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COMMUTATIVE CANCELLATIVE SEMIGROUPS
WITHOUT IDEMPOTENTS

H. B. HAMILTON, T. E. NORDAHL AND T. TAMURA

A commutative cancellative idempotent-free semigroup
(CCIF-) S can be described in terms of a commutative cancel-
lative semigroup C with identity, an ideal of C, and a function
of C X C into integers. If C is an abelian group, S has an
archimedean component as an ideal; S is called an ^-semi-
group. A CCIF-semigroup of finite rank has nontrivial
homomorphism into nonnegative real numbers.

l Introduction* In this paper, a commutative cancellative
semigroup without idempotent is called a CCIF-semigroup (in which,
by "IF" we mean "idempotent-free") and a commutative cancellative
semigroup with identity is called a CCI-semigroup. In particular,
an $ft-semigroup is an archimedean CCIF-semigroup. The structure
of ^-semigroups has been much studied [1, 2, 3, 6, 7, 8] and also it
is well known that every CCIF-semigroup is a semilattic of 9ΐ-semi-
groups. In this paper CCIF-semigroups will be studied by means of
the representation by the generalized ^- and ^-functions and also
through homomorphisms into the nonnegative real numbers.

Throughout this paper, R denotes the set of real numbers; R
the set of rational numbers; R+ the set of positive real numbers; R°+
the set of nonnegative real numbers; Z+ the set of positive integers
and Z\ the set of nonnegative integers. Each of these is a semigroup
under the usual addition. If S is a semigroup and if X is a sub-
semigroup of the group R, then the notation Horn {S, X) denotes the
semigroup of homomorphisms of S into X under the usual operation.

At the end of §1 we show that if S is a CCIF-semigroup,
Horn (S, R) Φ {0}, and the homomorphism group is transitive in some
sense. In Section 2 we shall try to generalize the representation of
^-semigroups to CCIF-semigroups. It will be understood as the so-
called Schreier's extension to build up complicated CCIF-semigroups
from simpler CCIF-semigroups. Most of the results in [7] will be
extended to CCIF-semigroups. In §3 we shall treat the important
case, i.e., the case where the structure semigroup is a group. Such
a CCIF-semigroup will be called an ^-semigroup. In §4 we shall
show that every CCIF-semigroup of finite rank has a nontrivial
homomorphism into R°+. In particular we will characterize CCIF-
semigroups S having the property Horn (S, R+) Φ 0 .

(1.1) Let S be a GGIF-semigroup. Then x Φ xy for all x, y e S.
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Proof. Suppose, for some x,yeS, we have x = xy. Then xy =
xy2 which implies y = #2 by cancellation. This is a contradiction.

PROPOSITION 1.2. Lβέ S δe a CGIFsemigroup.
(1.2.1) Horn (5, R) is a nontrivial vector space over the field R.
(1.2.2) For each ae S and each reR,rΦθ, there is an

h 6 Horn (S, R) such that h(a) = r.

Proof of (1.2.1). Let S be a CCIF-semigroup. Let Q(S) be the
quotient group of S (i.e., the group of quotients of S), and D(S) be
the divisible hull of Q(S)

e
pe Δ

D(S) is a direct sum of copies Ra of the group of rational numbers
under addition and quasi-cyclic groups Cip™) with respect to prime
number p. We view S as a subsemigroup of D(S). Let πa be the
projection of D(S) upon i2α for each aeΓ. Let x be an element of
S. Suppose πa(x) = 0 for each aeΓ. It follows that xe®pedC(p°°),
a torsion group* This is a contradiction as α? has infinite order.
Thus, for some aQeΓ, πaQ(x) Φ 0. Note that πaQ eHorn(S, Λ) and is
not the trivial homomorphism. It is obvious that Hom(S, R) is a
vector space over R in the usual way.

Proof of (1.2.2). Let ae S and reR be given. In establishing
(1.2.1), we have shown that there exists hλ e Horn (S, R) with h^a) Φ 0.
Let s = Ai(α). Now define h by fe = (r/s)^. Then fe(α) = r, and

,i ί) .

2* Schreier Extension* We consider the following problem.
Let C be a CCI-semigroup and ε be its identity. Given C, find all
CCIF-semigroups S such that there is a homomorphism 0* of S onto
C satisfying the condition.

In this section we shall show that S always exists for every C and
shall describe S in terms of elements of C, integers and a certain
function of C x C into the integers. The extension S is called a
Schreier extension (of Z+) by C. (The terminology is due to [5].)
Schreier extension by C is significant because we shall see that every
CCIP-semigroup is isomorphic to a Schreier extension by some CCI-
semigroup C.

THEOREM 2.1. Let C be a CCI-semigroup and Ct a proper ideal
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of C. ( d can be empty.) Let I: C x C—» Z be a function which
satisfies

(2.1.1) I(a, β) e Z% if aβ 0 d
(2.1.2) I(a, β) = I(β, a) for all a, βeC
(2.1.3) I(a, β) + I(aβ, 7) = I(a, βΎ) + I(β, 7) for all a,β,ΎeC
(2.1.4) I(ε,a) = l (ε the identity element of C) for all aeC.

Given C, Cl91, the set (C, d'» I) witfe its operation is defined by

(C, d ; I) = {(a, α) e Z x C; x e Z\ if α e CJ

(2.1.5) (a?, αOfo, /5) - (a? + 2/ + I(α, β\ aβ).
Then (C, Q; I) is a CCIF'-semigroup.

Conversely if S is a GGϊF-semigroup, then (S —0,0^ I) for
some C, C191.

Proof. It is routine to prove that (C, Cx; I) is a commutative
cancellative simigroup. To show idempotent-freeness, assume (x, άf=
(x, a), that is, a2 = a and 2x + I(a, a) — x. It follows that a = ε
and # + 1 = 0. Since d is a proper ideal of C, s i d , hence # ^ 0
and we arrive at a contradiction.

Conversely assume that S is a CCIF-semigroup. Let αeS, and
define a relation |0α on S by

(2.1.6) &/0β2/ iff amx — any for some m, neZ+.
It is easy to see that pβ is a congruence relation. To show that
S/pa is cancellative, assume xzρayz. Then αwx^ = αw2/2: for some
m,neZ+. Since S is cancellative, we get amx = any, i.e., xpay.
Obviously axpax for all x e S, that is, the ^>α-class containing a is
the identity of S/pa. Let C = S//t>β. C is a CCI-semigroup. In each
|0α-class define x ^ay by x — amy for some meZ+ where a°y = y.
Because of cancellation, each ^-class forms a chain with respect to
g α . Let T = Γl»=i αΛS and let d be the image of T under the natural
homomorphism S —> C. If Γ ^ 0 , it is a proper ideal of S (since
aίT) and thus d is a proper ideal of C. Under the homomorphism
S—> C we have a partition of S: S = \J?eC Sξ. If f e C\d» Se contains
a maximal element with respect to ^ α ; but if ξeCί9 Sξ contains no
maximal element. For each f e d define pξ to be a^a-maximal
element in Sξ if f e C\CL, and pξ to be arbitrarily chosen from Sξ if
f e d Since d is a proper ideal, e £ C19 hence pε — a because of (1.1).
Then every element of S has a unique expression

x = αmp f where m e Z if ξeQ meZi if f e C\d

Define /: C x C-> Z as follows:
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It is easy to see that I satisfies (2.1.1), (2.1.2), (2.1.3) and (2.1.4). S
is isomorphic to (C, d ; /) under the map ampζ H-> (m, ξ).

The representation ( d Cx; I) of S depends on the choice of a.
The element a is called the standard element of the representation
( d d; I) of S. S/pa is called the structure CCI-semigroup of S with
respect to a; C is the structure CCI-semigroup of (C, Cx; I), and (0, ε)
is the standard element. A function I: C x C-+Z satisfying (2.1.1),
(2.1.2), (2.1.3), (2.1.4) is called an ^-function on (C, d)-

THEOREM 2.2. Let C be a CCI-semigroup, and d be a proper
ideal of C. ( d c&n be empty.) Assume that ψ\ C—+R satisfies

(2.2.1) φ(a)

(2.2.2) φ(e) = 1.
Given C, φ, and C19 define ((C, d>

(2.2.3) ((d d; ^)) = {((» + ^(α), «)): « 6 d x e ^, a? e ^ i/ α ί d}

(2.2.4) ((α? + φ(a), a)){{y + φ(β), β)) = ((χ + y + φ{ά) + φ{β), aβ)).

Then ((C, d; ^)) i>s a GGIF-semigroup.
Conversely every GGIF-semigroup is isomorphic to ((C, d ϊ ^)) /

some C, φ and C19 that is, (C, d ; I) = ((d d ί ^)) ^^cίβr (̂ , α)
((a? + ?>(α), α))f I{a, β) = φ(a) +

Proof. Assume S is a CCIF-semigroup. By Theorem 2.1, we let
S = ( d d ; ^) for some C, I, d By (1.2.2), there is an A e Horn (S, R)
such A(0, ε) Φ 0. Define φ:C-+R by

(2.2.5) ?<«)

If I(a9 β) ^ 0, then (0, α)(0, /9) - (0, ε)/(α'^(0, α/S) implies

/t(0, α) + M0, /S) = /(α, β) A(0, ε) + M0, aβ).

If I(α:, β) < 0, then (0, α)(0, /9)(0, ε)"7^'^ = (0, α:/5) implies

M0, α) + M0, β) - I(a, β) M0, ε) = h(0, aβ) .

In both cases, using (2.2.5), we have
(2.2.6) I(a, β) = φ(a) + φ(β) - φ(aβ) for all a, βeC. It is easy

to see that ψ satisfies (2.2.1) and (2.2.2); and S=(Cf CL; I)=((C, Ct; φ))
under (x, a) H-* ((X + φ{a), a)).

Conversely assume φ satisfies (2.2.1) and (2.2.2), define ((d d? 9̂ ))
by (2.2.3) and (2.2.4), and define / by (2.2.6). Then we can see that
I satisfies (2.1.1), (2.1.2), (2.1.3) and (2.1.4), and ((a?, a))\->{x - φ{ά), a)
gives an isomorphism of ((C, d ί Φ)) to ( d dί I)
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A function φ:C-^R is called a defining function on (C, CΊ) if it
satisfies (2.2.1) and (2.2.2); let Dfn (C, C19 R) denote the set of all
defining functions on (C, CΊ). If φ satisfies (2.2.6) for a fixed /, φ is
called a defining function belonging to /, and the set of all φ belonging
to / is denoted by Df n7 (C, Cl9 R).

COROLLARY 2.3. S is a CGlF-semigroup if and only if S is
isomorphic to the subdirect product of a CGϊ-semigroup C and a
subsemigroup of R by means of φ on C (i.e., by means of φ with
(2.2.1) and (2.2.2) in the sense of (2.2.4)).

COROLLARY 2.4. Let S be a CCIF'semigroup. S is a subdirect
product of a subsemigroup P of R\ and a CGl-semigroup C if and
only if there exists h e Horn ((S, JB+) with h Φ 0.

The problem posed at the beginning of the section is solved, that
is,

&*:((x + <p{a),a)) >a

has kernel K = {((x + 1, e)): x e Z%) and K = Z+ under ((x + 1, e)) -»
x + 1.

Let S = (C, Cx; I).

PROPOSITION 2.5. Let <p0 e Dfnj(C, Cu R) be fixed. Iffe Hom(C, R)
then φ = φ0 +/eDfn z (C, Clf R). Every element ψ of Dfn7(C, C19 R)
can be obtained in this manner.

PROPOSITION 2.6 (2.6.1). Let <p0 e Dfn7 (C, Clf R) be fixed and
/eHom(C, R). Define k:S->R by

h(x, a) = s(x + φo(a) + f(a)) , seR .

ΓΛe^ A G Horn (S, R) Every element h of Horn (S, /ί) satisfying
h(0, ε) Φ 0 can be obtained in this manner.

(2.6.2) Let p: S—+ C be the natural homomorphism. Then every
h of Horn (S, R) satisfying h(0, ε) = 0 is obtained by h — fp where
/eHom(C, R).

Proof (2.6.1). As the former half is easily proved, we prove
the latter half. By (1.2.1) Hom(S, R) Φ {0}, so there is h such that
MO, ε) Φ 0. If x ^ 0,

h(x, a) = Λ((0, ε)*(0, «)) = «• MO, e) + λ(0, α)

= MO, e)(x + ^(α)) = s(x + φ{a))
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where s = h(0, ε); φ{a) = Λ(0, a)fh(O, ε), φ e Df n7 (C, Cx, R). If a; = 0,
(0, s)* is regarded as void. If x < 0, —a — 1 ̂  0, then

MO, a) = h((-x - 1, e)(x, a)) - Λ((0, e)-(a?f a))

= (-x) fo(O, ε) + /&(#, α)

hence A(x, α) = h(Q, ε)(# + 9>(α)). By Proposition 2.5, φ is expressed as
φ0 + f. Thus we have the conclusion.

Proof. (2.6.2) Let h e Horn (S, Λ) with MO, e) = 0. If x ^ 0,
h(x, a) = χ.h(0, ε) + h(0, a) = fe(0, α). If x < 0, fe(0, a) = (-x)-h(Q, ε) +
h(x, a) — h(x, a). Hence h(x, a) = Λ(0, a) for all (α;, α:) e S. Define
f:C-+ R by f(a) = /ι(x, α) where (x, α) 6 S. By the above result, / is
well defined. Now

fp(x, a) — f(a) = h(x, a) , hence h = fp .

It is easy to see that fp e Horn (S, R) with /p(0, ε) = 0.
By the notation S = (C, Cx; /) = ((C, d ; ?>)) we mean that S has

representation (C, Cx; I) and ((C, C^ φ)) identifying (x, a) of (C, d ; I)
with ((a; + 9>(α)f α)) of ((C, CL; ?>)).

P R O P O S I T I O N 2 . 7 . L e t S be a GGΊF-semίgroup. If a e S and if
there is an he Horn (S, i?°+) sucfe ίfeαt fe(α) ̂  0, then Ci — 0 using a
as the standard element.

Proof. Let S = (C, d ; I) - ((C, Cx; φ)) and let α denote (0, ε) in
(C, Cx; /) and at the same time ((1, ε)) in ((C, Cλ; φ)). Let α' e CL. Then
(a?, α) e (C, d; /) for all xeZ. By Proposition 2.6

h(x, a) = A(0, e)(a?

Since /ι(0, ε) > 0 and x is arbitrary, h(x, a) < 0 if, a; < —
contradiction to the assumption. Hence Cί = 0 .

A subsemigroup Γ of a commutative semigroup 5 is called confinal
if, for every x e S, there is a y e S such that #?/ e T. Let S = (CL, C; I).
The following are easily obtained.

LEMMA 2.8.

(2.8.1) If C\Ct contains a cofinal subsemigroup of C, then

C,= 0.
(2.8.2) // C is an abelian group, then Cι—0.

We will now make a further investigation into defining functions

and Cle

Let U denote the group of units of C. Let φ be a function
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C -+R. Define a set Dc{φ) by

Dc{φ) = {aeC: φ(ξ) + φ{η) - φ{ά) < 0

for some ξ, ηeC with a = ξη) .

We define defining functions from the point of C.

DEFINITION 2.9.

(2.9.1) A function φ:C-+R is called a defining function on C
if it satisfies

(φ(e) = 1
\φ{ά) + φ{β) - £>(α£)eZ for all a,βeC.

[Dc(φ)QC\U.

The set of defining functions on C is denoted by Dfn(C, R).

(2.9.2) A defining function on C is called a normal defining
function on C if Dc(φ) = 0 , and a nonnormal defining function on
C if Z>c(<£>) ̂  0 . Dc{φ) is called the nonnormal domain of φ. The
set of normal defining functions on C is denoted by NDfn (C, R).

PROPOSITION 2.10. Let φ: C-+R be a defining function on C.
Let C1 he a proper ideal of C such that Dc(φ) Q Cx. Then φ e
Dfn (C, Clf R). Conversely every defining function on (C, Cx) is a
defining function on C.

The following three cases are possible:
( i ) ^ is normal and Cλ = 0
(ii) φ is normal and Cx Φ 0
(iii) φ is not normal and Cx Φ 0 .

DEFINITION. In each case we consider the CCIF-semigroup
((C, d; <p)). ((C, d ; ^)) is called a normal representation in case (i);
seminormal representation in case (ii); nonnormal representation in
case (iii). In case (i), ((C, d ; φ)) is denoted by ((C; ̂ )). When φ is
normal (nonnormal), the ^^-function I defined by I(a, β) = 9(< )̂ +
φ(^) — φ(aβ) is called normal (nonnormal); the corresponding semi-
group is denoted by (C, d ί )̂> i n particular (C; /) in case (i).

PROPOSITION 2.11. Let S = ((C, d ί Φ)) with standard element a.
Then((C, C^ φ)) is a normal representation if and only if Π^=i α*S= 0

PROPOSITION 2.12. For every GGl-semigroup C there exist normal
defining functions on C. If C is a GCIsemigroup and Cx is a non-
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empty proper ideal of C, there exist nonnormal defining functions
φ such that the nonnormal domain of φ is contained in CL.

EXAMPLES 2.13. Let C be a CCI-semigroup.

(2.13.1) Define ψ by

φ{a) = 1 f or all a e C .

Then φ e NDfn (C, R), and ((C; φ)) = Z+x C.

(2.13.2) Let U be the group of units of C. Let φQ be a non-
negative integer valued normal defining function on U. Define
φ:C~+Z°+ by

. χ \φo(a) if ae U
φ(ά) — \

[c if aeU

where c is a constant nonnegative integer. Then φ is a normal
defining function on C

(2.13.3) Let CΊ be a nonempty proper ideal of C. Define φ by

The <?> is a nonnormal defining function on C such that Dc(φ) Q Cx.
(2.13.4) Assume that ε is the only unit of C. Suppose φ0: C\{e}—>R

satisfies, for all a, β e C\{ε}.

<Po(a) + φo(β) ~ φJLaβ) e Z .

Define φ:C->R by

(1 α = ε

( ) oί Φ ε .

Then ψ is a defining function on C.
As another example, consider the case C = ϋΓJ.
(2.14) Let C = Z\. Let δ: Z + -> Z be a function with 8(1) = 0

and let r be a real number. Define φ: Z\ —• J? by

j
| m r — o(m) m > 0 .

If Dzo+(φ) Φ 0 , take a proper ideal d with C1 2 Dz^{φ). Then <^e

Dfn (C, Ct; R). Every defining function on C is obtained in this

manner. In particular if δ satisfies

δ(m) + d(n) ^ δ(m + n) for all m,neZ+,
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then φ is a normal defining function on C.
We are interested in the important case, i.e., case where C is a

group. In the next section we discuss the structure of ((C, φ)) where
C is a group. Then we will see that Example (2.14) is isomorphic to
a Schreier extension by a group.

3* ^-Semigroups*

DEFINITION 3.1. If S is a commutative semigroup and v eS such
that for all xeS there exist me Z+ and y eS with vm = xy, then S
is called a subarchimedean semigroup and the element v is called a
pivot element of S.

DEFINITION 3.2. An ^-semigroup is a subarchimedean CCIF-
semigroup.

LEMMA 3.3. The pivot elements of a subarchimedean semigroup
form an archimedean component and ideal of the semigroup.

Proof. Let A be the set of pivot elements of a subarchimedean
semigroup S. Let v eA and xeS. There exist meZ+ and y eS such
that vm = xy. Then {vz)m = x(yzm) for every z e S; hence vz e A.
Thus A is an ideal of S. To see that A is archimedean, let u, v eA.
Then there exist m 6 Z+ and y eS such that vm = uy, therefore
vm+1 = u(yv) and yv e A. Therefore A is archimedean. Let AQ be
the archimedean component containing v e A. Obviously A Q Ao. Let
u e i 0 , so un = vy for some neZ+f some yeS. Let zeS. As
vei ,v f c = ̂  for some keZ+, some t e S . Then unk = i Y = z(£#*),
hence u e A , A 0 £ i . Thus we have proved A = AQ.

LEMMA 3.4. A homomorphic image of a subarchimedean semi-
group is a subarchimedean semigroup.

Proof. Let S be a subarchimedean semigroup, and / a surjective
homomorphism of S onto a semigroup T. Let v be a privot element
of S. Then for all xeS there exist meZ+ and y e S such that
vm = a# Hence (/(t;))m = f(x)f(y), and we see that /(v) is a pivot
element of T.

LEMMA 3.5. Let S be a CCIF'-semigroup. S is subarchimedean
if and only if S/pa is subarchimedean for (some) all aeS.

Proof. If S is subarchimedean then S/pa being a homomorphic
image of S is subarchimedean for all a e S by Lemma 3.4. Conversely,
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if a e S and S/pa is subarchimedean let x denote the ^-class of x e S.
Let v be a pivot element of S/pa. Then for all xeS/pa there exists
meZ+ and y e S/ρa such that vm = xy. Hence, by the definition of
pa we have vmak = xya1 for some fc, leZ+. Therefore, (va)m+k =
x(yaι+mvk) and we see that va is a pivot element of S.

LEMMA 3.6. If S is an %1-semigroup then Hom(S, R°+) Φ {0}.

Proof. By Lemma 3.3, S contains an ϋft-semigroup A which is
an ideal of S. By [2, 7, 8] Horn (A, R+) Φ {0}. Let h e Horn (A, i ί + ) .
Then A Φ 0. Define h:S~*R by /&(#) = Λ(αa?) - Λ(») for aeA and
a? e S . Let α, 6 e A, and a e S . Then Λ(αa ) + h(b) = h((ax)b) = h((bx)a) =
h(bx) + h(a), so h(ax) — h(a) = h(bx) — h(b). Thus h is well defined.
Also, h(xy) = h(a2xy) — h(a2) = h(ax) — h(a) + h(ay) — h(a) = h(x) +
h(y), hence h is a homomorphism. If h(x) < 0 for some xeS, choose
neZ+ such that h(a) + wA(&) < 0. Since axn e A, h(axn) > 0, but
h(axn) = h(a) + nh(x) < 0, a contradiction. Hence h e Horn (S, R°+).
As Λ I A = h Φ 0, Horn (S, Λ°+) ^ {0}.

LEMMA 3.7. Let S be an fl-semigroup. Then aeS is a pivot

element if and only if S/pa is an abelian group.

Proof. Let A be the archimedian ideal of pivot elements of S,

and let aeA. Then A/(pa | A) is an abelian group, and for all xeS

we have (x, xa) e pa where xa e A. Hence S/ρa = A/(pa | A) and S/pa

is an abelian group. Conversely if S/pa is an abelian group then for
all x e S there exists y e S such that a = xy in S/pa. (See the notation
in the proof of Lemma 3.5.) Thus am — xyaι for some τn,leZ+. Hence
aeA.

THEOREM 3.8. Let S be a CGΐF-semigroup, and for ae S let pa

be defind by (2.1.6). The following are equivalent:
(3.8.1) S is an fl-semigroup.
(3.8.2) S/pa is subarchimedean for all ae S.
(3.8.3) S/pa is subarchimedean for some aeS.
(3.8.4) Some archimedean component of S is an ideal of S.
(3.8.5) S/pa is an abelian group for some aeS.
(3.8.6) S ~ (G; I) where G is an abelian group and I is an

^-function on G.
(3.8.7) S is isomorphic to a subdirect product of an abelian

group G and a subsemigroup of R°+ by means of a defining function
φ on G.

Proof. By Lemma 3.5, the first three conditions are equivalent.
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By Lemma 3.7, (3.8.1) implies (3.8.5); obviously (3.8.5) implies (3.8.3).
By Lemma 3.3 and Lemma 3.7, (3.8.5) implies (3.8.4). Assume (3.8.4).
Let / be the ideal and archimedean component, and let a e /, x e S.
Since ax el, am = axy for some me Z+ and some y e I, hence am = x(ay),
that is, a is a pivot element of S. By Lemma 3.7, (3.8.5) holds. By
Theorem 2.1 and Lemma 2.8, (3.8.5) implies (3.8.6). Conversely
if S = (G; I), then G = S/pl0,ε). Thus the first six conditions are
equivalent. To see that (3.8.1) and (3.8.6) imply (3.8.7), let S be an
^-semigroup. By Lemma 3.6, there exists a nontrivial homomorphism
h of S into R°+, and by (3.8.6), S — (G; /) for some abelian group
G and an ^-function I. Let φ(a) = h(0, a)/h(0, ε) for all a e G.
(Clearly we can assume fe(0, ε) Φ 0.) Then by the proof of Theorem
2.2 we have (3.8.7). Finally if we assume (3.8.7), S = ((G; φ)) for
some φ: G—>J2+, then when we define I(a, β) = φ(a) + φ(β) — φ{a, β),
we have S ~ (G; /) as before. Hence (3.8.7) implies (3.8.6). The
proof has been completed.

COROLLARY 3.9. Let S be a GGϊF-semigroup. S is an ^-semi-
group if and only if S/pa is an abelian group for all aeS.

Proof. Let A be the set of pivot elements of S. If S is an
3ί-semigroup then S = A and so S/pa is an abelian group for all ae S.
Conversely if S/pa is an abelian group for all aeS then S — A by
Lemma 3.7. Hence S is archimedian, hence an ^-semigroup.

4* Homomorphisms into /?+• As seen in § 3 every 5ft-
semigroup has a nontrivial homomorphism into R\. The following
question is raised.

Is a CCIF-semigroup nontrivially homomorphic into R°+Ί We
cannot answer this question in general, but in some special case it
is affirmative.

Let S be a CCIF-semigroup. As defined in § 1, Q(S) denotes
the quotient group and D(S) the divisible hull of Q(S).

Θ
pe Δ

where Ra is a copy of the additive group of rationals and C{pco) is
a quasicyclic group. The cardinality \Γ\ of Γ is called the rank of
S. In the present case the rank of S is not zero since φpeάCip00) is
torsion while S is torsion-free.

In particular, assume that S is of finite rank. Let T be the
torsion subgroup of D(S), then D(S) - Γ φ ^ φ φ i ί , where n is
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the rank of S. We can assume Rt Φ {0} for i = 1, , n. Let Pt =
RiΘ Θ Ri for each i = 1, 2, - , n. Then PΛ = Pn_, 0 i?% if n > 1;
and D(S)=T(&Pn if w ^ 1. Let a,σ,σ,πn,τn be the respective
projection homomorphisms:

a: D(S) —-> T , σ: D(S) > Pn , σ = σ\S ,

THEOREM 4.1. If S is a CGW-semigroup of finite rank, then
Hom(S, Rl) Φ {0}. \R\ is the additive semigroup of nonnegative
rationals.)

Proof. S is viewed as a subsemigroup of D(S). We will prove
the theorem by induction on n. Let Vn = πnσ(S), Wn — τnσ(S), V—σ(S),
T = a(S). As D(S) = Γ φ P w , we have

S = Γ' φ s F , and if n > 1 , F = 7* φ s Wn ,

where φ s denotes a subdirect sum, VQPny F»£P»-i, WnQRn, and
T" £ T7, hence Γ' is a torsion group. First we prove

(4.1.1) F does not contain 0.

Suppose F contains 0. There is x e T such that (x, 0) e S. Since
T' is a torsion group, mx = 0 for some m e Z + . Then (0, 0) = (x, 0)m 6S.
This is a contradiction as S has no idempotent.

In case n = 1, S = Γ ' φ , Ŵ  where T^ = 7 c J^. By (4.1.1), ^
must be isomorphic to a positive rational semigroup R[9 say, under
/, i.e., f(W,) - R[, hence / r ^ e Horn (S, i2°+)\{0}

Assume n> 1 and that the theorem holds for all semigroups of
rank i such that ί <* n •— 1. As denoted above,

S=Γ0,7, V^Vn@sWn

where VnQPn^ly WnQRn. We can assume Vnφ{0}, otherwise it is
reduced to the case n = 1.

If 7Λ is a CCIF-semigroup, Fw has a nontrivial homomorphism
/ from Vn into R\ by the induction assumption, hence fπnσe
Horn (S, R°+)\{0}.

If 7 n is a CCI-semigroup which is not a group, then Vn= VήUH
where V'nΦ 0,HΦ <Z>,V'n is an ideal of Vn and it is a CGIF-semigroup,
and JET is a group. Define S' by S' = ((7rner)-l( 70) Π S and ^ - r^(S').
Then Sf is an ideal of S and

S' = F ' ffi T7f

By the preceding paragraph, Horn (S'f R°+) contains a nontrivial
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element /. However, since $' is an ideal of S, / can be extended to
/eHom(S, R°+). In fact / is obtained by defining f(x)=f(ax)-f(a)
where xeS, aeS'. It is easy to show that / is well defined and a
homomorphism. Suppose f(xλ) < 0 for some xx e S. There exists
meZ+ such that mfixj + f(a) < 0. However

mfixj + f(a) = f{ax?) ^ 0

since ax? e S\ This contradicts the assumption. Therefore f(x) ^ 0
for all xeS. Hence Hom(S, R°+) Φ {0}. Assume Vn is a group. Let
Wn = {(0, z): z e Wn) Π V. It is obvious that Wn is a subsemigroup
if Wn Φ 0 . If x 6 V, α has the form a? = (x1? x2) e Vn 0 S TF%, xι e F n ,
2̂ € T̂ Λ Since F w is a group, there exists y2 e Wn such that y =

(-«» l/2) e 7. Then xy = (0, a?a + /̂2) e Wζ. This proves that Wn Φ 0
and it is cofinal in F. Suppose x e V and α, xa e Wn. We write
x = {x19 x2), a = (0, α2) viewing them as in Vn 0 8 TΓΛ. Then xa =
(a?!, cc2 + α2) G ΐ ^ implies xx — 0, hence α? e T7n. Thus TΓW is unitary
in V. Since T^ does not contain (0, 0) by (4.1.1), Wn is isomorphic
to a positive rational semigroup R'n under /: Wn—>R'n. By (4.1.2)
below, / extends to fe Hom (V, R\). Therefore fσ e Hom (S, -β°+)\{0}.

(4.1.2) Lei S be a CGIF-semigroup and let U be a unitary cofinal
subsemigroup of S. Then every homomorphism of U into R\ extends
to a homomorphism of S into R°+.

This is immediately obtained from [4].
The proof of Theorem 4.1 has been completed.

REMARK 4.2. Let S = R+ 0 (®aeΓRa) where ] Γ \ = <*>, Ra is the
group of rationale. We note that Hom (S, R\) Φ {0}, yet S is not of
finite rank. Thus the converse of Theorem 4.1 does not hold.

Next we consider the relation between nontriviality of Hom (S, R°+)
and the property

(4.3) f]anS = 0 for some aeS .

PROPOSITION 4.4. If Hom (S, R°+) Φ {0}, then there is an element
α e S satisfying (4.3).

Proof. Let h eHom(S, R°+), h Φ 0. There is aeS such that
h(a) Φ 0. Choose a as a standerd element. We have C1 = 0 by
Proposition 2.7 and then have (4.3) by Proposition 2.11.

The converse of Proposition 4.4 is still open.
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Problem 4.5. Let S be a CCIF-semigroup. If f|~=i anS = 0 for
some aeS, then is the following true

Ή.om(S,R°,)Φ{0}(!

However, we give a few examples with respect to the related
problems.

EXAMPLE 4.6. Let Πn=iα"S= 0 . There does not necessarily
exist h e Horn (S, R°+) such that h(a) Φ 0.

Let S = ((Zl; φ)) where φ\ Z\ — Z is defined by

φ(m) = 1 — m2 .

It can be easily shown that 95 is a normal defining function on Z+,
and that if a = ((1, 0)), f|~=i α*S = 0 . Every element ft of Hom(^, R)
has the form

ft(m) = tm teR ,

but there is no t satisfying

φ(m) + ft(m) = 1 - m2 + tm ^ 0 for all m e Z | .

By Proposition 2.6, (2.6.1), there is no h e Horn (S, JS+) with Λ,(α) ̂  0.
However the projection h0: S—>Zl is a nontrivial element of Horn (S, /?!+.)
such that Λ0(α) = 0. Thus Horn (S, Λ°+) ^ {0} and so Example 4.6 is
not a counterexample to the converse of Proposition 4.4. In fact the
semigroup S is an ^-semigroup.

EXAMPLE 4.7. We exhibit an example of a CCIF-semigroup S
which satisfies

Π anS Φ 0 f or all a e S ,
71 = 1

and hence Hom(S, R°+) - {0}.

Let S = {(&!, , am): m, am e ^+, ^ e Z , l ^ i < m }

and define a binary operation on S as follows: if m ^ n9

(aιy , αJίδi, , bn) = (δ^ , δJί^, , αm)

Then, with this product, S is a CCIF-semigroup. Let S, = Z4. and
5̂  = Z ί - 1 x Z+ for i > 1. Then S is the union of the infinite chain
of S/s, S = UΓ=iS< and S ^ C S3- if i ^ i . If α e S w then
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DEFINITION 4.8. A semigroup S is called an - '̂-semigroup if S
is isomorphic to a subsemigroup of an 9ί-semigroup.

THEOREM 4.9. Let S be a CCIF'-semigroup. S is an 9ΐ'-semigroup
if and only if

Horn (5, R+) Φ 0 .

Proof. Assume that S is a subsemigroup of an ^-semigroup T.
By [6, 7] there is an Λ,eHom(T, JJ+). Let hλ be the restriction of h
to S. Then h, e Horn (S, iί+).

Conversely let Horn (S, J£+) Φ 0 . By Proposition 2.7, d = 0 .
By Theorem 2.2 and its Corollaries, S = (C; 9?) where C is a CCI-
semigroup and φ e DNfn (C, iϊ); and iS is isomorphic to a subdirect
product of a subsemigroup P of R+ and C, S = P xSC. Let Q be
the group of quotients of C. Then P xsC is a subsemigroup of
the direct product R+ x Q, but the last direct product is an 91-
semigroup. Consequently S is an Sϊ'-semigroup.

The two concepts, ^-semigroup and 9i'-semigroup, are independent
of each other.

EXAMPLE 4.10. Let S = Z+ U (Z x Z+). A binary operation is
defined to be the same as Example 4.7, that is, S is a subsemigroup
of the semigroup in Example 4.7. S is an 0ΐ-semigroup, but we prove
Horn (S, R+) = 0 as follows:

Let xeZ+ and (aιt a2)eZx Z+. There exists (bίf b2)eZx Z+ such
that

x (bl9 62) = (a19 a2) .

Suppose h e Horn (S, R+) Φ 0 . Then

h(x) < h(a19 a2) for all xeZ+ and all (alf a2) e Z x Z+ .

In particular A(l) < h(aιt α2), but there is xeZ+ such that # h(l) >
h(a19 a2). Accordingly h(x) = x h(l) > h(aί9 a2). This contradiction
proves Horn (S, R+) = 0 , hence S is not an 3l'-semigroup.

EXAMPLE 4.11. Let S be the free commutative semigroup generated
by infinitely countable letters a19 a2, , an, . (The empty word is
not considered.) S is obviously a CCIF-semigroup and Hom(S, R+) Φ 0
since

gives a homomorphism of S into Z+. However S is not an 3ϊ-semi-
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group, as the greatest semilattice homomorphic image of S does not
have a zero.

REMARK. According to his recent personal letter to one of the
authors, Professor Yuji Kobayashi, Tokushima University, has nega-
tively answered Problem 4.5 by showing a counter example.
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