-(b, b) =(a,a,).
Suppose heHom (S, R,) = @. Then
hx) < h(a,, a,) for all xe€Z, and all (a, a,)eZ X Z, .

In particular n(1) < (e, a,), but there is x € Z, such that z-A(1) >
h(a,, a,). Accordingly A(x) = x-h(l) > h(a, a,). This contradiction
proves Hom (S, R,) = &, hence S is not an N'-semigroup.

ExAMPLE 4.11. Let S be the free commutative semigroup generated
by infinitely countable letters a, a,, ---, @,, ---. (The empty word is
not considered.) S is obviously a CCIF-semigroup and Hom(S, R,)# @
since

a;’:x...a;’l“k|___>ml+ cee 4+ m,

gives a homomorphism of S into Z,. However S is not an N-semi-
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group, as the greatest semilattice homomorphic image of S does not
have a zero.

REMARK. According to his recent personal letter to one of the
authors, Professor Yuji Kobayashi, Tokushima University, has nega-
tively answered Problem 4.5 by showing a counter example.
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