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PROPERTIES WHICH NORMAL OPERATORS SHARE
WITH NORMAL DERIVATIONS AND

RELATED OPERATORS

JOEL ANDERSON AND CIPRIAN POIA?

Let S and T be (bounded) scalar operators on a Banach
space £T and let C(T, S) be the map on &{£?), the bounded
linear operators on ^ defined by

C(Γ, S)(JSΓ) = TX-XS

for X in &(£?). This paper was motivated by the question:
to what extent does C(TfS) behave like a normal operator
on Hubert space? It will be shown that C(T, S) does share
many of the special properties enjoyed by normal operators.
For example it will be shown that the range of C(T, S) meets
its null space at a positive angle and that C(T,S) is
Hermitian if T and S are Hermitian. However, if £f is a
Hubert space then C(T, S) is a spectral operator if and only
if the spectrum of T and the spectrum of S are both finite.

We now indicate our results in greater detail. Let έ%f be a
Hubert space and let JV be a normal operator in &(£{f). Then N
enjoys the following properties.

(A) &(N) is orthogonal to ^V{N), where &(N)(^T{N)) donotes
the range (null space) of JV.

(B) &{N)~ © ^Γ(N) = £gf, where the bar denotes norm closure.
(C) There is a resolution of the identity E(-) supported by

σ(N) such that

N = f XdE ,
Jσ(JV)

where σ(N) denotes the spectrum of N. That is, N is a scalar
operator.

(D) If x 6 E({X})£ίf for some complex number λ, then Nx = Xx.
(E) JV has closed range if and only if 0 is an isolated point in

σ(N). (We adopt the convention that 0 is isolated in σ(N) if
Oίσ(N)).

(F) The norm, spectral radius, and numerical radius of JV are
equal.

(G) The closure of the numerical range of JV is the convex
hull of the spectrum of N.

In §§ 1, 2, and 3 of this paper we show that appropriate versions
of (A), (D), and (E) hold for C(T, S). In Section 4 we restrict
ourselves to the Hubert space case and show that (B) is false in
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general. This result enables us to give the characterization of
operators of the form C(T9 S) which are spectral operators which
was mentioned above. In § 5 assuming that T and S are normal
operators on a Hubert space, we show that (G) holds but that in
general (F) is false for C(T, S). We conclude the paper with an
example of a Hermitian operator whose square is not Hermitian.

In the sequel an operator shall be called spectral (scalar) if it
is spectral (scalar) in the sense of Dunford. An operator shall be
called Hermitian if it is Hermitian in the sense of Lumer and Vidav
(see [7]). We shall make use of the theory of decomposable
operators as presented in [3]. If T is a decomposable operator on a
Banach space g? and F is a closed subset of the complex plane C
(or the real line R) we shall usually denote the spectral maximal
subspace of <%f associated with T and F by <^T{F). However, the
spectral maximal subspace of &{<^) which is associated with C(T, S)
and the complex set F shall be denoted by &C{F). The derivation
C(T, T) shall sometimes also be written as Δτ. Following [1], if N
is a normal operator on a Hubert space we shall call ΔN the normal
derivation induced by N.

l It is shown in [1] that if N is a normal operator in &{3ff)
then

\\Y-ΔN{X)\\^\\Y\\

for all X in &(£ίf) and all Y in ^V\ΔN). In this section we
obtain a generalized inequality for C(T, S). Since the proofs are
generally similar to those given in [1], we will be brief.

DEFINITION 1.1. Let ^ and Λ" be (not necessarily closed)
subspaces of a normed linear space <%f. We shall say that ^ C meets

at angle θ (0 ^ θ <: ττ/2) where by definition

sin# = inf {|| m + n\\: me ^ £ ne

If ^ f meets ^V* at angle π/2 we say that ^£ is orthogonal to
It is easy to show that Λ€ meets ^V at angle 0 if and only if
meets ^£ at angle 0 so that if ^£ meets ^Y* at angle a > 0 then
^Ϋ~ meets ^ at angle β > 0. In general, however, a need not
equal β.

If T is an invertible element of &(<gf) then T is said to be
power bounded by K if for some K ^ 1, || Tn\\ ^ K for n =
± 1 , ±2, ..-.

LEMMA 1.2. If T and S are invertible elements of
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which are both power bounded by K then &(C(T, S)) meets
, S)) at angle θ, where sin# ^ 1/K2.

LEMMA 1.3. If S and T are in &(<%f) and iίσ(T)l) σ(S) then
, S)) = &(C(W, V)) where W = (Γ - U)(T + il)'1 and V =

(S — U)(S + il)"1 are the Cayley transforms of T and S respectively.

LEMMA 1.4. Let T and S be scalar elements of &{£f) and let f
and g be real-valued Borel measurable functions on C which assume
only finitely many (real) values. Then the Cayley transforms of
f(T) and g(S) are both power bounded by K for some K > 0.
Furthermore, the constant K does not depend on the particular
choice of f or g.

The proof of (1.2) depends on the following generalization of the
identity used to prove (1.4) in [1]: If X and Y are in &(<£f) and
TY = YS then for each integer n

n—1

fc=O
= TnX - XSn - Σ T*-k-\TX - XS - Y)Sk .

The proof of (1.3) is an obvious modification of the proof of (1.5)
in [1]. (1.4) follows easily from [5, Theorem 7, p. 330] (the constant
K depends only on the norms of the spectral projections associated
with T and S). Note that if T and S are normal operators on
Hilbert space K may be taken to be 1 in (1.4).

THEOREM 1.5. If S and T are scalar operators then there is a
real number θ > 0 such that the range of C(T, S) meets the null
space of C(T, S) at angle θ. If T and S are normal operators on
a complex Hilbert space then &(C(Tf S)) is orthogonal to ^Γ(C{T, S)).

Proof. Let E(-) and F( ) be the spectral resolutions of identity
associated with T and S respectively. Partition σ(T){Jσ(S) into
rectangles δί9 δ2, . , δn and let \ be the midpoint of δt for i =
1,2, * , n . Let X and 7 be in &(<g?) and suppose F is in
^Γ(C(St Γ)). Consider

(*> ! l r " " S :

To prove the theorem, it suffices to show that (*) ^ sin# || Y\\ for
some θ>0 and all possible partitions of σ(T)\Jσ(S). As in [1,
(1.6)], a computation shows that the range of the map X\->

does not change if the λ/s ara
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replaced by any complex w-tuple {μlf μ2, ---,μn} where the μk'a are
distinct. Hence, in (*) we may replace X by a suitable Xx and
meanwhile assume that Xk is real for k = 1, 2, • ••,%. Then, by
(1.3) we may replace Xί by another suitable X2 and replace
Σ5U ^kE(δk) and Σ i U ̂ F(δk) by their Cayley transforms. By (1.4)
these Cayley transforms are power bounded by K. Hence, our first
assertion follows from (1.2) with sin Θ ̂  1/iP. If T and S are
normal operators the constant K in (1.2) and (1.4) may be taken to
be 1. It follows that θ = π/2.

COROLLARY 1.6. // N is a normal operator in &(<%?) and λ,,
and λ2 are distinct eigenvalues of ΔN with corresponding eigenspaces
<£% and <%f2, then J&[ is orthogonal to <%f2 and J3f% is orthogonal
to

Proof. Jg?= ̂ T(ΔN - \I) - ^r(C(N, N) - \I) = <yT(C(N- \I, N))
(I denotes either the identity on £έf or the identity on ^(Jg^)).
If ΔN(X) = X2X then C(N - Xj, N){X) - (λ2 - \)X so X is in the
range of C(N — Xj, N). Hence, by (1.5) <Sf2 is orthogonal to
Similarly, ^ is orthogonal to

2 If S and Γ are scalar operators on <%f, then [3, p. 112]
C(T, S) is a generalized scalar operator and, hence, a decomposable
operator. Thus, &c({x}) is a spectral maximal subspace for each λ
in the spectrum of C(T, S). In this section we prove that ^e({λ})
consists solely of eigenvectors (i.e. (D) holds for C{T, S)) and give
two examples.

THEOREM 2.1. ^({λ}) = ̂ K(C - λl) for each X in σ(C(T, S)),
if T and S are scalar operators in

Proof. Since T — XI is a scalar operator if T is a scalar
operator we may assume X = 0. Let i?( ) and F(-) be the spectral
resolutions of the identity associated with T and S respectively.
Suppose that l € ^ ( J ^ ) and that \\Cn(T, S)(X)\\1/n->0 as w —oo.
Then [3, 4.5, p. 113] E(δ)XF(d) = XF(<5) for each closed subset δ
of C. Hence,

E(δ)XF(Ύ) = #(S n 7)XF(7) - 0

for all Borel subsets 7 with closure disjoint from d. Let δ be a
closed subset of C and let {Ύk} be disjoint Borel sets which cover
the complement of δ and have closures from δ. Then
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E(δ)X = E(δ)XF(UΎh) + E(δ)XF(δ)

= E(δ)x(± F(Ύk)) + E(δ)XF(δ)

= E(δ)XF(δ) .

Therefore, E{δ)X = XF(S). Since Borel measures are regular and
E(-) and F( ) are countably additive, E(δ)X = XF(δ) for each
Borel set 8 c C and so TX = XS, i.e., C(Γ, S)(X) = 0. The theorem
now follows from [3, 4.4, p. 113].

EXAMPLES Let τ = {λ e C: | λ | = 1} and let U be multiplication
by λ on L2(τ). Thus, U is the simple bilateral shift. Let E( ) be
the spectral measure associated with U. We show that Jv has no
non-zero eigenvalues. For if Δπ{X) = — λX with λ ^ O then as in
(2.1) E(δ)X = XS(& + λ) for each Borel set δ(δ + λ is the translate
of δ by λ). Therefore,

X = E(T)XE(T) = XS((r + λ) n r) .

But (τ + λ) n τ consists of at most two points and £7({μ}) = 0 for
each μ in C; thus X = 0.

On the other hand, if M is multiplication by x on L2(0,1) and Wa

is the operator defined on L2(0, 1) by

J ( 0 if a? < α

where a e (0, 1) is fixed, then a simple computation shows

MWa- WaM=aWa.

Thus, depending (in part) on the geometry of the spectrum of
T, ̂ Γ({λ}) may or may not be empty.

3* Our goal in this section is to show that (E) holds for

, S).

THEOREM 3.1. If T is a decomposable operator in &(<%?) such
that the range of T is closed and the range of T meets the null
space of T at angle θ > 0, then 0 is an isolated point of the
spectrum of T.

Proof. Since &(T) is closed, by the open mapping theorem
there is a constant M > 0 such that each y in &(T) has the form
y = Tx where xe^? and ||a?|| <LM\\y\\. Also, since &(T) meets

at a positive angle, ^Γ(T) meets ^P(Γ) at angle φ > 0.
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For each r > 0 let Fr = {λe C: | λ | ^ r) and let Tr = T\χτiFr). Then
σ(Tr) Q Fr so Γ71 exists and is bounded. Let l/r0 = ikf/sin £>. We
show that II Γ Γ 1 II ^ Vn for all r > 0 If yeJ^τ(Fr) then y e &(T)
so y = Tx for some x e <%f with \\x\\ ̂  M\\y ||. Let w = x — Γ^1^.
Then Tw = 0 so, since ^V(T) meets ^ ( Γ ) at angle 9

s in^HΓΓ 1 * ! !^ II w + Γ ^ H = | | a | | ̂  Jf HlHI

Since y was arbitrary, || T71 \\ ^ ikf/sin φ = l/r0. It follows that
σ(Tr)czFro for all r > 0. Indeed, if Tr - λJ were not invertible for
some λ in C with 0 < | λ | < r0 then because Tr is a decomposable
operator, | | (Γ r — λJ)ajn||—>0 for a sequence xn of unit vectors in
J??τ{Fr) and

1/1 λ I - II 2VXIII ^ (1/1 λ I) II xn - \T7ιx% ||

so that || T71\\ ̂  l/ |λ | > l/r0, a contradiction. Thus, σ(T) c Fro U
{λe C: I λ I < r} for all r > 0 and so 0 is an isolated point of σ(T).

EXAMPLE 3.2. Let V be the Volterra operator defined on I/2(0,1)
by

(Vf)(x)= [f(t)dt.
Jo

Then V is an injective compact quasinilpotent operator with dense
range. Hence, V is a decomposable operator such that 0 is an
isolated point of its spectrum and &(V) is orthogonal to
^4^(V)(= {0}). However, since 7 is a compact operator, its range
cannot be closed.

Recall that Lumer and Rosenblum have shown [6] that for any
T and S in

σ(C(T, S)) = σ(Γ) - σ(S) = {λ - μ:Xeσ(T), μeσ(S)} .

It follows easily that 0 is an isolated point of σ(C(T, S)) if and only
if σ{T) Π σ(S) consists of points which are isolated in both σ(T)
and σ(S). When this occurs we shall say that T and S have almost
disjoint spectra.

THEOREM 3.3. // T and S are scalar operators in
then C(T, S) has closed range if and only if 0 is an isolated point
of σ(C(T, S)). In particular C(T, T) has closed range if and only
if σ(T) is finite.

Proof. As remarked previously, C(Γ, S) is a generalized scalar
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operator; hence a decomposable operator. Furthermore, by (1.5) its
range meets its null space at an angle θ > 0. Thus, if &(C(T, S))
is closed 0 is an isolated point of σ(C{T, S)) by (3.1). Conversely,
suppose that 0 is an isolated point of σ(C(T, S)). Then T and S
have almost disjoint spectra. Let {Xlf , Xn} = σ(T) Π σ(S) and let
E(-) and F( ) be the spectral resolutions of the identity associated
with T and S respectively. Put Pk = E({\k}), Qk = F({Xk}) for 1 ^
A^Λ, Po = I - ΣUP*> an<* Qo = i - Σϊ«i Q*. L e t <̂ 5i = Pi^(^)Qj
for 0 ^ i <̂  w and 0 ^ i ^ n. Then each ^Jy is an invariant sub-
space for C(T, S) and the span of the ^ / s is &{gf). Hence, it
suffices to show that dj = C(T, S)\^i5 has closed range for 0 ^ i,
i <: w. Now if i ^ 0, j" ̂  0 and Γ e ^ then C<i(Γ) = (λ, - λ, )F.
Thus, in these cases Ctj has closed range. Also, if 1 <^ i <^ n and
F e ^ 0, C<0(Γ) = λ ^ Γ - YS = λ^ΓQo - P.ΓQoS = P^Qoίλ,!- S)
Since (λ€I — S) |<?0̂  is invertible (λ, is isolated in σ(S)) Ci0 has closed
range. Similarly, C03 has closed range for 1 <; j ^ n. To complete
the proof we show that Coo has closed range. Note that σ(T\PoJr)Π
σ(S\Q^) = 0 . Choose a real number k so that & > | | S | | + || Γ||
and define S, = SP0 + k(I - Po) and 2\ = Q0Γ - fc(I - Qo). Then
^(SOn^ΓO = 0 and C(T19 Sλ) is invertible on &(gf). Thus, for
each X in &(<%f) there is Γ in &(gf) so that Ϊ \ Γ - YS, = X.
Hence, P0XQ0 = TP0YQ0 - P0YQ0S and so Coo is onto ^ o

4* In this section we restrict ourselves to scalar operators T
and S acting on a complex infinite dimensional Hubert space Sίf.
Eecall that an operator T in &(<%?) is of scalar type if and only
if T is similar to a normal operator [10].

THEOREM 4.1. Suppose that Nt and N2 are normal operators
on a complex, infinite dimensional Hilbert space §ίf and that
σίNJ Π 0(N2) contains a point λ which is an accumulation point
for at least one of these spectra and is either an accumulation point
or else an isolated eigenvalue of infinite multiplicity of the other.
Then there is an operator V in &(J%?*) such that the span of the
null space and the range of C(N19 N2) is orthogonal to the span of V.
In particular &(C(N19 N2)) + ^Γ(C(Nlf N2)) is not dense in

Proof. We assume that λ = lim λn where {λj is a a sequence of
distinct elements in σ(N^). The proof for the other case is similar.
If λ is an accumulation point of σ(N2) choose a sequence [μn] of
distinct elements in σ(N2) so that λ = lim μn. Taking subsequences
if necessary, we may assume that the μ/s are also distinct from
the λΛ's. If λ is an isolated eigenvalue of infinite multiplicity for
N2 take λ = μn.
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Let Ei(-) be the spectral measure associated with JV« for i = 1,2.
Choose disks Dn of radius rn about Xn so that DnΓ\ Dm = 0 if
nΦ m and μnίDm for any n or m. Note that since Xn—>λ, r%—*0.
For each w put Pn = 23ίCDn), and choose a unit vector /Λ in the range
of Pw (Pn Φ 0 since λΛ e <τ(i\ΓL)). If λ is an accumulation point of
σ(N2) choose disks Di of radius K about μn so that DZ Γ) D'm = 0
and DήΓ\Dn= (3 for all m and n. Put QΛ = E2(Dί). If λ is an
isolated eigenvalue of infinite multiplicity for N2 let {Qn} be an
infinite set of nonzero, mutually orthogonal projections such that
Qn <£ E2({X}) for each n. In either case for each n choose a unit
vector en in the range of Qn. Define V on £ίf by Ven = /» and
Fa; = 0 for x in the orthogonal complement of the span of {Qn<^}n=ι
Then y e ^ ( ^ T ) and | | F | | = \\PnVQn\\ = 1 for all n. In fact F is
a partial isometry. Let X and TΓ be in &(£(f) and suppose that
JNΓTΓ= WN2. Then (as in (2.1)) E^W = TΓ^δ) for each Borel set
<5 c C. Let

To complete the proof we show that a ;> 1.

α = α | | P. || | | Q J | ^ | |P.FQ % - PnWQn - {
. - PnXQnN2\\ .

Now E2(Dn)Qn = 0 since JDΛ Π I>ή = 0 and λ ί ΰ , so

α ^ 1 - || ΛΓΛXQ. - xnPnXQn || - || (λ. - μn)PnXQn

Thus,

1 - a £ (|| 2VΛ - λ Λ II + I λ. - Ai. I + || ^ Q . -
^ ( r . + | λ Λ - / i J + < ) | | P T O X w Q J |

which goes to 0 as w—> oo. Hence, a >̂ 1.

THEOREM 4.2. Lβέ Γ and S 6β scalar operators in
The following are equivalent.

(a) C((Γ — λl), S) /ιαs cϊosβcί range for each XeC
(b) C(T, S) is α spectral operator
(c) C(T, S) is a scalar operator
(d) σ(Γ) U σ(S) is

Proo/. Clearly, T - XI and S have almost disjoint spectra for
all λ in C if and only if σ{T) U tf(S) is finite so (a) is equivalent to
(d) by (3.3). If σ(T) U σ(S) is finite then so is σ(C(T, S)). In this
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case the Riesz-Dunford theory implies that C(Tf S) is a spectral
operator and, in virtue of (2.1) it is even scalar. Hence, (d) implies
(b). Since the implication from (c) to (b) is trivial, to complete the
proof we need only show that (b) implies (d). Hence, assume that
C(T, S) is a spectral operator. Since T and S are scalar operators
in έ@(£έf), there are normal operators Nt and invertible operators
X, in &{£ίf) for i = 1, 2 so that

T = XxNxXτι and S = X2N2Xjι .

Define Θ acting on ^(<%?) by θ(Y) = X7ιYX2 Then

ΘC(T, S)θ~1 - C(Nlf N2)

and so C(Nlf N2) is a spectral operator. Let E(-) be the spectral
resolution of the identity associated with C(Nlf N2). Then [3, p. 33]

Bc(d) =

for all closed subsets 8 in C. Hence, by (2.1)

ί9 N2)) =

On the other hand, &oiP)c &(C(Nίf N2)) for each closed subset δ
of C with 0 0 δ so that the countable additivity of E(-) implies

c

where the bar denotes the closure in the uniform topology. There-
fore, the algebraic direct sum

.^{cy + ^

Now Cx = CίίJVi — λJ), N2) = C(-NΊ, iV2) — λ l is a spectral operator
for each λ in C so as before

for each complex λ. If both σ{N]) and σ(N2) were infinite then for
some λ, σ(N! — XI) Π σ(N2) would contain a common accumulation
point and by (4.1) (*) would be false. Thus, either iVΊ or N2 has
finite spectrum. Say 6r(iV2) is finite. Then, since 2ί? is infinite
dimensional N2 has an isolated eigenvalue of infinite multiplicity.
If (/(iVi) were infinite (4.1) would again contradict (*). Thus,
σ(T) U σ(S) = σiNJ U σ(N2) is finite.

Remarks 4.3. Clearly, (a) and (d) remain equivalent if T and
S are scalar operators acting on a Banach space. We do not know,
however, if (b) and (c) are also equivalent to (d) in this more
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general setting. Unfortunately, our proof does not appear to
generalize. Our proof depends on the existence of an operator V
which is not in the closed linear span of &(C) and Λ \C). Although
V can be formally defined in the Banach space setting, it is not
clear that V will be bounded.

5* In this section we investigate the extent to which properties
(F) and (G) hold for C(Γ, S) and use our results to give an example
of a Hermitian operator whose square is not Hermitian. We begin
by recalling the definition of the numerical range of an element in
a Banach algebra.

DEFINITION 5.1. Let SI be a complex Banach algebra with
identity I. The set of states on 21 is by definition

1 = 11/11} .

The numerical range of an element a in % is by definition the set

Since & is a weak* closed convex subset of the unit ball of SI*,
W0(a) is a closed convex subset of C for each ae St. If SI = &{3i?)
Wo(-) is just the closure of W(-) the usual numerical range (for
further information see [9]). The numerical radius of a is by def-
inition sup{ |λ | :λe W0(a)}. The spectral radius of a is by definition
sup {| λ|: λ e φ ) } . An element a in SI is Hermitian if W0(a) is real.
Recall [7] that a in SI is Hermitian if and only if | |exp(ΐία)|| = 1
for all t in R. For an operator T in &(<%f) define the operators
Lτ and Rτ in ^{^{^)) by LT(X) = TX and BT(X) = XT.

THEOREM 5.2. // T is in &{£f) then W0(T) = WO(LT) = WO(RT).

Proof. For each state / on &{0(<%f)) the formula g(X) =
f{Lx) determines a state g on &{<£f). Hence, WO(LT) c WQ(T).
Conversely for each state / on &(<%f) the formula g(LΣ) = f(X)
determines a state g on {Lx:Xe^(^f)} which then extends by
the Hahn-Banach theorem to a state on all of &{0{£f)). It
follows that Wo(T)ciWo{Lτ) and so W0(T) = WO(LT). Similarly,
WIT) - WO(RT).

COROLLARY 5.3. // T and S are Hermitian operator in
then C(T, S) is a Hermitian operator.

Proof. C(T, S) = LT- Rs. Thus
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W0(C(T, S)) c WO(LT) - W0(Rs) = W0(T) - W0(S) c R .

THEOREM 5.4. // Nγ and N2 are normal operators in 3¥(£ίf)
where £ίf is a complex Hilbert space then C(Nlt N2) = H'.+ iJ where
H and J are commuting Hermitian operators.

Proof. Write N3- — A3 + iB3, where A3 and B3 are the real and
imaginary parts of N3 for j = 1, 2. Let H — C(Alf A2) and J =
C(Blf B2). Then H and J are Hermitian operators by (5.3) and
since AjB3 = B0A3 for j = 1, 2, H and J commute.

THEOREM 5.5. If Nγ and N2 are normal operators on a com-
plex Hilbert space then the spectral radius and the numerical
radius of C(Nίf N2) are equal.

Proof. Palmer has shown [7, Lemma 1.6] that the conclusion
of the theorem holds for all operators of the form H + iJ when H
and J are commuting Hermitian operators. Hence, the theorem
follows from (5.4).

EXAMPLE 5.6. The norm and the spectral radius of C(N19 N2)
need not be equal, however. Indeed, Stampfli has shown [8] that

l f N2) || = in f {|| JVi - Xl\\ + \\Nt- Xl\\} .
;.ec

Thus, if N is a normal operator in &(£ίf) whose spectrum is an
equilateral triangle of side 1 then (Lumer and Rosenblum) the spectral
radius of ΔN = C(N, N) is 1 but since the norm of N — XI is equal
to the spectral radius of N — Xl, | | ^ | | - = 2/l/3. Note that in this
case σ(ΔN) is a solid hexagon centered at the origin. On the other
hand, C(Nlf N2) is a convexoid operator.

THEOREM 5.7. // Nt and N2 are normal ope on a complex
Hilbert space then the convex hull of σ(C(£ is equal to
W0(C(Nίf N2)).

Proof. Let conv( ) denote the convex hull of the set within
the parentheses. Since σ(a)aW0(a) for any element a of a Banach
algebra 21 [9, Theorem 1] it suffices to show W0(C(Nlf N2)) c
cony(σ(C(NlfN2))). Now

W0(C(Nί9 N2)) c TΓo(-Nί) - W0(N2) =

= conv (σiNy)) — eonv (σ(N2))

= conv (σ(-Ni) - σ(N2)) = conv (σ(C(Nlf N2))).
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where we have used (5.2) and property (G) of the introduction.

THEOREM 5.8. If P is a (self-adjoint) projection on a complex
Hilbert space £%f then LPRP is a Hermitian operator if and only
if P is 0 or I.

Proof. We give the proof in the case that Sίf has dimension
2 and P^f has dimension 1. The generalization to higher dimen-
sions is obvious. As remarked in (5.1) it suffices to show that
||exp(i£ LpRp)\\ > 1 for some t in R. Let

Γ(l/2)ΐ 1/2

Ll/2 1/2.

on P£ίf φ (/ - P)^f and let ί = 3ττ/2. Then since exp (it LPRP) =
I + (e i{ - Ϊ)LPRP,

which is a projection and, hence, has norm 1. On the other hand,
)| T*T])2<3/4 as an easy computation shows. Hence, ||exρ(iί LPRP)\\>1
for t = Sπ/2 and LPRP is not Hermitian.

EXAMPLE 5.9. Let P be a projection as in (5.8). Then ΔP is a
Hermitian operator by (5.3) but ΔP is not a Hermitian oprator.
Indeed, since the Hermitian operators on &(£ί?) form a real vector
space and

LPRP - 1 ( J P - ΔP)

it follows from (5.8) that ΔP is not Hermitian.
In conclusion we remark that Crabbe [4] and Browder [2] have

given similar examples.
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