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PERMUTATION POLYNOMIALS OVER THE
RATIONAL NUMBERS

CLIFTON E. CORZATT

Nonlinear polynomials, over the rational numbers, which
permute the integers 0,1, --- N are investigated. The func-
tion »(N) represents the minimum degree of all such polyno-
mials. It is shown that

[N—‘Lﬂ] <uN)SN—1 forall N=13.

It is also shown that v(N) = N — 2 for N odd and N = 7, that
YW N)< N—3 for N=2mod 6, and that if ¢ > 0 then (N)=
(N —1)/2)A — ¢) for N sufficiently large.

1. Introduction. We wish to study polynomials with rational
coefficients which permute the integers 0,1, ---, N. Specifically, if
we fix N, then are we able to find nonlinear polynomials of this type
which have degree less than N? If so, how small can the degree
of such a polynomial be? If N >4 we will show that there are
polynomials whose degree is less than N. For certain infinite classes
of integers we can show that there are polynomials whose degree is
less than N —1 and N — 2. Moreover, we show that if ¢ > 0 then
for N sufficiently large the degree of such a polynomial is bounded
below by (N — 1)1 — ¢)/2.

This problem was suggested by Professor L. A. Rubel and arose
in the following context. Polya showed that if an entire analytic
function of exponential type less than log 2 has integer values at
each nonnegative integer, then it is a polynomial. A proof of this
theorem is given on page 175 of Emntire Functions by R. P. Boas.
Rubel conjectures that if an entire analytic function of exponential
type less than © permutes the nonnegative integers then it is the
function f(z) = z. He gives the function f(2) =2z + cos(7z) as an
example of an entire analytic function of exponential type 7w which
permutes the nonnegative integers.

The problem which we study here is an analogue in which we
assume f(z) is a polynomial and that it permutes only the integers
0,1, ..., N. We show that the degree of the polynomial is fairly
large with respect to N or it is of degree 1. Rubel’s conjecture
‘says that an entire analytic function which permutes the nonnegative
integers is of relatively large exponential type (compared to log 2)
or it is a polynomial of degree 1. As far as we know this work
bears no relationship to the extensive collection of papers which

361



362 CLIFTON E. CORZATT

consider permutation polynomials over finite fields. We note that
Professor Charles Wells has compiled a bibliography of these papers.

We begin by defining a somewhat more general class of polyno-
mials. Let f(k) be a function whose domain consists of the integers
0,1, ..., N and whose range is contained in the integers. We denote
the class of all such functions as Z# (N). Given f(k) in F (N) we
define the polynomial

F@) = 7(0) + 2(—f£(0) + f(V) + ---

(1) + x(x — 1) j’(x —-J+1) i (_1)j-kf(k)(';;) 4.
-1 (z—N+1 I Nt N
sl )S (-1 f(k)(k>-

This polynomial is the Newton Interpolation Polynomial associated
with the points (k, f(x)) for k= 0,1, .--, N [3, 44]. Thus, f(x) has
the property that f(k) = f(k) for k=0,1, ---, N.

We are interested in functions in .# (N) which are permutations.
In other words, functions which map the integers 0,1, ---, N onto
themselves. Let 7(k) denote a permutation on 0,1, ---, N and let
S(N) denote the class of all such permutations. There are (N + 1)!
such permutations in .S“(N). The polynomial #(x) which is associated
with #(k) in .&“(N) by (1) is called the permutation polynomial asso-
ciated with z(k).

From (1) it follows that if zn(k) is in .S#(N) then the degree of

f(x) is at most N. The permutations 7(k) =k and w(k) =N —Fk
yield the linear permutation polynomials #(x) = x and #(x) = N — x,
respectively. In order to study the questions posed above we define
(2) uN) =ﬂk)nel£x%m {degree of #(x)|7(x) = x and 7(x) # N — x} .
In other words, if we consider all permutations on 0,1, ---, N then
Y(N) will be the minimal degree of all the associated permutation
polynomials, except for « and N — 2. In §2 we discuss the problem
of finding upper bounds for y(N), and in §3 we obtain a lower bound
for v(N).

2. Upper bounds for ¥(N). When N is 2,3, or 4 the value of
Y(N) can easily be computed by hand. For N equal to 5,6, 7, or 8
we have evaluated ¥(N) on a computer by considering all permutations
on 0,1, ..., N. For N equal to 9,10, 11 or 12 we have considered a
large number of permutations and can establish non-trivial upper
bounds for v(XN). The following table summarizes what we can
conclude about Y(N) by direct computation.
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TABLE 1
u2) =2 u(5) =4 u8)=5 w(11) =9
v(8) =3 u6) =4 W9)=T u12) £9
v(4) =3 u7) =5 1(10) = 8

The above table has inspired the following unanswered questions.
Does N — y(N) become arbitrarily large for large values of N? Does
there exist an increasing sequence of positive integers {a,} such that
the sequence {a, — ¥(a,)} get arbitrarily large for large n?

We can prove the following comparitively weak results. In
Theorem 1 we show that if N is even and N = 4 then y(N) £ N — 1.
In Theorems 2 and 3 we show that if N is odd and N =7 then
Yy(N) = N — 2. Theorems 1,2, and 3 together with the fact that
y(5) = 4 give Y(N) < N — 1 for N= 4. In Theorem 4 we show that
if N=2mod6 and N =8 then y(N) < N —3. We conjecture that
if N> 7 then y(N) < N —2 and in a certain sense Theorems 2, 3,
and 4 give two-thirds of this conjecture. We now proceed with the
proofs of Theorems 1, 2, 3, and 4.

THEOREM 1. If N is an even integer and N = 4 then v(N) =<
N-1.

Proof. We define w(k) in S”(N) to be the permutation which
maps 0 to N, N to 0, and leaves everything else fixed. To show
Y(N) < N — 1 it suffices to show that the degree of 7 (x) is at most

N —1. From (1) it is clear that the coefficient of x in 7\(x) is zero
if and only if

N N
S (—1)”‘"7r0(k)< k) —0.
We have

N N N—1 N
P (~1)”"‘rco(k)( i ) = (—=1)'N + kg]l(—l)N*kk( k)
(by the definition of 7,(k))

Il
M=

N
(=1~ ""Ic( P ) (since N is even)

&
[

1

Il

N N-1

E—1

N1 N-1
— ng‘o (_1)N—k+l< . )
= N1—-1)"(=-1)"*=0.
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In Theorem 2 we show that if N =9 and N = 1 mod 4 then
there is a certain permutation 7, (k) in S°(N) such that the degree
of #(x) is at most N — 2, and thus ¥(N) < N — 2. Before we prove
Theorem 2 we will prove some easy technical lemmas and define 7,(k).

LEMMA 1. Let N be a positive integer and suppose f(k) is in
FZ (N). If r is a nonnegative integer and r < N then

Svr(N ) =0 i =01

iof and only if

N

Z(_l)kf(k)(l\l::i;) =0 for s=0,1, -+, 7.

k=0
Proof. First we assume that

4 N_ y

ﬁ(—l)kf( j)=0forj=0,1,---,r.
=0 k

For 0 < s < r we have

ks [ S8 N} .

$(-1y ) Sl —1yer )

=0 7 ) k=0 k

. N — —j
corwgen(s)N )

N—r-i—s—j)

M=

=
Il

k

]
M=

=
I

0

N—17r
s, ")
s

(by a well-known combinatorial identity [4, 252]). Thus

%(—1)#(15)(12:2) —0fors=0,1,--, 7.

Now assume that

N

z<—1>kf(k)(1>’c:’;) —0fors=0,1, .01

k=0

For 0 <7 < r we have

r—j —_ 7\ ¥ N — N r—i[r — 7\ /N —
> (” ])Z(—l)"f(k)( NEIERCIAY ’)( ")
=0\ s ) &=o k—s k=0 =0\ s kE—s
N N—9
=S vsm(t )
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(by another well-known combinatorial identity [4, 12]). Thus
N i
Sevrw(Y Y=o tori=o, .
=0

LEMMA 2. If n and k are monnegative integers with n = 1 and
k+1=mn, then (n — k)(}g’) =k + 1)<k _";f 1).

Proof. Using the fact that <Z> = (n!/(n — k)k!) we get

(n —k)(’;) = (0~ W

_ n!
=&+ 1)(7@ — (& + )k + 1)!

=(za+1)(kil).

LEMMA 3. If N is an even positive integer and f(k) is in Z (N),
then

N Ni2—

N 1 N
> (—l)"f(k)<k) = 2 (=Df(k) + F(N — k))(k)

k=0 k=0

N
# (3 )

Proof. This follows from the facts that (—1)* = (—1)"* when
N is even and (11\07> = <N1Y— k)

LEMMA 4. If N is an even positive integer then
Niz—1 N N
—1) —1)¥” =0.
DA RIE ()

Proof. We use the fact that z;::o(—l)k(],;’ ) = (-1 =0, and
apply Lemma 3 with f(k)=1 for £ =0,1, ..., N.

LemMMA 5. If N is an integer which is greater than 2, then

2llo) =)+ (2)-o-
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Proof. We have that

HRARHE SR

We now define the permutation =, (k).

DerFiNITION 1. If N = 1mod4 and r is the positive integer such
that N = 47 + 1, then 7(k) is defined by:

(i) =(0)=0.

(ii) If kis odd and 1 £k < 2r — 1, then zw (k) = (kK + 1)/2.

(iii) If & is even and 2 < k < 27, then = (k) = (N + 1 — k)/2.

(iv) If kis odd and 2r + 1 <k < N — 4, then

(v) If kiseven and 2r + 2 <k < N — 3, then

N+1+Ek

771(15) = 2

vi) z2(N—-2)=2r+1,7(N —1)=2r + 2, and 7 (N) = N.
For example, if N = 17, then » = 4 and =, (k) is given in Table 2.

TABLE 2
k 0123456178 9 10 11 12 13 14 15 16 17
(k) 01 8 2 7 3 6 4 5 13 14 12 15 11 16 9 10 17

It must be shown that w(k) is in fact a permutation.

LEMMA 6. If N = 1mod4 then the function w (k) of Definition
1 is a permutation.

Proof. It suffices to show that 7,(k) is a function which maps
the integers 0,1, ..., N onto themselves. It is clear from Definition
1 that 0, 2 + 1, 2 + 2 and N are in the image of 7,(k). The following
four statements also follow from Definition 1.

(i) If1£k<r, then1 <2t —1=<2r—1and 7,2k — 1) = k.

(ii) If r+1<k<24, then 2 N+1—2k<2r and (N +
1 — 2k) = k.

(iii) If 2r +3<k=<3r-+1,then2r + 1 <2N+1—-2k<4r—3
and 7,(2N + 1 — 2k) = k.

v) If 3r+2=<k<4r, then 20 +2=< 2k — (1 +n) = 4r — 2
and 7,(2k — (1 + N)) = k.

So 7,(k) is an onto function and thus a permutation.
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THEOREM 2. If N=9 and N = 1mod4, then vy(N) < N — 2.

Proof. It suffices to show that 377 (— 1)"7r1(k)< 1) =0 and

pin (—l)krcl(k)< I — %) = 0 since this together with Lemma 1and (1)

imply that the degree of 7.(x) is at most N — 2 and thus y(N) =
N -—2.

We begin by showing that the first sum is zero. If welet N=
4r + 1, apply Lemma 3, break the sum into even and odd terms,
and evaluate 7,(k) by Definition 1 we get that

jz" (—1)kn1(k)<N . 1) - [(m« + 2)(40’" ) + g 6r +2 — 2k)(;’;ﬂ

4r =1 4r
— [(21' + 2)( 1) + kz;l(2r + 3 + 2k)<2k + 1)}
4r
+ (r + 1)(27‘) .

We now add (r + 1)>35' 2(— 1)"(4"') to the sum and subtract
2r + 2)(—1)* <4r> from each term for which k. =0,1, ---,2r — 1 to
get

Sevmmt )= o Sx-n(]) + ()

r—1 4
+35 [(47' - 2k)<22) — @k + 1)(% ! 1)} .

The first expression is zero by Lemma 4 and the second expression
is zero by Lemma 2.

Now we must show that >,0= (— l)knl(k)< 1) = 0. Again we
let N=4r + 1, apply Lemma 3, break the sum into even and odd
terms, and evaluate m (k) to get that

Nt N-—-1 4r 4r 4r
;ﬁ(-l)%&k)( . ):(47'—1—2)((1)—<O>)+(6r+1)<3)
or + )" S (67 + 3 Zk( ar

-+ )(2)+[§:3("+ - )Zk—l)

—@r+ 210)(2’641 2)} —3r+ 1)(;1:) .

This time we add —(3» + 1)(22"‘ @)— 1)"<4r>> to the sum, sub-
tract — (67 4+ 2)(— 1)( ) from each term for which k=0, 1,
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2r — 1, and split the term involving (‘fg’) to get;
S -armn = ~6r+ 1) Sacv(]) - (51)]
+[2(5) - (1) 5]
+ z [(47‘ + 2 + 2)( i ) @k — 1)(2k4i 1)} .

The first part of the right side is zero by Lemma 4, the second by
Lemma 5, and the third by Lemma 2. Thus the proof of Theorem
2 is complete.

We now wish to get a similar result for N = 3 mod 4. We begin
by defining a function 7y(k) in & (N) where N = 3 mod 4.

DErFINITION 2. If N is a positive integer and N =3 mod4 and
r is a nonnegative integer such that N = 4r + 3, then 7y(k) is defined
by the following conditions.

(i) If k is even and 0 < k < 2r then wy(k) = k/2.

(ii) If £ is odd and 1 <k < 27 + 1 then my(k) = (N — k)/2.

(iii) If k is evenand 2r + 2 < k < N — 1 then my(k) = N — (k/2).

(iv) If k is odd and 2r + 8 < k < N then 7,(k) = (N + k)/2.
For example, if N = 15 then 7.,(k) is given in Table 3.

TABLE 3

7 8 9 10 11 12 13 14 15
4 11 12 10 13 9 14 8 15

k 0
ns(k) 0

We must show that w,(k) is a permutation.

LemmMA 7. If N = 4r + 3 where r in nonnegative, then the
Junction wy(k) of Definition 2 is a permutation.

Proof. It suffices to show that z,(k) maps 0, 1, ---, N onto itself.
The following four statements, which follow from Definition 2 show
that 7,(k) is onto.

(i) f0<k=<rthen 02t <2r+1 and 7,(2k) =k

(ii) If »r+1<k<2r+1 then 1< N-2k<2r+1 and
(N — 2k) =

(iii) If2r +2<k<38r+2then2r + 2 <2N -2k < 4r + 2 and
Ty (2N — 2k) = k.

(iv) f3r+3<k=<4r+3then2r +83<2k -~ N<4r + 3and
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w2k — N) = k.
Thus 7,(k) is a permutation.

THEOREM 3. If N =7 and N = 3mod 4 then »(N) < N — 2.

Proof. It will suffice to show that Zi":o‘(—l)"ns(k)(N I: 1) =0
and that zgﬂ(—nkns(k)(l,\c’ 1) =0 by Lemma 1and (1) We begin

by showing that the first sum is zero. We let N = 4r + 3, apply
Lemma 3, evaluate m,(k) by Definition 2, and separate the even and
odd terms to get

et N-1 4+ 2
kz_‘,_o(—l)"rcs(k)( . ):(2r+2)(r;_)

- 4r + 2
+[kz_‘,_1(2r+2+2k)( o )
4r + 2 dr + 2
—-(67'+5-—2k)(2k_1)}—('r+1)<2r+1) .

If we add (r + 1)(Cis, 2(—1)* dr + 2 to the right side of the
k

equation and subtract (27 + 2)(—1)’°<4r Ij 2> from each term for k =

01,...,2r, we get

N—1 N —_— 1 2r 4 2 4 2
5 (—ka(k)( . ) = (r+ 1)[;2(—1)k( . ) - (2: j: I)J

.o (4r+2
+ Lz:; (2k)( ”2;; ) — (4 +2)
4
— (2 — 1))(2;; J_“ m .

The first term is zero by Lemma 4 and the second is zero by Lemma
2. Thus 3= (-—1)"7r3(k)(N v 1) = 0.
We still have N = 4r + 3 and now show that

: N-1
kZﬂ(——l)"na(k)( L 1) ~ 0.

We make a change of index, letting % run from 0 to N — 1, apply
Lemma 38, separate the even and odd terms, and evaluate m(k) by
Definition 2 to get
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2r+1

-2 dr+2
. 1) (67'+4—2k)( ok )J

5 N-1
;1(—1)’:7:3(@( k—l) = —(6r+4) (47':2) + @+ 2)( +2>
{z @k + 21~+1)(

We now add —(8r + 2)(2” 2(—1)"(4"' lj_ 2>> to the right side and

subtract — (67 + 4)(— 1)’“(47' + 2) from each term for k= 0,1, «.., 27,
to get

N N —
S -oma ) )

1
o . dr + 2 4r + 2
= —8r + 2)[; 2(—1) ( k ) - (2r + lﬂ
+ [g‘ —(4r + 2 — 2k + 1))< o i) +2k(4r22 2” )

The first expression is zero by Lemma 4 and the second is zero by
Lemma 2. Hence >, (— 1)’“7c3(k)(N 1) 0 and the proof of Theorem
3 is complete.

COROLLARY 1. If N = 4 then vy(N)< N — 1.

Proof. This follows immediately from Theorems 1, 2, and 3
together with the fact that v(5) = 4 from Table 1.

COROLLARY 2. If N=1T and N is odd then Y(N) < N — 2.

Proof. This follows from Theorems 2 and 3.

We now turn our attention to the set of positive integers which
are congruent to 2 modulo 8. We will show that y(N) < N — 3 for
these numbers, and we note that 3 is the largest value of N — u(N)
which we have found. Again, we begin by defining a function on
0,1, .-, N where N=2mod6 and N = 8.

DEFINITION 8. If N = 8 and N = 2 mod 6 we define (k) in & (N)
by the following 4 statements.

(i) If k=0 then 7(k) =0 and if £ = N then m(k) = N.

(ii) If k=1mod6 or k = 4mod 6, then w(k)=Fk

(iii) If k¥ =2mod 6 and k = N or k = 8 mod 6, then m,(k) =k + 3.

(iv) If k=5mod6 or ¥ = 6 mod 6 and k = 0, then (k) =k —

For example, if N = 14 then 7,(k) is given in Table 4.
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TABLE 4
k 01234567 8 9 10 11 12 13 14
mao(k) 0156423711 12 10 8 9 13 14

As with 7, (k) and 7y(k) we must show 7,(k) is a permutation.
LEMMA 8. The function wk) of Definition 3 is permutation.

Proof. It suffices to show that m,(k) maps 0,1, --., N onto them-
selves. It is clear from Definition 3 that 0 and N are in the range
of m(k). The following statements also follow from Definition 3 and
give that w(k) is onto.

(1) If k=1o0or 4mod6 and 1 < k < N, then 7,(k) = k.

(ii) If F=20or3mod6andl <%k < N,thenl <k + 8 < N and
w(k + 3) = k.

(iii) If k=5 or 6mod6 and 1<k < N, then 1<k —-838< N
and 7w (k — 3) = k.

Thus 7,(k) is a permutation.

Before we prove Theorem 4 we give two more lemmas.

LEMMA 9. If N = 0 mod 6 then the following three identities hold:

(i) (Q’)+(§’)+(§’)+---+(%)=(1/3)(2n+2).
(ii) (11\’)+(f)+(17\’)+---+<Nl\_72)=(1/3)(2n-1).
@ (3)+(F)+(§)+ - +(xY1)=ame-1.

Proof. These follow immediately from a well-known combinatorial
identity. See, for example, Netto [4, 248].

LEMMA 10. If N and i are non-negative integers then
N+i N
g (—1)%( )=o0.
= k—1

Proof. By a change of index we have that

& k N — u 1)+t (N
k};,‘i(—l)k(k_ )‘,,Z:o( 1) (k+z)(k)

)

N N ¥ N
=iy E () + o S
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. ) X N-1
= (=D)L — D + (—1) 3 (1N )
k=1 kE—1
! N-1
- (—1)‘NNZ(—1)”‘( )
k=1 k
= (—1)*"NL - 1)"'=0.
THEOREM 4. If N=2mod6 and N = 8 then v(N) < N — 3.
Proof. It suffices to show that Sh(— 1)"7zz(k)(N 2)

Sia(= 1)"772(70)(N 2) and 3V 27r2(k)(N 2> are all zero; the result

then follows from Lemma 1 and (1) which give us that the degree
of T, (x) is at most N — 3.

We proceed to show that the first sum is zero. Welet N=6r+2
and apply Lemma 10 so

N—2 N —
AEEC

2 & 1)t 5 k(GT)
L) = Eevam-n(}) -

Now we break the sum into three parts according to congruence
classes mod 8 of k, and apply Definition 3 which yields

N2 N —2 WA T4
—1)em(k - _ 0+3
2 ( )”()( k )— 33 (30)+ 0+ kzo(sk+2>
It follows by Lemma 9 that the expression on the right is zero. Now

we turn to the second sum. Since N = 6r + 2, it follows from Lemma
10 that

Nl N —2 6741 6
S oy 1) =S e vmm-n(, )

Again, breaking the sum up according to residue classes mod 3 and
applying Definition 3 we get

Nt 2 r—1 Lid 6
(- 1)kﬁ2(k)(k_1>—o+ z( 71)“3,,2:(3;011)'

This expression is equal to zero by Lemma 9.
Finally, we again apply Lemma 10 to get

N N—-2 6r+2 6
8 omy ) =Sevmn -, ).

Using the above decomposition of the sum and by applying Definition
3 we have that
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S -ome(Y 5 = (3 z(3k) 1) o+ (-af (3:i 2)):

This expression is equal to zero by Lemma 9, and the proof of Theorem
4 is complete.

We now state a corollary which says that w(N)< N — 2, “two-
thirds of the time”.

COROLLARY 3. If N=T7 and N=1,2,3, or 6mod 6 then ¥(N) <
N - 2.

Proof. This is an immediate consequence of Theorems 2, 3 and 4.

3. Lower Bounds for y(N).

We proved in Section 2 that if 7(k)is a permutation on 0, 1, -+, N,
then ¥(N) < N for N = 4. In this section we will show that y(N)
cannot become too small if N is sufficiently large. In fact, we show
that for large values of N that the value of ¥(IN) ecannot be appreciably
smaller than N/2. Again we concern ourselves with functions in
F (N); i.e. the integer valued functions whose domain consists of
0,1, .-+, N. If f(k)is in # (N) we are able to associate it with a
polynomial, f(x), by (1).

If 4+ is a positive integer and 7 < N, then it follows from (1)
that the degree of f(x) is at most N — ¢ if and only if

(3) g(—l)”f(k)(N;j)zo for 7=0,1,---,4—1.

DEFINITION 4. We define M to be a (INV + 1) by (i) matrix, whose
entry in row r and column s is (——1)’"1<N ,;' _fi’_ 1). (In Definition 4
and throughout this chapter we adopt usual convention that <]lg> =0

whenever £ > N or £<0.)
For example, if N =4 and ¢ = 3 the matrix M is

o) G} (o)) [+

<
(-0 |- - -
() ) e e o
(2] o] e
ISR
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We wish to consider M as a linear transformation which sends
(N + 1)-dimensional row vectors with integer coordinates into i-dimen-
sional row vectors with integer coordinates. The linear transformation
is determined by multiplying the (N + 1)-dimensional vectors on the
right by M. We denote by Ker M the set of all (N + 1)-dimensional
vectors with integer coordinates whose image is the i-dimensional zero
vector under this linear transformation. We determine a relationship
between Ker M and the functions in # ().

LEMMA 11. The wector ¥ = (vy, vy, -+, ¥y) ts tn Ker M if and
only if the polynomial associated with f(k) = v, for k=0,1, --., N
has degree at most N — 1.

Proof. Suppose ¥ = (vy, ¥y, + -+, Vy) is in Ker M; i.e. v-M = 0; then
by the definition of matrix multiplication we get

N
ﬁv;(—nkv,,( k“):o for j=0,1,---,i—1.
k=0

Thus the function f(k) = v, is associated with a polynomial whose
degree is at most N — 7 by (3).

Conversely, if f(k) is associated with a polynomial, F(x), of degree
at most N — 4, then the vector (f(0), f(1), -+, f(N)) is in ker M by

3).

Thus if we wish to find functions in & (N) associated with poly-
nomials of degree at most N — 4 it would be useful to characterize
Ker M. Specifically we shall find a basis for Ker M.

DEFINITION 5. If j is an integer and 0 < j < N — ¢, then v; is
defined to be the (N + 1)-dimensional row vector

(GGG G
For example, 7, = (0, 0, (g) (g) (g’ ))

LEMMA 12. The vectors vy, Uy, -, Uy—;, taken over the integers,
are o basis for Ker M.

Proof. We must show that %, 9,, ---, vy_; are in Ker M, that
each vector in Ker M can be written in the form >Y= @;v; where
the a; are integers, and that the vectors ¥; are linearly independent.



PERMUTATION POLYNOMIALS OVER THE RATIONAL NUMBERS 375

First we show that %; is in Ker M for j=0, 1, ..., N—1.i.e. v;M=0.
For a fixed 7 this amounts to showing

v E\/N —
ﬁ(—nk(,)( s):o for s=0,1, -+, i—1.
k=0 7 k

This follows from a well-known combinatorial identity since N — s > j.
For example, see Netto [4, 255].

Next we show that each vector in Ker M can be written in the
form >Y=' a;0; where a; is an integer. Suppose w = (W, Wy, -+, Wy)
is in Ker M. Since v; has zeros in the first j coordinates and a 1 in
the (j + 1) coordinate it is possible to find integers a, a,, -+, @x_;
such that w = 377 a,;¥; agrees with w on the first N — ¢ + 1 co-
ordinates. The function f(j) = w; for j=0,1, -.., N is associated
with a polynomial f(x) whose degree is at most N — ¢. Thus f@)
is completely determined by N — ¢ -+ 1 of its values. In particular
f(z) is determined by f(j) =w; for j=0,1, .-, N—4. In other
words, if a vector is in Ker M it is completely determined by its
first N — 1 + 1 coordinates. Since % is in Ker M and agrees with
w on the first N — ¢ + 1 coordinates, we can conclude that % = w and
w = Z}N;)Z a/j—’l}j.

Finally we must show that the vectors 9; are linearly independent.
If 3" a;9; = 0 then we must show that ¢,=a, = -.- =ay_, = 0.
This is clearly true since v; has zeros in the first 5 coordinates and
a one in the (j + 1)** coordinate. Thus the proof of Lemma 12 is
complete.

LeMMA 13. Let p be an odd prime number. If f(k)is in & (N)
and N=p and f(z) has degree at most p — 1, then p divides f(p + r) —
f(r)y for 0 =Zr < N — p.

Proof. Since the polynomial f(x + ») has degree at most p — 1

and passes through the points (0, f(), @, f(r + 1)), -+, (p, f(p + 7))
we can conclude from (3) that

é(—)"f(f-l—k)(i:)—:o for 0<r<N-p.

Thus p divides 32, (—1):f(r + k)<%> and since p divided (%) for

k=12 ---, p— 1 we have that p divides 2= (—1)*f(r + k)<%>, s0
p divides f (7')<18 > + (=Df(r + p)<£>. In other words, p divides
flp +r) — f(r).

We now come to the main lemma of this section. Lemma 14
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together with some well-known results on primes in an interval will
allow us to get lower bounds for v(N).

LEMMA 14. Suppose p is a prime number which is at least T and
N is an integer such that 2p —1 < N < 4p — 5. If n(k) is in S (N)
and the degree of 7(x) is at most p — 1, then #(x) =x or 7(x) =
N —z.

Proof. If #(x) is of degree at most p — 1, then by Lemma 12
there are integers a; such that 3.2 a,;4; = (7(0), (1), - - -, @(IN)) where
the ¥; are the vectors of Definition 5. In other words,

w(0) = ao(‘g) ‘

1 1
w=afy) vol3)

’ _ (p—1 p—1 p—1
"(p"l)““"( 0 )”‘( 0 )+"'+“"‘(p )

. Db D D
”;(p)f“°(0) ral) s ranf,? )

7£('N) = ao<l(\;) + al(J;r) + -+ a,,_l(pl_\f 1) .

If r is an integer such that 0 < » < N — p then n(p + r) — n(r) =
0O mod » by Lemma 13, and since w(k) is a permutation, 7(p + r) —
7n(r) = 0,p where 1 <0, <3 because N < 4p — 5. This gives a
collection of N — » + 1 equations of the form

(7)o (037 (s
" ((i i :) - (p i 1)a,,_1 =8.p.

We focus our attention on certain subsets of p — 1 of these equations.
For example, if 0 <r < N —2p + 2 then #(p + r + j) — n(r + J) =
0,.;0 Where 0 <j < p—2 gives a subset of p — 1 equations. If
0<r<N-—2p+ 2 then we have the system shown on the following
page (equation (5)). If we consider a, a,, ---, a,, as variables and
Oy Oppsy ***y 0,4, @S arbitrary constants then (5) consists of p — 1
linear equations in p — 1 variables. For the sake of brevity we
write the equations in (5) as

(4)
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E(r)=9d,p
E(r+1)=0,.p
Er+p—2)=0,,.p
We now consider the following equivalent system:

E(r) = d,p
E(r +1) — E(r) = (0,4, — 0,)p
E(r +2) — 2E(r + 1) + E(r) = (0,42 — 20,4, + 0,)P

S (- 1>f( )E(T+p—2—3)—p2( 1>’( . 2)6,+,,_2_,~.

In other words, we replace the equation E(r + ¢) = d,,,p with the
+" finite difference of the first ¢ + 1 equations.

We now wish to compute the new coefficients of the @, for
1sk=Z=p—1. If 0<1<p— 2 then the coefficient of a, in the
equation

(PR HY) I (P 1)
e (GG e e
(P R (S R P

p+r+1 r+1\
(5) 4 e (( p—l )—<p~1>)a,,_1 = 5,.“]7

(N e RN
¥ (s B o | PR

5 - oo+ i =) = 0% 0 o

is

R R |
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v R

by a well-known combinatorial identity [4, 252]. We note that
<2;6 i?) — (k i %> =0 when 7=k so an explicit representation of
the new system is at the bottom of the page. This system’s matrix
of coefficients is an upper triangular matrix whose diagonal entries
are (p _1‘_ ’r) - ({) = p. The determinant of the matrix is »*™* so
the system is non-singular and therefore with fixed é’s there is an
unique solution. We now wish to show that either all the ¢’s equal
1 or else they all equal —1.

If we assume that 0 < r < N — 2p + 1, the last equation in the
system (6) is

and this sum is equal to

p—2 (p—2
b, = pz (_1)J< . )5r+P—l—f .
J=0 2

and since » < N — 2p + 1 we can replace r with » + 1 and get the
equation

p=2 (o — 2
Pay_, = pjg(‘) (_1)J< j )3r+p—2~j

Thus
p—2 -2 p—2 [(p—2
z‘( 1)1( )5r+p—1—:‘ - ;}(—D’(p .7 )arﬂ»—z—f
(7) P 1
g‘( 1)1 P j )6r+p—1—:i =0.

<<”f">-<:>>ax+<<p§">—<;’>>az+---

R
kS
|+ =
[N ]
SN——
|

N
(S
— +
=
\_/
/_\
=
S——
\_/
'ﬁ
]
"8
/-\
i—‘
A
<.
A
v
*l
+
=
L
©,
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It is easy to see that (—-1)5<p ; l) = 1 mod p so we get 3220 0,1p i =
Omod p and in particular if » = 0 we get

(8) —13,-.=_Omodp.

3=0

=

il

If we assume that 0 < » < N — 2p we can replace r with » + 1
in (7) so

p—1 3 p — 1 p—1 . p —_ 1
5 (—1)1( ]. )a -8 (—1)1( j )BHM ~ 0

and
(p—1 =l [p—1
s —w(p . )6,+,,-j—§<—1)f(p . )5
J =0 J
=%, o= 0.

Thus Z;’ZD(~1)"< 0,:,-; = 0 mod » and since <§)> =0modpfor 1<

j<p-—1 we get 0, =0,,,modp for 0 <r < N — 2p. Because we
have assumed that N < 4p — 5 and p = 7 we have that 1 < [0,| < 8
and since 0, = J,,, mod p we conclude that

p
J
t

(9) 0,=0,, for 0Zr<N-2p.

We now consider two cases. First we suppose that 2p —1 <
N < 8p — 1 which implies that |9,| <2 for 0 < r < N — p. If there
exists an 7 such that 6, =2 and 0 < r < p — 1 then

(10) w(r + p) = 2p + n(r) .

Let ¢ be the integer between 0 and N with the property z(t) =
w(r) + p. We claim that ¢ = » 4+ 2p. If » 4+ 2p > N this is clear,
and if r + 2p < N then #(r + 2p) — n(r + p) = 6,,,0 = d,p = 2p by
(9) and (10). We add this equation to (10) and get,

w(r + 2p) — w(r) = 4p

which is impossible so ¢ r 4+ 2p, and since 7w(t) %= =(r) and =(t) #
w(r + p) we have that ¢t = r and ¢ # r + p. We conclude that
t#=rmodp. If t+ p=< Nletu =1t + p, and otherwise let w =¢t — p.
From Lemma 13 and the fact that #(¢) = n(r) + » we get

(r) = n(r + p) = 7(t) = n(u) mod p

and 7, r + p, t, and u are distinct. This is not possible for N < 3p — 1.
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Similarly, if 2p —1<N<8 —1land 0<r<p—1 then 9, = — 2.
Soif 0<r=<p-—1 then |4,|] = £1. From (8) we get

Jo=0,=+eo=0,,=1
- or
do=0,= - =08, ,=—1,
and from (9) we conclude that
So=0,= o =0,y ,=1
or
o= 8, = oo =8y, = —1.

In the second case we assume that 3p —1 < N<4p —4 and
that |[0,] > 1 for some r such that 0 <r<p—1. So

n(r + p) — n(r) = 4,p,
and by (9)
w(r + 2p) — a(r + p) = 0,.,p = 0,p .
By adding the equations we get
w(r + 2p) — w(r) = 26,p .

Since we are assuming |0,| > 1 we get |n(r + 2p) — n(r)| = 4p. This
is impossible because N < 4p — 4. We conclude that [0,| =1 for
0sr<p-1.

By applying (8) and (9) as we did above, we obtain

50231:.o~:3N =1

-p
or
30:31: s =51V~—p= —1.

Now we are able to complete the proof of Lemma 14. First we
assume that 0, =0, = ... = dy_, = 1. We have shown that the
system (5) has a unique solution for fixed é’s. If ¢, =1 and @, =
;= +-+=a,, =0 we have a solution, and consequently the only
solution. We conclude that

(71'(0)’ ﬂ(l)y ct ey TE(N)) = a, + 7&1

and since w(k) is in S#(N) it follows that @, = 0. Therefore (m(0),
7‘7(1), R TC(N)) = (O: 1..., N) and ﬁ(w) = X.

Next we assume that 0, =0, = ... =0y_, = —1. In this case
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we get the unique solution if ¢, = —1 and a,=a;= ..+ =a,_, =0.
Thus

(72"(0)’ 77:(1)’ ) ﬂ(N)) = @y, — ¥

and w(k) is in S7(N) if and only if @, = N. Therefore (7(0), (1), ---,
a(N))=(,N—1, ---,0) and #x) = N — 2. The proof of Lemma
14 is now complete.

We now apply Lemma 14 and the theorem commonly known
as Bertrand’s postulate to get an absolute lower bound for v(N)
when N = 18. Bertrand’s postulate states that if N is an integer
greater than 3, then there is a prime number p such that N<p <
2N — 2 [2, 373].

THEOREM 5. We have the inequality

v(N)zN;”

for N=13.

Proof. We claim that if N = 13 then there is a prime number
p such that 2p —1 < N < 4p — 5. This is shown by way of con-
tradiction. If N is the smallest integer without this property then
N =4p — 4 for some prime p. By Bertrand’s Postulate we conclude
there is a prime ¢ such that p <g¢g<2p —2, 80 2¢—1<4p—-5< N
and 49 — 5> 4p — 5. Since N = 4p — 4 we get the 4¢ — 5= N and
thus 2¢ — 1 < N <49 — 5. This contradicts the condition placed on
N.

If n(k) is in (N) with N = 13, p is a prime such that 2p — 1 <
N < 4p — 5, and the degree of 7(x) is at most » — 1, then by Lemma

14 it follows that #(x) = x or #(x) = N — x. We therefore conclude
that y(N) = p —1 and p — 1 = (N — 1)/4, so Theorem 5 is proved.

Next we apply Lemma 14 along with the following consequence
of The Prime Number Theorem.

LEMMA 15. If 0 < e < 1, then there is a number K(¢) such that
for every N > K(e) there is a prime number between N and (1 + €)N.

Proof. A proof is given in Hardy and Wright [2, 3T1].

We now show that if N is sufficiently large then v(XN) is bounded
below by a number which is just a bit smaller than (N — 1)/2.

THEOREM 6. Given ¢, such that 0 < e <1, if N is suffictently
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large then v(N) = (N — 1)/2)1 — e).

Proof. We choose K(¢) as in Lemma 15. We claim that for
N > 4K(¢) there exists a prime number p such that 2p —1 < N <
(21 + e)p) — 1. We prove the claim by way of contradiction. Let
N, > 4K(¢) be the smallest integer which does not satisfy the claim.
It follows that there is a prime p, such that N, = [2(1 + ¢)p,] for
this is the first integer greater than (2(1 + ¢)p,) — 1. Since 4p, > N
we have p, > N,/4 > K(¢), so by Lemma 15 there is a prime ¢q such
that p, <q¢ < (1 + ¢)p,. This implies that 2¢ —1 < 2(1 + ¢)p, — 1
and since N, = [2(1 + €)p,] we have 2(1 + ¢)p, — 1 < N, s029 —1 < N.,.
Moreover, since 2(1 + €)(g — p,) > 1 we have 2¢(1 + ¢)—1 = 2p,(1 + ¢)
and 2p,(1 + &)= N, so 2¢(1 +&é)—1=N,. We now have 2¢ —1<N, <
29(1 + ¢)—1 where ¢ is prime and this contradicts our assumption
for N..

If N> 4K(e) and 7w(k) is in .S“(N) there is a prime p such that
2p —1 X N=<21 + ¢)p — 1. Thus if the degree of 7(x) is at most
p — 1 then by Lemma 14 we have that #(x) =2 or @(x) = N — x.
But,

N+1
— — —1<p»p-1
2it+e P
S0
N+1
Ny=— ~- —
g )—2(l+e)
N—-1
> 1—¢).
= 2( €)
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