SUBSTITUTION IN NASH FUNCTIONS

Gustave Efroymson

Let D be a domain in \boldsymbol{R}^{n}. In this paper D is assumed to be defined by a finite number of strict polynomial inequalities. A Nash function on D is a real valued analytic function $f(x)$ such that there exists a polynomial $p\left(z, x_{1}, \cdots, x_{n}\right)$ in $\boldsymbol{R}\left[z, x_{1}, \cdots, x_{n}\right]$ such that $p(f(x), x)=0$ for all x in D. Let A_{D} be the ring of such functions on D. For any real closed field L containing R, use the Tarski-Seidenberg theorem to extend f to a function from a domain D_{L} (defined by the same inequalities as D), $D_{L} \cong L^{(n)}$, to L. Now let $\varphi: A_{D} \rightarrow L$ be a homomorphism. Since $\boldsymbol{R}\left[x_{1}, \cdots, x_{n}\right] \subset A_{D}, \varphi x=\left(\varphi x_{1}, \cdots, \varphi x_{n}\right)$ is a well defined point in $L^{(n)}$ and is in D_{L}. So $f(\varphi x)$ is defined for any f in A_{D}. In this paper it is shown that $f(\varphi x)=\varphi f$. From this result one can deduce Mostowski's version of the Hilbert Nullstellensatz for A_{D}.

As for the Nullstellensatz, since D. Dubois [2], and J. J. Risler [8], independently proved the real Nullstellensatz for polynomial rings, there have been various successful attempts to extend the result to other types of rings, for example, [4], [9]. In [5], a partial result was obtained for Nash rings and then, in [7], T. Mostowski proved the Nullstellensatz for Nash rings. There is still a question as to whether the result holds for Nash rings on more general domains than those considered here.

1. Mostowski's theorem. We first recall some definitions.

Definition 1. A set C contained in R^{n} is said to be semialgebraic if it is defined by Boolean operations (finite union, finite intersection, complement) on sets of the form $\left\{a \in R^{n} \mid p(a)>0\right.$, for $p(x)$ in $\left.R\left[x_{1}, \cdots, x_{n}\right]\right\}$. That is, C is defined by a finite number of polynomial inequalities.

Definition 2. Let D be a set defined by a finite intersection of sets of the form $\left\{\alpha \in R^{n} \mid p(\alpha)>0\right\}$. Then $A_{D}=\{f: D \rightarrow R$ such that f is analytic on D and there exists a polynomial $p(z, x)$ in $R\left[z, x_{1}, \cdots, x_{n}\right]$ such that for all x in $\left.D, p(f(x), x)=0\right\}$. This ring is called the ring of Nash functions on D.

Definition 3. We wish to define certain subrings of $A_{D}=A$. Namely, let $B_{0}=R\left(x_{1}, \cdots, x_{n}\right) \cap A_{D}$. Let $B_{1}=\mathrm{V} B_{0}(\sqrt{f})$ for f in B_{0} and $f>0$ on D. Let $B_{2}=\bigvee B_{1}(\sqrt{f})$ for f in B_{1} and $f>0$ on D.

Mostowski's Theorem. Let D be as above and let C_{1} and C_{2} be two disjoint closed semi-algebraic sets contained in D. Then there exists a function g in B_{2} such that $g\left(C_{1}\right)>0$ and $g\left(C_{2}\right)<0$.

We will give a proof of this result in this section which is similar to Mostowski's proof, but, by proving a stronger version of Thom's lemma (the Separation Lemma below), we are able to simplify the finish of the proof of Mostowski's theorem.

Separation Lemma. We start with a finite number of polynomials $f_{1}\left(x_{1}, \cdots, x_{n}\right), \cdots, f_{s}\left(x_{1}, \cdots, x_{n}\right)$ in $R\left[x_{1}, \cdots, x_{n}\right]$. Then the roots of the f_{i} divide up R^{n} into a union of semi-algebraic sets. By Theorem 2.1 in [5], we can further divide up the sets so $R^{n}=\bigcup T_{i}$, a finite disjoint union of connected semi-algebraic sets bounded by the zeros of the f_{i} 's. We now claim we can find:
(a) a further finite subdivision of each $T_{i}=\bigcup T_{i j}$ a disjoint union of semi-algebraic sets,
(b) a finite number of polynomials $f_{1}, \cdots f_{s}, f_{s+1}, \cdots, f_{m}$ derivable from the original polynomials, so that
(1) $\operatorname{Sign} f_{k}\left(T_{i j}\right)$ is constant where $\operatorname{Sign}(f)=+$, 一, or 0 .
(2) Given i_{1}, i_{2} so that $\bar{T}_{i_{1}} \cap \bar{T}_{i_{2}}=\varnothing$, then for all j_{1}, j_{2} there exists some f_{k} with either

$$
f_{k}\left(T_{i_{1} j_{1}}\right) \geqq 0 \quad \text { and } \quad f_{k}\left(T_{i_{2} j_{2}}\right)<0 ;
$$

or

$$
-f_{k}\left(T_{i_{1} j_{1}}\right) \geqq 0 \quad \text { and } \quad-f_{k}\left(T_{i_{2} j_{2}}\right)<0
$$

Proof. We consider the polynomials f_{1}, \cdots, f_{s} as polynomials in x_{n} with coefficients in $R\left[x_{1}, \cdots, x_{n-1}\right]$. We can divide up R^{n-1} into a disjoint union $\cup S_{j}$ of a finite number of connected semi-algebraic sets so that above each S_{j}, the polynomials $\partial^{k} f_{i} / \partial x_{n}^{k}$ have a constant number of real roots and none intersect. We let the T_{j} 's be the regions above the S_{i} either defined as a root of one of the $\partial^{k} f_{i} / \partial x_{n}^{k}$ or a connected region bounded by adjacent roots. We first check Thom's lemma which asserts that regions above a fixed S_{i} are separated by the partials of the f_{j}. It is clearly enough to check this for one $f_{j}=f$.

Note, if the regions have a simple root of f between them, then f itself will separate unless there is more than one root of f in between, in which case $\partial f / \partial x_{n}$ will have a root in between and induction on degree f will handle it. Similarly, a multiple root of f will also be a root of $\partial f / \partial x_{n}$. If the regions are (1) a simple root of f and (2) a root of one of its derivatives, and they are adjacent,
then f separates one way and the corresponding $\partial^{k} f / \partial x_{n}^{k}$ the other way, etc.

The S_{i} are semi-algebraic sets in R^{n-1} and so they can be separated by induction on $n\left(n=1\right.$ is trivial). So if T_{i} and T_{j} have projections S_{i} and S_{j} which have disjoint closures, the polynomials separating S_{i} and S_{j} will also separate T_{i} and T_{j}. So the only case left to handle is where $\bar{S}_{i} \cap \bar{S}_{j} \neq \varnothing$ but $\bar{T}_{i} \cap \bar{T}_{j}=\varnothing$. Since we can assume $f=\sum_{i=0}^{d} a_{i} x_{n}^{i}$ and $\operatorname{Sign} \alpha_{d}$ constant on S_{2} and on S_{j}, we may as well assume $\operatorname{Sign} a_{d} \neq 0$ on S_{i}. We have to consider various cases.

Case 1. $\quad S_{j} \subseteq \bar{S}_{i} . \quad$ Let $\pi: R^{n} \rightarrow R^{n-1}$ be the projection $\left(x_{1}, \cdots, x_{n}\right) \rightarrow$ $\left(x_{1}, \cdots, x_{n-1}\right)$. Let f_{Q} denote the polynomial $\sum_{i=0}^{d} a_{i}(Q) x_{n}^{i}$ for Q in R^{n-1}. Choose P in T_{j} and we wish to find a polynomial which will be $\neq 0$ at P and of opposite sign or 0 on T_{i}. We have several subcases.
(i) Assume $f_{\pi(P)}$ is not the zero polynomial and that $x_{n}(P)$ is not a root of $f_{\pi(P)}$. Then, since T_{i} either is, or is bounded by, a root $x_{n}=\alpha_{i}\left(x_{1}, \cdots, x_{n-1}\right)$ above S_{i}, one sees that respectively, either f itself separates P from T_{j}, or else there is a root of f above S_{i} between P and T_{i}. In the second case, if this is a simple root of f and there are not others in between, then f separates. If the root is a multiple root, or if there is more than one in between, then $\partial f / \partial x_{n}$ will have a root between P and T_{i} and induction will work.
(ii) Assume $f_{\pi(P)}$ is not the zero polynomial and that $x_{n}(P)$ is a root of $f_{\pi(P)}$. Note that either $f_{\pi(P)}$ or $\left(\partial f / \partial x_{n}\right)_{\pi(P)}$ changes sign in an interval $\left(x_{n}(P)-\delta, x_{n}(P)+\delta\right)$ about $x_{n}(P)$. Thus, for Q near $\pi(P)$ (Q in S_{i}), f_{Q} or $\left(\partial f / \partial x_{n}\right)_{Q}$ will also change sign on this interval. In the first instance, f will have a root $\alpha_{i+1}\left(x_{1}, \cdots, x_{n-1}\right)$ above S_{2} which will have P in its closure. There will then be a root of $\partial f / \partial x_{n}$ which will be in between these roots and so separate T_{i} from P. If $\partial f / \partial x_{n(\pi(P))}$ changes sign on the interval about $x_{n}(P)$, then looking at the graph of $y=f_{\pi(P)}\left(x_{n}\right)$ and the graph of $y=f_{Q}\left(x_{n}\right)$ for Q near $\pi(P)$, one sees that $\partial f / \partial x_{n}$ again has a root between T_{\imath} and P. Proceed by induction.

(iii) Assume that $f_{\pi(P)}$ is the zero polynomial, i.e., that all
$a_{i}(\pi(P))=0$. Then if some irreducible factor of a_{d} divides all a_{i} and vanishes at $\pi(P)$, one can divide this factor out. Otherwise, $\pi(P)$ lies in the intersection of the zeros of two relatively prime polynomials in $R\left[x_{1}, \cdots, x_{n-1}\right]$ derivable from the a_{i} 's. For, either two a_{i} 's have relatively prime factors which vanish at P, or else one of the a_{i} has an irreducible factor which vanishes at P and is not real. Not real means that the factor does not generate the ideal of its real zeros. This follows from the real nullstellensatz for polynomials (see Theorem 2.1, in [4]). In the factor of a_{i} which we also call a_{i} is not real, then its real locus is contained in its singular locus (see Theorem 2.1, in [3]), and so is in the zero set of all the $\partial a_{i} / \partial x_{j}$. In this way eventually one will obtain two relatively prime polynomials $u\left(x_{1}, \cdots, x_{n-1}\right)$ and $v\left(x_{1}, \cdots, x_{n-1}\right)$ which vanish at P. By elimination theory, one can assume that u doesn't involve x_{n-1} and v doesn't involve x_{n-2}. Then, using $u, v, u-v$ and $u+v$, one can define new regions subdividing S_{i} so that in these regions, which we also call S_{i}, we have $\pi(P)=\lim Q$ for Q in S_{i} and $x_{i}(Q) \rightarrow x_{i}(P)$ $i=1,2, \cdots, n-2$. Now let $\beta\left(x_{1}, \cdots, x_{n-2}\right)=\min \alpha\left(x_{1}, \cdots, x_{n-1}\right)$ for $\left(x_{1}, \cdots, x_{n-1}\right)$ is S_{i} and where α is a boundary of T_{i}. And do the same thing for $\max \alpha$. Then, since $f\left(x_{1}, \cdots, x_{n-1}, \alpha\left(x_{1}, \cdots, x_{n-1}\right)\right)=0$, we derive

$$
\begin{aligned}
& \partial f / \partial x_{n-1}\left(x_{1}, \cdots, x_{n-1}, \alpha\left(x_{1}, \cdots, x_{n-1}\right)\right) \\
& \quad+\partial f / \partial x_{n}\left(x_{1}, \cdots, x_{n-1}, \alpha\left(x_{1}, \cdots, x_{n-1}\right) \frac{\partial \alpha}{\partial x_{n-1}}=0\right.
\end{aligned}
$$

So either $\beta\left(x_{1}, \cdots, x_{n-2}\right)$ is a root of the polynomial obtained from $\partial f / \partial x_{n-1}$ and f by eliminating x_{n-1} or else the minimum occurs on the boundary, in which case one can use elimination theory on f and one of the $u, v, u+v$, or $u-v$ to get a polynomial with root β. In any case, we get a new polynomial involving one less variable than f which will have a root β between T_{i} and P, at least near P, in S_{i}. By subdividing S_{i} again, one can assume that the new polynomial does have a root between T_{i} and P above S_{i}. Then the induction can proceed.

Case 2. $\quad S_{j} \nsubseteq \bar{S}_{\imath}$. One must consider the various $S_{k} \subseteq \bar{S}_{i} \cap \bar{S}_{j}$ and see what happens to the roots of f above S_{k}. If $a_{d}=0$ on S_{k}, then one can use the minimizing techniques of Case 1 , (iii) to reduce to the two variable case where a_{d} or one of its irreducible factors will separate T_{i} and T_{j}. When $a_{d} \neq 0$ on S_{k}, let $T_{i}^{\prime}=T_{i} \cap \pi^{-1}\left(S_{k}\right)$ and $T_{j}^{\prime}=T_{j} \cap \pi^{-1}\left(S_{k}\right)$. As long as T_{i}^{\prime} and T_{j}^{\prime} are not adjacent roots, one can find some $\partial^{l} f / \partial x_{n}^{l}$ which is >0 on T_{i}^{\prime} and <0 on T_{j}^{\prime} and by continuity the same holds on T_{i} and T_{j}. If these are adjacent
roots, then one chooses the polynomial so it vanishes on T_{i} and is <0 on $T_{j}^{\prime \prime}$, etc.

One must subdivide the regions T_{i} so that the new polynomials have constant sign on these pieces.

Mostowski's Theorem. Let D be defined by $p_{i}\left(x_{1}, \cdots, x_{n}\right)>0$, $i=1, \cdots, s$. Then, if C_{1} and C_{2} are semi-algebraic closed disjoint subsets of D, there exists g in B_{2} with $g\left(C_{1}\right)>0$ and $g\left(C_{2}\right)<0$.

Proof. First a remark. Mostowski's proof would show that one could choose g in B_{1}, but this seems to have no advantage in the applications.

Let f_{1}, \cdots, f_{t} be the polynomials defining C_{1} and C_{2}. By the Separation Lemma, we can find more polynomials including the f 's and p 's, say, f_{1}, \cdots, f_{u} and a subdivision $R^{n}=\mathbf{U}_{i, j} T_{i j}, T_{i}=\mathbf{U}_{j} T_{i j}$ so that $C_{1}=\bigcup T_{i}$ for i in I_{1} and $C_{2}=\bigcup T_{i}$ for i in I_{2}. Moreover $\operatorname{Sign} f_{k}\left(T_{i j}\right)$ is constant and for all $\bar{T}_{i_{1}} \cap \bar{T}_{i_{2}}=\varnothing$, and all j_{1}, j_{2}; there exists f_{k} with $\pm f_{k}\left(T_{i_{1} j_{1}}\right) \geqq 0$ and $\pm f_{k}\left(T_{i_{2} j_{2}}\right)<0$.

So choose $T_{11} \subseteq C_{1}$ and choose each $\pm f_{k}$ with $\pm f_{k}\left(T_{11}\right) \geqq 0$. We consider the chosen $\pm f_{k}$'s as our f_{k} 's. Then, for each $T_{i j} \subseteq C_{2}$, there exists f_{k} with $f_{k}\left(T_{i j}\right)<0$.

Let $h=\sum_{k}\left(\left|f_{k}\right|-f_{k}\right)$. Then $h=0$ on T_{11} and $h>0$ on C_{2}. Let

$$
\varepsilon(x)=\prod_{i=1}^{s} p_{i}(x) /\left(2+\|x\|^{2}\right)^{L}
$$

for $L=\sum_{i=1}^{s} \operatorname{deg} p_{i}+1$ and if no p_{i}, then let the numerator $=1$. Since $h>0$ on C_{2}, we can let $\gamma(r)=\min \left\{h(x) \mid \varepsilon(x)=r, x \in C_{2}\right\}$. Then $\gamma(r)>0$ for $0<r<1$ and $\gamma(r)$ is an algebraic function. Thus there exists N so that $\gamma(r)>r^{N}$ for all r for which $\gamma(r)$ is defined. It follows that $h(x)>\varepsilon(x)^{N}$ on C_{2}. We let

$$
g_{11}(x)=\sum_{k=1}^{t}\left(\sqrt{f_{k}^{2}+\varepsilon(x)^{2 N} /(t+1)^{2}}-f_{k}\right)>h(x) .
$$

Moreover, $g_{11}(x)<h(x)+\varepsilon(x)^{N}$, so on T_{11}, we have $g_{11}(x)<\varepsilon(x)^{N}$. Thus $g_{11}(x)-\varepsilon(x)^{N}$ is <0 on T_{11} and >0 on C_{2}.

In a similar way, one can find some $g_{i j}$ for each $T_{i j} \subseteq C_{1}$ so that $g_{i j}>0$ on C_{2} and $g_{i j}<0$ on $T_{i j}$. Each $g_{i j} \in B_{1}$. Now note that $\sum\left(\left|g_{i j}\right|-g_{i j}\right)=0$ on C_{2} and >0 on C_{1}. Then as above by modifying this function one can obtain

$$
g=\sum\left(\sqrt{g_{i j}^{2}+\varepsilon(x)^{2 M} / M^{2}}-g_{i j}\right)-\varepsilon(x)^{M}
$$

for some large integer M which will have the desired properties.
2. Substitution in Nash functions. Recall the situation. We have D as in $\S 1$ to be $\left\{\alpha\right.$ in R^{n} with $\left.p_{i}(\alpha)>0, \mathrm{i}=1, \cdots, s\right\}$. And $A=\{f: D \rightarrow R$ with f algebraic and analytic $\}$. Let $\varphi: A \rightarrow L$ be a homomorphism of A into a real closed field. Since $A \supset R\left[x_{1}, \cdots, x_{n}\right]$, φx_{i} is defined for $i=1, \cdots, n$. In [5], $\S 2$, it was shown that $f(x)=z$ is equivalent to some elementary statement $A(x, z)$, so one can define a new function $f_{L}: D_{L} \rightarrow L$, where $D_{L}=\left\{\left(a_{1}, \cdots, a_{n}\right)\right.$ in L^{n} with all $\left.p_{i}\left(a_{1}, \cdots, a_{n}\right)>0\right\}$ by setting $f_{L}(\alpha)=b$ if and only if $A(a, b)$. In [5], loc. cit., it was shown that f_{L} is a well defined function, and that $\varphi x \in D_{L}$.

Theorem 2.1. With the notation as above, $f_{L}\left(\varphi x_{1}, \cdots, \varphi x_{n}\right)=\varphi f$.
Proof. This goes in several steps and occupies most of this section.

Lemma 2.2. We can assume that if $p_{f}=\sum_{i=0}^{d} \alpha_{i}(x) z^{i}$ is the irreducible polynomial for f over $R\left(x_{1}, \cdots, x_{n}\right)$; then $a_{d}(\varphi x) \neq 0$, and $\partial p_{f} / \partial z(\varphi f, \varphi x) \neq 0$.

Proof. Let a be any point of D. For our original f,

$$
R[x, f]_{(a, f(a))}=\left(R[x, z] /\left(p_{f}\right)\right)_{(a, f(a))}
$$

is a local ring and is etale over $R[x]_{(a)}$. But by [6], Corollary 7.5, p. 11, this implies that there exists g in $R[x, f]_{(a, f(a))}$ with $p_{g}(z, x)$ irreducible and $\partial p_{g} / \partial z(g(\alpha), \alpha) \neq 0$. Let $\alpha(x)$ be the leading coefficient of $p_{g}(z)$. So $f(x)=q_{1}(g, x) / q_{2}(g, x)$ with $g_{2}(g(\alpha), a) \neq 0$. Let

$$
h_{a}=\left(\partial p_{g} / \partial z(g(x), x) q_{2}(g(x), x) \alpha(x)\right)^{2} .
$$

Then $h_{a} \neq 0$ near a, and we can construct such an h_{a} for every a in D. Let $V_{a}=V\left(h_{a}\right)=$ zero set of h_{a} in D. It is clear that $\bigcap V_{a}=\varnothing$ taking the intersection over all a in D. We claim that there exists a finite number of V_{a} whose intersection is empty. To prove this we argue as in [5], Lemma 3.1. First choose some $h_{a_{1}}$ and let W be a connected non-singular piece of $V\left(h_{a_{1}}\right)$. Let $a_{2} \in W$ and then $h_{a_{2}}$ can vanish only on a smaller dimensional piece of W. By continuing this process one gets the result.

Let h be the sum of these h_{a} 's. Then $h-\varepsilon(x)^{N}>0$ on D for N large enough. So $\sqrt{h-\varepsilon^{N}} \in A$ and so $\varphi\left(\sqrt{h-\varepsilon^{N}}\right)^{2}=\varphi\left(h-\varepsilon^{N}\right)>0$. This implies that $\varphi h_{a}>0$ for some a. Take the corresponding g for this h_{a}. Then $\partial p_{g} / \partial z(\varphi g, \varphi x) \neq 0, q_{2}(\varphi g, \varphi x) \neq 0$, and $\alpha(\varphi x) \neq 0$.

So suppose we have proved our theorem for g. Then since $f=q_{1}(g, x) / q_{2}(g, x)$, we have

$$
\varphi f=q_{1}(\varphi g, \varphi x) / q_{2}(\varphi g, \varphi x)=q_{1}(g(\varphi x), \varphi x) / q_{2}(g(\varphi x), \varphi x) .
$$

But $f(b)=q_{1}(g(b), b) / q_{2}(g(b), b)$ for all b in R^{n} with $q_{2}(g(b)) \neq 0$ so, by the Tarski-Seidenberg principle: [1] or [5], Theorem 1.8, the same holds for all b in L^{n}. In particular $f(\varphi x)=q_{1}(g(\varphi x), \varphi x) / q_{2}(g(\varphi x), \varphi x)$ and this implies that $\varphi f=f(\varphi x)$.

So we now assume that $\partial p_{f} / \partial z(\varphi f, \varphi x) \neq 0$. Consider $R[x, z] /\left(p_{f}\right)$ and normalize this ring. Let $t_{1}(z, x), \cdots, t_{u}(z, x)$ generate the normalization (considered $\bmod p_{f}$). So, as usual, $R[z, x, t] /\left(p_{f}, \cdots\right) \longleftrightarrow$ $R[x, z] /\left(p_{f}\right)$ induces $\pi: C^{n+s+1} \rightarrow C^{n+1}$, with the branches of $V\left(p_{f}\right)$ separated in C^{n+s+1}. Of course $C=$ complex numbers.

Note that $t_{i}(\varphi f, \varphi x)$ is defined since $\partial p_{f} / \partial z(\varphi f, \varphi x) \neq 0$.
Let

$$
C_{1}=\left\{\left(x, f(x), t_{1}(f(x), x), \cdots, t_{u}(f(x), x)\right) \mid x \in D\right\}
$$

and

$$
C_{2}=\left\{\left(x, z, t_{1}(z, x), \cdots, t_{u}(z, x)\right) \mid p_{f}(z, x)\right\}=0, \quad x \in D, z \neq f(x)
$$

Then C_{1} and C_{2} are closed disjoint semi-algebraic sets in $D \times R^{s+1}$, so by Mostowski's theorem, there exists $g(x, z, t)$ in $B_{2, D \times R^{s+1}}$ with $g\left(C_{1}\right)>0$ and $g\left(C_{2}\right)<0$.

Now let $h(x)=g\left(x, f(x), t_{1}(f(x), x), \cdots, t_{u}(f(x), x)\right)$. We have to show that $h(x) \in A$ and that $\varphi h=g\left(\varphi x, \varphi f, t_{1}(\varphi f, \varphi x), \cdots, t_{u}(\varphi f, \varphi x)\right)$. But since each $t_{i}(f(x), x)$ is integral over $R[x]_{(a)} \forall a \in D$ and analytic on D except for a thin set, $t_{i}(f(x), x)$ is in fact analytic on D. The rest follows from

Lemma 2.3. Let $g \in B_{2}$ and $h_{1}, \cdots, h_{r} \in A_{D}$ so that $g\left(h_{1}, \cdots, h_{r}\right)$ is defined and in A_{D}. Then $\varphi g=g\left(\varphi h_{1}, \cdots, \varphi h_{r}\right)$.

Proof. It is enough to show this for g in B_{1}, as a repeat of the same argument will finish the proof. So let $g=a(x)+b(x) \sqrt{f(x)}$ where $f, a, b \in B_{0}$ and $f>0$ on D. Now $f\left(h_{1}, \cdots, h_{r}\right)$ has

$$
\varphi\left(f\left(h_{1}, \cdots h_{r}\right)\right)=f\left(\varphi h_{1}, \cdots, \varphi h_{r}\right) \quad \text { as } \quad f \in B_{0} .
$$

Since $\left.\varphi\left(\sqrt{f\left(h_{1}, \cdots, h_{s}\right.}\right)^{2}\right)=\varphi f\left(h_{1}, \cdots, h_{s}\right)$, it follows that

$$
\varphi\left(\sqrt{f\left(h_{1}, \cdots, h_{r}\right)}= \pm \sqrt{\rho f\left(h_{1}, \cdots, h_{s}\right)}\right.
$$

But

$$
\varphi\left(\sqrt[4]{f\left(h_{1}, \cdots, h_{s}\right)^{2}}\right)=\varphi \sqrt{f\left(h_{1}, \cdots, h_{r}\right)}>0
$$

and so Lemma 2.3 follows.

To finish the proof of Theorem 2.1, note that
(*) Given (x, z) in $D \times R$ if $p_{f}(z, x)=0$ and $g\left(x, z, t_{1}(z, x), \cdots, t_{u}(z, x)\right)$ is defined and >0; then $f(x)=z$.

By Tarski-Seidenberg, this statement also holds in $D_{L} \times L$ and since we have $p_{f}(\varphi f, \varphi x)=0$ and $g\left(\varphi x, \varphi f, t_{1}\left(\varphi f, \varphi(x), \cdots, t_{u}(\varphi f, \varphi(x))>0\right.\right.$, it follows that $f(\varphi x)=\varphi f$.

We now show that the Nullstellensatz proved by Mostowski is an easy corollary of Theorem 2.1.

Theorem 2.4 (Mostowski). Let \mathscr{J} be an ideal of A. Then $I\left(V_{D}(\mathscr{F})\right)=\mathscr{I}$ iff \mathscr{I} is a real ideal (i.e. $\sum \lambda_{i}^{2} \in \mathscr{J}$ implies each $\left.\lambda_{i} \in \mathscr{J}\right)$.

Proof. First note that A is Noetherian by [5], Theorem 3.4, and so $\mathscr{F}=\mathscr{P}_{1} \cap \cdots \cap \mathscr{P}_{s}$ where each \mathscr{P}_{i} is a real prime. It will be sufficient then to show that for each $i, I\left(V_{D}\left(\mathscr{P}_{i}\right)\right)=\mathscr{P}_{i}$. So consider \mathscr{P} a real prime in A and by the Noetherian property of A, we have $\mathscr{P}=\left(f_{1}, \cdots, f_{t}\right)$ for some f_{1}, \cdots, f_{t} in A. Let L be a real closure of the quotient field of A / \mathscr{P}. Then we have $\varphi: A \rightarrow A / \mathscr{P} \subset L$ where $\varphi=$ the total map.

Now $g \in I\left(V_{D}(\mathscr{P})\right)$ iff; (*) For all $x \in D, f_{1}(x)=0, \cdots, f_{t}(x)=0$; implies $g(x)=0$. By Tarski-Seidenberg, (*) holds for L. But $\varphi f_{i}=0$ for all i so by Theorem 2.1, $f_{i}(\phi x)=0$. This implies, by (*) that $g(\varphi x)=0$. Again applying Theorem 2.1, we see that $\varphi g=0$. So $g \in \mathscr{F}$.

Theorem 2.5 (Mostowski). Let $f \in A, f \geqq 0$ on D. Then f is a sum of squares in K, the quotient field of A.

Proof. If f is not a sum of squares, order K so that $-f>0$. Then, if L is a real closure of K, one has $\varphi: A \subset L$. Since for all x in $R^{n}, f(x) \geqq 0$; by Tarski-Seidenberg, the same holds for $x \in L^{n}$. Thus $f(\varphi x) \geqq 0$. By Theorem 2.1, $\varphi f=f(\varphi x) \geqq 0$, but as $\varphi f=$ the image of f in L and L is ordered so $f<0$, we have a contradiction.

References

1. P. Cohen, Decision procedures for real and P-adic fields, Comm. on Pure and Appl. Math., XXII (1969), 131-151.
2. D. Dubois and G. Efroymson, Algebraic Theory of Real Varieties I, Studies and Essays presented to Y-H Chen, Taiwan Math. J. (1970).
3. G. Efroymson, Henselian fields and solid k-varieties, II, Proc. Amer. Math. Soc., 35 (1972), 362-366.
4. G. Ffroymson, Local reality on algebraic varieties, Algebra, 29 (1974), 133-142.
5. ——, A nullstellensatz for Nash rings, Pacific J. of Math., 54 (1974), 101-112.
6. A Grothendieck, Seminaire de Geometrie Algebrique de Bois Marie, SGA 1, Lecture Notes in Math No. 224, Springer-Verlag.
7. T. Mostowski, Some Properties of the Ring of Nash Functions (preprint), 1974.
8. J. J. Risler, Un characterisation des ideaux des Varietes algebriques reeles, C. R. Acad. Sci. Paris Ser. A 271, No. 23 (1970), 1171-1173.
9. ——Un Theoreme des Zeros en Geometries Algebrique et Analytique Reeles, in Seminaire F. Norguct, Lecture Notes in Math No. 409, Springer-Verlag (1974), 603-612.

Received April 12, 1975.
University of New Mexico

