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BANACH SPACES WITH A RESTRICTED
HAHN-BANACH EXTENSION PROPERTY

CHARLES W. NEVILLE

We shall study the class of real Banach spaces B with
the following restricted Hahn-Banach extension property: For
each Banach space C with a dense set of cardinality g some
fixed cardinal 9?, and for each subspace A of C and bounded
linear map To: A —> B, there exists an extension T:C-+B
such that | | Γ | | = IIΓoll Suprisingly, there exist Banach
spaces in this class which are not isometrically isomorphic
to C(X) for a compact Hausdorff XI

The combined results of Goodner, Hasumi, Kelley and Nachbin
show that those Banach spaces with the Hahn-Banach extension pro-
perty, that is, those Banach spaces which are injective in the category
^ of Banach spaces and linear maps of norm :g 1, are precisely the
Banach spaces of the form C(X), where X is compact Hansdorff and
extremally disconnected [5], [6], [7], [11]. In this paper, we wish to
study those Banach spaces which enjoy a restricted Hahn-Banach
extension property, where the existence of an extension is only re-
quired for spaces which are relatively small.

To be more precise, let 9ί be an infinite cardinal. We shall say
that a Banach space C is Si-separable if C has a dense subset of
cardinality 91. As usual, the word "separable" standing alone means
Sΐo separable. We shall call a Banach space B 9ΐ-injective if B has
the following restricted Hahn-Banach extension property: Let C be
an ^-separable Banach space, let A be a subspace of C, let i:4c—>C
be the inclusion map, and let TQ: A—+ B be a bounded linear map.
Then there exists a bounded linear map T with || T| | = || To||, making
the following diagram commute:

B

We shall study the 9ΐ-injective Banach spaces in this paper. We
shall only consider real Banach spaces here. We shall characterize
the Banach spaces of type C(X) which are 9ϊ-injective. We shall
also show that there are a good many other 9i-injective Banach
spaces! Finally, we shall show that if an 9i-injective Banach space
also happens to be ^-separable, then it is in fact injective in the
full category ^ . This contrasts rather sharply with the situation
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in the category & of Banach spaces and bounded linear maps.
Sobczyk showed that c0 satisfies diagram 1, with c0 = B and 31 = %>,
except that the extension T may have a larger norm than TQ. On
the other hand, Phillips showed that there is no continuous linear
projection of m onto c09 so c0 is not injective in the full category
&? (cf. [3, p. 25], [13]).

9Ϊ-Injectives of Type C(X) .

First, let us prove a theorem which will enable us to characterize
the 9i-injective spaces of type C(X). To motivate this theorem, the
reader should recall the Stone-Nakano theorem, which says, among
other things, that a compact Hausdorff space X is extremally dis-
connected if and only if C(X) is a boundedly complete vector lattice
under the usual ordering [12]. Thus, the Goodner-Hasumi-Kelley-
Nachbin theorem may be rephrased to assert that the injectives in
έ%[ are exactly the C(X)'s which are also boundedly complete vector
lattices. It is thus not surprising that a property similar to lattice
completeness would play a role in the study of SR-injectives. We
shall say that an ordered normed linear space B satisfies condition
a,χ if the following is true:

(αΛ) For each ^-separable subspace V of J5, the following is
true: Given a subset ^ of V which is bounded above in
norm by m and of cardinality <; % there exists at least one
beB such that || b || ^ m, / ^ b for all fe j^7 and if v e V and
f^v for all / e ^ 7 then b ^ v.

THEOREM 1. Let X be a compact Hausdorff space and let B be
a closed subspace of C(X). Then B is ^l-injective if B satisfies
property a%.

Conversely, suppose B is %l-injective, and suppose B contains
a subset Q with the following properties. Q consists of nonnegative
functions none of which are identically 0, Q contains a dense set
of carinality ^ 31, and the set of points at which the function in
Q attain their suprema is dense in X. Then B satisfies condition

Proof. First suppose that B satisfies condition a,R. The proof
that B is Sft-injective follows Goodner's idea of replacing real valued
sublinear functionals with G(X) valued sublinear functionals in
Banach's original proof of the Hahn-Banach theorem [3, pp. 135-
137], [5]. Let A be a subspace of C, let C be ^-separable, and let
T0:A—+B be a bounded linear map. Let p:C-+B be defined as
follows: Let ^Γ be a dense subset of cardinality ^ 3ί of the unit
ball of A. We know that the set T0(J?f) has cardinality ^ 3Z and
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is bounded above in norm by | | Γ 0 | | Clearly T0(A) is 9ϊ-separable.
By condition αΛ, there exists u e B which bounds T0(^Γ) U {0} from
above, and which satisfies || u || ^ || To ||. Because J?f is dense in the
unit ball of A, we have TQ(c) ̂  || c \\ u for all c e C. Let p(c) = \\c\\u.
Then p is a sublinear map, and TO is dominated by p. Furthermore,
if S is any linear map from a subspace of C to B which is domi-
nated by p, then S is continuous. In fact, S(c) <Ξ \\c\\u and — S(c) =
S(-c)£\\c\\u, so | | S | | ^ | | Γ o | | .

Now suppose A! is a proper subspace of C containing A, and
suppose T' is an extension of Γo to i ' which is dominated by p.
Let 5ίΓ be a dense subset of the unit ball of A! of cardinality ^ 9ΐ.
Let ^ e C - A'. As in Banach's proof of the Hahn-Banach theorem,
we obtain for each (x, y)eA'x A', —p{ — y — z) — T'(y) ^ p{x + z) —
T(x). Let F = the linear hull of {-p{-y - z) - T (y): y e A'} U
{p(x + z) — T'(x): x 6 A'}. The continuity of 2? and T together with
the ^-separability of A! implies that V is also ^-separable. We
would like to apply condition α^ to a set a?* = { — p( — y — z) —
T'(y): y € some dense set in A'} to obtain the existence of c e B, such
that -p(-y - z) - T'(y) ̂  c ̂  p(x + z) - T\x) for all (a?, 2 / )G4 'X A'.
But such a set ^ would not be bounded in norm, so we shall con-
sider a sequence of sets ^ n = { — p( — y — z) — T'(y): y en<βΓ}, n =
1, 2, . Since 3ίΓ is a subset of the unit ball of A', each set j ^ * n

is bounded in norm. By condition a^ applied to ^ n and V, there
exists cn e B such that w ^ cn ^ p(x + «) — T"(x) for each w e J^ and
a; G A'. Since J^" is dense in U, the unit ball of A', we have
— p{ — y — z) — T'{y) ^ cn ^ p(x + 2) — T"(ίc) for each xeA' and y enU.
Let TF = the linear hull of V and {cw: n = 1, 2, •}. Pick #0 G A' and
7/0 G C7. Since UQnU, -p(-y0- z) - T'(y0) ^ cn ^ p(x0 + s) - Γr(x0)
for n = 1,2, > , so the set ^ = {cn: n — 1, 2, •} is bounded in
norm. Clearly ^ is ίϊl-separable, so by condition aΆ applied to ^
and W, there exists ceB such that cn ^ c ^ p(x + z) — T"(^) for
each n and each xeA' . Hence —p( — y — z) — T\y) ^ c S p(% + z) — T\x)
for all (x,y)eA'xAf. The rest of the proof now follows from
Zorn's lemma or transfinite induction exactly as in Banach's original
proof (cf. [3, p. 10]).

Conversely, suppose that B is 9ϊ-injective, and that Q Q B con-
tains a dense subset of cardinality ^ 9Ϊ and consists of nonnegative
elements. Let Y Q X be the set of points at which the elements of
Q attain their suprema, and suppose Y is dense in X. We wish to
show that B satisfies condition α^. Let V be an Sft-separable subspace
of B, and let ^~ be a subset of V of cardinality ^ 5ft which is
bounded above by m in norm. Let fel°°{X) be the pointwise sup-
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remum of the set &~. Then \\f\\n ^ m. Let A be the closed linear
hull of V U Q, let C be the linear hull of A and {/} in l°°(X), and
consider the commutative diagram

\
7

Here, I is the inclusion map and P is the map guaranteed by 9ΐ-
injectivity. We assert that b = P(f) is the element whose existence
is required by condition αw.

Clearly it suffices to show that the map P is positive. For then,
if v e ^ 7 we have v ^ f, which implies that v = P(v) ^ P(/). Also,
if v e F and v is an upper bound for ^ 7 then f^v, which implies
P(f) ^ P(v) = v. Finally | | P ( / ) | | ^ | | / |U ^ m. But it is easy to
show that P is positive. Let c e C be JΞ>0. Let I / G 7 , There exists
at least one q e Q such that q ^ 0, and g(j/) = || g || > 0. Let λ > 0
be such that | |λg| | = | | c | | . Then | | c | | ^ | | λ g - c|| ^ | | P ( λ g - c)|| =
|| Xq - P(c) || ^ \q{y) - P(c)(y) = || c || - P(c)(y). Thus P(c) ^ 0 on Y.
Since P(c) e C(X) and F is dense in X, we have P(c) ^ 0 on X
This concludes the proof of Theorem 1.

If we pick B — C(X) and Q = {1} in Theorem 1, we immediately
have

COROLLARY 1. C(X) is %1-injective if and only if C(X) satisfies
condition αΛ.

Clearly, C(X) satisfies condition aΆ for every cardinal 9Ϊ if and
only if C(X) is a boundedly complete vector lattice. Thus we have
another proof of the following result of Goodner and Nachbin [5],
[11]:

COROLLARY 2. C(X) is injective in the category ̂  if and only
if C(X) is a boundedly complete vector lattice. Equivalently, using
the Stone-Nakano theorem, C(X) is injective in the category ^ if
and only if the compact Hausdorff space X is extremally disconnected.

Of course, if C(X) is a boundedly JV-complete vector lattice, that
is, if every set in C(X) of cardinality <Ξi 9Ϊ which is bounded above
has a least upper bound, then C(X) clearly satisfies condition α*.
From the Stone-Nakano theorem again, we know that C(X) is bound-
edly 9i-complete if and only if X is both totally disconnected and
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^-disconnected. Here, ^-disconnected means the closure of a union
of at most Sft clopen sets is again clopen, and the if part is true
because we assume X is compact Hausdorff [11], [12]. Thus we have

COROLLARY 3. C(X) is SSl-injective if it is a boundedly %1-com-
plete vector lattice. Equivalently, C{X) is SSl-injective if the compact
Hausdorff space X is both totally disconnected and ^-disconnected.

We do not know whether there exist spaces C{X) which satisfy
condition α*, but which are not boundedly ^-complete vector lattices.
We conjecture that there are such spaces.

Other examples of ϊϊ-injectives* Kelley showed that every in-
jective in the category ^ is of type C(X) [7], This is not true for
3ΐ-injectives! We with to give a general example of a proper sub-
space of C(X) which is iV-injective, but which is not of type C(Z)
for any compact Hausdorff Z. To do this, we shall need an example
of a compact Hausdorff space X with special properties. We shall
call a point p of a topological space F a n 9ί — P point if the inter-
section of 9ϊ neighborhoods of p is again a neighborhood of p. The
standard name for an 5ft0 — P point is just P-point (cf. [4, Chapter 4]).

First, let us manufacture an example of a compact Hausdorff
space X which contains a nonisolated 9ΐ — P point x0, and which is
totally disconnected and ^-disconnected, but not extremally discon-
nected. For ϋft = 9ΪO, such examples are fairly ubiquitous in point
set topology, and may be manufactured from the Stone space of
suitable Booolean algebras, or by other means (cf. [2] for a recent
and interesting example). The example we shall give is taken from
Gillman and Jerison [4, Exercises 4N, 6M], who unfortunately only
consider the case 9ί = 9ΪO. We shall consider the case of general 9ί,
which introduces slight additional difficulties. We want to thank
A. Hager for suggesting this and other examples of nonisolated
ίfl — P points.

Let Y be a set of cardinality > 9ΐ. Let xQ e Y. Topologize Y
as follows: A set U £ Y is open if xQ g U, or if x0 e U and Y ~ U
has cardinality <j 9ΐ. This amounts to giving Y ~ {x0} the discrete
topology, and letting neighborhoods of x0 be complements of sets of
cardinality <̂  9fc. Clearly a set F is closed in Y if xQe F, or if x0 g F
and the cardinality of F is <J SSI. From this, we see immediately
that Y is normal. Clearly x0 is a nonisolated 91 — P point of Y. To
see that Y is not extremally disconnected, let U be a subset of Y
such that xQg U and both U and F ~ U have cardinality >9ί. Then
U is open, and the smallest closed set containing U is U U {&<>}• B u t

the closure of U, UU {x0}, is not open, so Y is not extremally discon-
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nected. By the Stone-Nakano theorem, Cb(Y), the bounded contin-
uous functions on Y, do not form a boundedly complete vector
lattice.

On the other hand, it is easy to show directly that Cb(Y) is a
boundedly ίϊϊ-complete vector lattice. Clearly, /: Y—>R is continuous
if and only if, given ε > 0, there exists a set Fε of cardinality ^ 5ϊi
such that I/O) - fix,) | < ε for all x<ίFε. Suppose ^ C Cb(Y) has
cardinality ^ 9Ϊ. Let / be the pointwise supremum of J C Let ε > 0.
For each h e J^ let Fh)£ be a set of cardinality <Ξ; 9ΐ such that | h(x) —
h(xQ) I < ε for x £ Fh>ε. Let Fε = (J {Fhtβ: h e Ĵ ""}. The Fε has cardi-
nality ^ 9ΐ, and if x$Fε, then | h(x) — h(x0) | ^ ε for all he<β^, so
\f(x)—f(xQ)\<^ε as well. Thus / is continuous, and so Cb(Y) is
boundedly Sft-complete.

Let X be the Stone-Cech compactification of Y. Then C(X) is
isometrically isomorphic, and isomorphic as an ordered Banach space,
to Ch(Y). Thus C(X) is not boundedly complete, so X is not ex-
tremally disconnected. On the other hand, C(X) is boundedly 5Jί-
complete, so X is totally disconnected and ^-disconnected. Finally
Y is dense in X, so x09 being an %l — P point of Y, is also an 9̂  — P
point of X. Clearly, x0 is not an isolated point of X.

By taking finite disjoint unions of copies of X, we may construct
compact Hausdorff spaces with at least n nonisolated %l — P points,
which are totally disconnected and ̂ -disconnected, but not extremal-
ly disconnected. Incidentally, C(X) is a good example of a Banach
space which is 9ΐ-injective, but not iujective in ^ . So is C0(X) =
{/ € C(X):/(O = 0}! Because x0 is an 9Ϊ - P point, C0(X) is a bound-
edly 9ΐ-complete vector sublattice of C(X), and so satisfies condition
aM. Hence, by Theorem 1, it is ϋft-injective. However, because xQ is
not isolated, C0(X) is not isometrically isomorphic to any C(Z), and
thus by the Goodner-Hasumi-Kelley-Nachbin theorem is not injetive
in ^ . We shall not go into greater detail, because this example
will be subsumed under the promised general example, which we
shall now give in the form of a theorem:

THEOREM 2. Let X be a compact Hausdorff space which is totally
disconnected and ^-disconnected, and which contains n nonisolated
^1 — P points, xu , xn. Let x0 e X, let cu , cn e [ — 1, 1), and let
B — {/ G C(X):f(Xi) = Ct f(xo)fi = 1, , ̂ }. Assume n^l and xQj x19

xn are all distinct. Then B is %1-injective. However if at least one
CiΦ —1, then B is not isometrically isomorphic to C(Z) for any
compact Hausdorff space Z.

Proof. The key to the proof is the fact that for any feC(X)
and c e R, {x: f{x) = c] is a G3. Thus / is constant in a neighborhood
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of any P point of X. Let C be 9ΐ-separable and let A be a subspace
of C. Let To: A —• B be a bounded linear map. Let V be the closure
of T0(A), and let 3ίΓ be a dense subset of V of cardinality ^ Sΐ.
For keSΓ, let Gίffc be a neighborhood of the 9̂  — P point x̂  in which
k is constant. Since there are at most 9i Gitk'&9 the set Π {Gitk: k e Sέ"}
is also a neighborhood of a .̂ For i = 1,2, , n, let G* be a clopen
neighborhood of xt contained in Γ\{Gi,k: k e <3Γ}, and assume xoφGt

and Gt Π G3- = 0 for i Φ j . Since ^ " is dense in V, not only is each
/ G X constant on Gu but so is each feV.

Let Γ = X - U?=i <*i a n d l e t r rCίJCJ-^CίF) be the restriction
map. Clearly Y is not only compact, but also open in X. Thus Y
is both totally disconnected and 9ΐ-disconnected, and hence C(Y)
is boundedly 9ΐ-complete and hence is $ίi-injective. Consequently,
rΓ 0 : A—>C(F) has an extension S:C—*C(Y) with the same norm.
Define T: C-+B as follows: T(c)(y) = S(c)(y) on Γ, and Γ(c)(a?) =
^S(c)(x0) on Gi. Since each G, is clopen, T(c)eC(X). Clearly Γ(C)C
5, T is linear, and || T(c) \\ = \\ S(c) ||, so || Γ] | = || Γ o | | . Finally, if
a 6 A, then Γ(α) = T0(α), since Γ0(α) is constant on each G,. Thus
I? is 9ΐ-injective.

We still must show that B is not isomorphic to any C(Z) if some
Ci Φ —1. Let g7 be the set of extreme points of the unit ball of B*,
the dual of B, and endow g7 with the weak * topology. Be renum-
bering the Xi if necessary, we may assume {xt: ct = — 1} = either 0
or {xp+ί, •••, OJW}. In the former case, set p — n. Then g7 is home-
omorphic to the union of two disjoint copies of X— {xlf , xp) (corre-
sponding to ± point evaluations) with x0 in one copy identified with
{βp-H, "'fxn} in the other copy and vice-versa, if p < n. Since
a?!, " ', xP are not isolated points of X, g7 is not compact. Therefore,
B cannot be isometrically isomorphic to a C(Z) [3, p. 113].

The reader should note that if some of the c%'& are < 0, then B
is not even a sublattice of C(X). Actually, we can say even more.
If Z is a compact Hausdorff space and σ: Z—+ Z is a homeomorphism
such that σ2 is the identity map, then Cσ(Z) = {/eC(Z):/oσ = - / } .
If for some cio, clQ Φθ and — 1 < c< < 1, then B is not even isomet-
rically isomorphic to any C0(Z)\ For the set S of extreme points of
the dual unit ball of B which are in minimal facets of the dual unit
ball is clearly all of g7, and point evaluation at xH clearly lies in
the weak * closure of g*. But for all beB, we have b{x%) < \\b\\.
Thus B cannot be isomorphic to any Cσ(Z) by a theorem of Jerison's
[3, p. 121].

Each 9ΐ-Injective is Almost of Type C(X) .

Despite the example we have just given, an Sft-injective Banach
space is not too far removed from a space of type C(X). First, the
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spaces of type C(X) share with the space of the example we have
just given the property that their duals are isometrically isomorphic
to a space of type U{μ). (A long list of spaces which are preduals
of spaces of type Lι(μ) is given in [8, pp. 180-181], (I would like
to thank Y. Benjamini and the referee for bringing the class of
preduals of spaces of type &{μ) to my attention.) A well known
result of Lindenstrauss's states that each Banach space enjoying a
finite dimensional extension property (which is much weaker than
the extension property of -ϊί-injectivity) is the predual of an L\μ)
space [9, Theorem 6.1]. Hence the SR-injective Banach space and
the spaces of type C(X) all belong to the rather large family of
preduals of spaces of type L1(μ). But an -ϊϊ-injective space is more
closely related to the spaces of type C(X) than this. In fact, it
turns out that if B is 9i-injective, then B is the direct limit of its
Sί-separable subspaces of type C(X).

We may prove this, and more, essentially by means of a slight
modification of Kelley's original proof that a Banach space which is
injective in the category ^ is of type C(X) [7]. In what follows,
if E is a Banach space, then E* shall denote its dual, and UE shall
denote the closed unit ball of E. If K is a convex subset of E, then
ext K shall denote the set of extreme points of K. If Y £ E, then
Cl Y shall denote the closure of Y. The topology with respect to
which the closure is taken will be specified whenever it is not clear
from context. Finally, if Y is a compact Hausdorff space and y e Y,
then eyeC(Y)* shall denote evaluation at the point y.

LEMMA 1. Let M and N be Banach spaces, and let S: M—> N be
a linear map of norm <; 1. Let p be an extreme point of UN, and
let L — S~ι(p) Π UM. Then either L — 0 or L is a support of UM.

Lemma 1 is a standard fact (cf. [7]).

THEOREM 3. Let B be an SSl-injective Banach space. Let A be
an ^-separable subspace of B, and let i: 4C—>B be the inclusion
map. Let W be a weak * relatively open subset of Cl ext UA*> such
that Wn(-W) = 0 andC\(WΌ(-W)) = Clextί/^. Let Y= CIW.
Here, the closures are taken with respect to the weak * topology.
Endow Y with the weak * topology, and let j : A—>C(Y) be the
natural isometric injection. Then there exists an isometric injection
p: C(Y)-+B such that poj = i.

Before proving Theorem 3, three comments are in order. First,
as Kelley observed, it is easy to produce such sets W: Simply apply
Zorn's lemma to produce a set W which is maximal with respect to
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the two properties W f] (— W) — 0 , and W is weak * open in
Clextt/^* [7]. Second, from the Krein-Milman theorem, we know
that if a e A, then sup {y(a): y e UA*} is actually attained at some
y e Cl ext UA*. Since Wf](-W) is dense in Cl ext UA*, it follows
that j is an isometry. Finally, Y is clearly compact by the Alaoglu
theorem.

Proof. First, we must show that C(Y) is 9ΐ-separable. Observe
that j(A) is SJΐ-separable, so the subalgebra in <S>f in C(Y) genarated
by j(A) and the function = 1 is also ^-separable. But J>f separates
points of Y because A does. By the Stone-Weierstrass theorem, S>f
is dense in C(Y), so C{Y) is also ^-separable. From the 3ΐ-injectivity
of B, we conclude that there exists a linear map p:C(Y)-~+B of
norm 1 such that poj = i.

We will show that p is 1 — 1 by showing that its adjoint
p*: B* —• C(F)* is onto. We assert that it suffices to show that
{ey: ye W P ext UA*} £ P*(UB*). To see why, suppose this inclusion
holds. We know p* is weak * continuous and UB* is weak * compact,
so p*(UB*) is weak * compact and hence weak * closed in C(Y)*.
Thus Cl {ey: y e W P ext UA*} Q p*( UB*). But the map y-*ey, y e Γ,
is a homeomorphism from Y onto the set {ey: y e Y} endowed with
the weak * topology. Furthermore, because W is an open subset
of ClextC/^, we know that Cl (WPi ext UA*) = CIW = Y. Thus
{ey: y e Y] Q p*(UB*). From this, we conclude that ext UC{Y)* =
{±ey: ye Y}, as well as the closed convex hull of ext UC{Y)*, are con-
tained in p*(UB*). By the Krein-Milman theorem, Uc{¥)* ξZ p*(UB*).
Thus p* is onto.

In fact, from this last inclusion, we may conclude that p is not
only 1 — 1, but is actually an isometry. Suppose p were not an
isometry. We know that |[p[] = l, so there exists feC(Y) such
that !|/|! = 1 and | |p(/) | | < 1. Let μeC(Y)* be a linear functional
of norm 1 such that μ(f) = 1. If λ e UB*, then | p*(X)(f) \ = | Mp(f)) \ ^
\\p(f)\\ < 1, so μίp*(UB*). This is a contradiction.

We thus need only show that {ey: y e Wp] ext UΛ*} £ P*(UB*) in
order to complete the proof of Lemma 2. We will do this by chasing
the following commutative diagram of adjoint maps:

2)

Note that all of the maps involved have norm ^ 1. Let y e Y.
Clearly j*(ey) = y for each y e Y. We assert that if y e W P ext UA*,
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then j*~ι{y) Π liar)* = {ey}. Let L = j*~ι(y) Π ϋcm*. By Lemma 1, L
is a support of t/^r,*. L is closed in CT^D* and hence is compact.
By the Krein-Milman theorem, L has extreme points. Because L is
a support of &W)*> each extreme point w of L is also an extreme
point of UC(γ)*, and hence is of the form ±ez for some zeY. If
w — — ez, then for each aeAwe have y(a) = i*( —eβ)(α) = — e2(i(α)) ~
-z(α), soy = -z. Hence ye W0 (-C1W). But WO(~C1W) = 0,
since TFn ( — W) = 0 and W is open. Thus w is not = — ez for any
ze Y. If w = ez for some 2 e Y9 it is immediate that z = y. Hence
the only extreme point of L is ey. By the Krein-Milman theorem,
L = {ey}.

Now let yeWf] ext UA*, and observe that ΐ*-1(y) Π ?7s* ^ 0 by
the Hahn-Banach theorem. Let z e i*~\y) (Ί Z7u*. By the commuta-
tivity of diagram 2, j*p*(z) = i*(«) = y, so p*(2) zj*~ι{y) Π ί/*5 , and
hence p*(ίz;) = ey. Consequently, {ey: y eW Π ext C7A*} C P*(UB*), which
completes the proof of Theorem 3.

COROLLARY 1. Suppose B is not only %1-injective, but also 9Ϊ-
separable. Then B is isometrically isomorphίc to C(X), for some
extremally disconnected compact Hausdorff space X. Hence B is
injective in the category ^ .

Proof. In the statement of Theorem 3, choose A = B and X = Y.
Then B is isometrically isomorphic to C(X). By Theorem 1, Corollary
1, C(X) satisfies condition α*. But C(X) is -inseparable, so C(X)
satisfies condition aw for every infinite cardinal 91', and thus C(X)
is a boundedly complete vector lattice. The remainder of the corol-
lary now follows from Theorem 1, Corollary 2, and the Stone-Nakano
theorem.

Corollary 1 may be rephrased to assert that if B is injective in
the full subcategory of ^ whose objects are all ^-separable spaces,
then B is actually injective in ^ . As we mentioned in the intro-
duction, Corollary 1 is interesting because the situation is dramatically
different in the category &. It would be interesting to know if
there are any nontrivial full subcategories of ^ in which new in-
jectives can arise. As we shall see in Corollary 5, the full subcategory
^ of ^ , whose objects are all weakly compactly generated spaces,
is not such a subcategory.

COROLLARY 2. B is injective in the category &1 if and only if
B is isometrically isomorphic to C(X), for some extremally discon-
nected compact Hausdorff space X.
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Proof. One way is Theorem 1, Corollary 2. Gonversely, suppose
B is injective in ^ . B is ^-separable for some 9̂ , and also ϋft-
injective. Apply Corollary 1.

Corollary 2 is the full Goodner-Kelley-Nachbin characterization of
injectives in ^ [5], [7], [11]. Of course, Corollary 2 is a bit of a
cheat, because the proof of Theorem 3 is essentially Kelley's proof
(slightly modified) that each injective in . ^ is of type C(X). However,
the following corollary is somewhat more interesting because it may
provide the first step toward a complete characterization of 9ΐ-
injectives.

COROLLARY 3. Let B be an %1-injective Banach space. Then B
is the direct limit of its ^-separable subspaces of type C(Y).

Proof It suffices to prove that B is the union of such subspaces,
and that if A and C are two such ^-separable subspaces, then there
is an ^-separable subspace D of type C( Y) such that A U C £ D.
Both assertion follow immediately from Theorem 3.

I am indebted to Y. Benjamini for pointing out that Corollary 1
is actually strong enough to imply the following important result:

COROLLARY 4. There are no 3l-injective, infinite dimensional,
weakly compactly generated spaces.

Proof. Suppose B is an SfMnjective space which is also infinite
dimensional and weakly compactly generated. Let E be an infinite
dimensional separable subspace of B. By a fundamental result of
Lindenstrauss's, there exists a separable subspace D 2 E and a pro-
jection P\B-+D of norm 1 [10, pp. 170-171]. The existence of the
projection P guarantees that Ό is 9^-injective. By Corollary 1, D is
isometrically isomorphic to C(X)> where X is extremally disconnected
and compact Hausdorff. Since C(X) is separable, X is metrizable.
Thus X has finite cardinality, so D = C(X) is finite dimensional,
which is impossible.

COROLLARY 5. The only injectives in ^ are already injective
in the larger category . ^ , and are in fact finite dimensional.

Proof. Let B be an injective in ^ . Since ^ contains every
separable space, B is 9ϊo-injective. Apply Corollary 4.

In conclusion, we would like to raise a question whose resolution
probably awaits a complete characterization of iV-injectives. Cohen
showed that every Banach space has an injective envelope in the
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category ^ [1]. It would be interesting to know whether or not
every Banach space also has an 9ΐ-injective envelope.
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