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ABELIAN AND NILPOTENT SUBGROUPS OF MAXIMAL
ORDER OF GROUPS OF ODD ORDER

Zvi A R A D

Denote the maximum of the orders of all nilpotent sub-
groups A of class at most c, of a finite group G, by dc(G). Let
Ac (G) be the set of all nilpotent subgroups of class at most c and
having order dΰ(G) in G. Let Λoc(G) denote the set of all
nilpotent subgroups of maximal order of a group G.

The aim of this paper is to investigate the set Λ=c(G) of
groups G of odd order and the structure of the groups G with
the property A2(G) C Λ^(G). Theorem 1 gives an expression
for the number of elements in Λoo(G). Theorem 2 gives criteria
for the nilpotency of groups of odd order.

In this paper G is a finite group, and ΊT is a set of primes. If G is of
odd order, then G is solvable [6].

1. Introduction, Denote the maximum of the orders of all
nilpotent subgroups A of class at most c, of a finite group G, by
dc(G). Let AC(G) be the set of all nilpotent subgroups of class at most c
and having order dc(G) in G. Then JC(G) is the subgroup of G
generated by AC(G). In particular, J1(G) = /(G) is the Thompson
subgroup of G. Moreover, Λ*(G) is the set of all nilpotnet subgroups of
maximal order of a group G. Here Λ,(G) is the subgroup of G
generated by the elements of AX(G).

In this paper G is a finite group, and TΓ is a set of primes. If G is of
odd order, then G is solvable [6].

The aim of this paper is to investigate the set AX(G) for groups G of
odd order and the structure of the groups G with the property A2(G) C

We shall give, in Theorem 1, an expression for the number of
elements in Λ»(G). In Theorem 2 we shall state criteria for the
nilpotency of groups of odd order.

For groups G with the property A2(G) C AX(G), we have the
following:

THEOREM 3. Let G be a π-solvable group with an $„-subgroup K of
G. Assume that O* (G) = 1 and that A E A2 (K) Π Ax (K) -έ 0 , then
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(i) // either 2, 3 £ TΓ or O2(A) is Abelian, then OP(A)= OP(G) =
Op (K), for every p E TΓ.

(ii) // F ( G ) is odd and if G has an Abelian S2-subgroup, then
JX(K) = Λ(G) = F(G) - F(X) = Λ.

Three corollaries of Theorem 3 and further information can be
found in Chapter 2.

Our notation is standard and is taken mainly from [8]. In particular,
τr(G) will designate the set of primes dividing \G\ and Gπ denotes an
S^-subgroup of G. For the definitions of Sylow system, system nor-
malizers and Carter subgroups of a group G see [11], Definition 11.1 p.
726 and Definition 12.1 p. 736.

2. Statements and proofs of the main theorems. The
next result is needed for the proofs of the main Theorems.

PROPOSITION 1. Suppose G is a group. Assume that A normalizes
a nilpotent subgroup B of G, and assume that at least one of the following
conditions holds:

(i) A E Λ i ( G ) , and B is Abelian ([3], Proposition 1).
(ii) A E.Aλ(G), \A\ is odd, and an S2-subgroup of B is Abelian

([3], Proposition 1).
(iii) ΛeΛ,(G)([7]).
(iv) A GA C (G), c ^ 2 , \B\ is odd, and an S2-subgroup of A is

Abelian ([4]).
(v) A G AX(G), \B\ is odd and an S2-subgroup of A is Abelian

([4])
Then AB is nilpotent.

Define AZ(G) to be the set {Ap/A G AX(G)} of distinct p-subgroups
of a group G, where p is a prime.

THEOREM 1. Let G be a group of odd order. Then
(i) |(Λ3 C(G)| = [ G : N G ( A ) ] = Π p e w ( A ) |Λ£(G)| ,wftereAGA 3 C (G).
(ii) |A£(G) | = 1 (modp)
(iii) IA£(G)|/ftp, where hp = [G: NG(GP)]
(iv) G = (NG(A)/A(ΞA4G)).
(v) If A E. A^(G) and Ap C Gp ί/ien ί/iβrβ ex/sίs x E G such that

For a discussion of the number hp see [9], Theorem 9.3.1.

Proof. Proposition l(v) implies that every element of Aoc(G) con-
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tains F(G). Therefore [13], Theorem 1 implies that AX(G) is a conju-
gate class. If A, B EAoo(G) then [Ap, Bq]| = 1 for every two distinct
primes p and q by [11], Theorem 7.18, p. 705, proving (i). Let
Ap C Gp. We shall prove that NG(GP) C NG(AP). If x E NG(GP) then
( A ; , A P ) C G P is a p-group. Hence, [<A*,Ap),Ap] = 1. Therefore
(AJ, AP)AP> is nilpotent. Consequently, Ap = Ap, and NG(GP) C NG(AP).
Part (i) implies that A£(G) is a conjugate class. Hence, |A£(G)| =
[G:NG(Ap)l By [14], Theorem 6.2.3, |Aί(G)\ = 1 (modp). Thus
(ii)-(iii) also hold. Let ^ = {Gp/p G ττ(G)} be a sylow system of
G. Let us denote the intersection of the normalizers of the subgroups of
the given Sylow system by N(3F). By definition N(3F) is a system
normalizer of G. Since AX(G) is a conjugate class of G there exists
A(ρ)EAx(G) such that [A(p)]p C Gp, for every p G ττ[A(p)].

As above A = x[A(p)]p is an element of Aoo(G), moreover
NG(A)D N(3F). Since G is generated by the set of system normalizers of
G [11], we obtain that G = (NG(A)/A E Aoc(G)), proving (iv). Proposi-
tion 1 implies that Ap = OP(NG(AP)). As mentioned before Gp C
NG(AP). Therefore by Ito's theorem [12] there exists x EG such that
GPΠGX

P=AP.

The author knows of no counterexample to the conjecture that if G
is an arbitrary group then AX(G) is a conjugate class.

Let φ be the class of finite solvable groups in which the system
normalizers are Carter subgroups, φ-groups are discussed in [5] and
[11], pp. 743-751.

THEOREM 2. Let G be a group of odd order. Then
(i) IfG = BQ where B E Ab{G\ C E AC{G\ b ^ 1, c ^ 1, then G

is nilpotent.
(ii) G is nilpotent if and only if G E φ and the Carter subgroups of G

are elements of AC(G), for some integer c.

Proof, (i) Proposition 1 implies that BF(G) and CF(G) are nilpo-
tent. Therefore, Theorem l(i) and [13], Theorem 1 imply that there exist
xEG and A E AX(G) such that BQA and CQA\ Hence G =
AAX. By [11], Theorem 7.18, p. 705 G is nilpotent.

(ii) Let C be a Carter subgroup of G. Assume that C E AC(G),
for some integer c. Since CF(G) is nilpotent by Proposition 1, there
exists A GAX(G) such that CCA. Since NG(C) = C, we obtain that
C = A. By assumption G Eφ. Therefore A is a system normalizer.
By the definition of system normalizer, Proposition 1 implies that G is
nilpotent.
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REMARK. Theorem 2(i) is true without assuming [6].
If G = J3C, where B G A6(G), C G AC(G), fcgl,cgl, then G is

solvable by [14], Theorem 13.2.9.

We shall say that G is a Dπ-group if all the maximal τr-subgroups of
G are conjugate 5,,-subgroups of G. If G and every normal subgroup
of G is a Dπ-group we will call G a D"-group.

Let [A,B,C] denotes the triple commutator [[A, J3], C] of three
subgroups A, B, C of G. We say that G is a rr-stable group if it satisfies
the following condition:

Let K be an arbitrary π-subgroup of G. Let A be an arbitrary
7r-subgroup of NG(K). Then if [K, A, A] = 1, we have ACα(X)/CG(ίί) C
O,(NG(K)ICG(K)).

The next result is needed for the proof of Theorem 3.

PROPOSITION 2. Let G be a π-stable D"-group. Let K be an
Sπ-subgroup of G. Assume that A2(K)CAX(K), CG(F(G)CF(G) and
Oπ (G) = 1. Then we have

(i) J2(K) char G
(ii) // \F(G)\ is odd and G has an Abelian S2-subgroup, then

A2(K) = A4K) and JΛ(K) = Λ,(G).

Proof. Assume (i) is false for G. Let α be an automorphism of G,
and choose g 6 G such that K* = Kg. If J2(K)<* G, then

(J2(tf )T = J2(K-) = Λ(Xg) = (Λ(K))g = Λ(K).

Therefore J2(K) char G. Hence J2(K)^G.
Let L be the largest normal subgroup of G which normalizes

J2(K). Then X Π L is an 5,-subgroup of L by [11], lemma 7.2 p.
444. Since /2(i£ Π L) char if Π L, it follows therefore, by a generaliza-
tion of the Frattini argument that G = LNy where N = NG(J2(K Π L)). If
Λ(X) C K ί l L , then J2(K) = J2(K Π L). In this case ΛΓ = NG(J2(K)). But
then G = LN C NG(J2(K)) and J2(K)<ι G, a contradiction. Thus, we
may assume that /2(if) ^ L Π K By Proposition 1, F(G) C A for every
A £A 2 ( i ί) C AX(K). In particular, [F(G), A, A] = 1. Since G is π-
stable, it follows from the definition that ACG(F(G))/CG(F(G)) C
Oπ(G/CGF(G)). By definition of L and by hypothesis CG(F(G) C
F(G) C L. Hence AL/L C Oπ(G/L) for every A G A2(K) C A»(K).

However, we claim that Oπ(G/L)= 1. Indeed, set O7Γ(G/L) =
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TIL. KΠT is an Sπ -subgroup of T, therefore (K Π T)L/L is an
Sπ-subgroup of T/L by [11], Lemma 7.2 p. 444. Therefore (K Π T)L =
T. But K Π T C NG(J2(K)l thus K Π T C L , whence Γ = L, and
Oπ(G/L) = 1. Therefore A C L for every A e A2(K) C A^X). There-
fore Λ(^) C L Π iί, a contradiction. Therefore J2{K) char G, proving (i).

Clearly F(G) C F(X) and |F(K) | is odd, since CG(F(G) C F(G).
Hence by hypothesis CG(F(K)) C F(K). Proposition 1 yields that
F(K) C A for every A E A,(X). Therefore A,(X) = A2(K) as a conse-
quence of [13], Theorem 1. Proposition 1 implies that F(G) C A for
every A e AX(G). Therefore Z(A) C CG(F(G)) = Z(F(G)). By
hypothesis F(G) is a τr-group. Hence A is a ττ-group for every
A E A,o(G). Since G is a D*-grouρ and JX(K) char G by part (i), we
obtain:

Λ(G) = (J»(KX)/X ε G) = Λ(ϋ:),

proving (ii).
We now obtain:

Proof of Theorem 3. (i) We use induction on the order of G. Let
Γ=O P (G), H=OPP(G\ G* = AH, and Γ = A(Xn//) . Then
K Π H is an S^-subgroup of H and K* is an Sπ-subgroup of G*.

Suppose that G* C G. Since A C K*, A E AX(X*). By induction,
OP(A)C OP(G*). Hence

[H, OP(A)] QHΠ OP(G*) C OP(H)=T

Therefore, OP(A)Γ/T C CGfT(H/T) C H/Γ, by [8], p. 228. Conse-
quently, OP(A)C H. So,

OP(Λ) C ί ί Π OP(G*) = OP(H) = T

On the other hand, T= OP(G) C OP(A) by Proposition 1. Therefore,
OP(A)= OP{G\ as desired.

Suppose that G* = G. Then APΓ is an Sp-subgroup of G. By
Proposition 1, T = OP(G) C OP(A). Therefore OP(A) is an Sp-subgroup
of G. It is well known that G is p-strongly solvable for every p E TΓ -
{2}. By definition G is p-stable for p = 2. Hence G is p-stable for every
p E TΓ. Therefore G = OP ,P,P (G) by Proposition 2. Hence O P (A)C
OPP(G). By Proposition 1, AF(OP(G)) is nilpotent. Hence OP(A) C
CG(F(OP(G))). By [3], Lemma 4, O P ( A ) C OP(G), for every p E TΓ.
Therefore O P ( A ) = OP(G), as desired. In particular OP(A)= OP(K),
for every p E TΓ, proving (i).
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(ii) Define σ = ττ(F(G)). It is well known that G is a Df-
group. By [1], Corollary 4.8, CG(F(G)) C F(G). Proposition 1 yields
that F(G) C A. Therefore Z(A) C CG(F(G)) C F(G). Hence A is a
σ-group. By definition (X (G) = l. Since by hypothesis G is p-
strongly solvable, for every p E σ, G is σ-stable by [2], Lemma 3.4. Let
R be an Sσ-subgroup of G. Then /.(JR) = J»(K) = Λ(G) by Proposition
2. So /.(Jf) = Λ(G) = F(G) = F(K) = A, by part (i).

The author knows of no counterexample to the conjecture that if G
is a group of odd order then OP(A2) C OP(G), where p ^ 5 and
A2EA2(G).

Theorem 3 has three corollaries.

COROLLARY 1. If the Sylow subgroups of a solvable group G are all
Abelian or if G is of odd order and the Sylow subgroups of G are of class at
most 2, then F(G)GAX(G).

COROLLARY 2. IfP is an Sp-subgroup of a group G, p odd, c\(P) ̂  2,
and if NG(P) has a normal p-complement, then so does G.

Proof Following the method of [8], Theorem 8.3.1 and using
Theorem 3 we obtain Corollary 3. One must take NG(P) instead of
NG(ZJ(P)) in the above mentioned theorem and its proof.

Corollary 2 is a known result. It can be obtained by [11], Theorem
8.1 p. 447.

We shall say that G is a ψ-group if AX(G) and Carter subgroups of
G coincide.

COROLLARY 3. Let G be a group of odd order. Assume that G and
every subgroup of G is a ψ-group, then G is nilpotent.

Proof. Let G be a minimal counterexample. By induction every
proper subgroup of G is nilpotent. Therefore the Sylow subgroups of G
are of class at most 2 by [11], Theorem 5.2, p. 281. Hence, Theorem 3
implies that (AX(G)) = F(G) is a Carter subgroup of G. Therefore G is
nilpotent as desired.
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