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SUBSEQUENCES AND REARRANGEMENTS
OF SEQUENCES IN FK SPACES

RoBERT DEVoOS

The purpose of this paper is to study FK spaces which
contain all subsequences or all rearrangements of a given
sequence. Using a result of Bennett and Kalton we are able to
show that if a separable FK space contains all subsequences or
all rearrangements of a sequence with two or more finite cluster
points, then it contains m. We are also able to show that if ¢?
contains all rearrangements of some sequence not in ¢, then it is
a wedge space. This leads to proofs that if X is a solid symmetric
FK space, X\¢? # ¢, X # s, then X # ¢4 for any matrix A and if
in addition X is not wedge then X and ¢” are not linearly
homeomorphic, via a matrix, hence extending a result of Banach.

1. Recently there has been a large number of papers [8], [9], [11],
[13], [14] and [15] considering subsequences and rearrangements of
sequences in ¢, and €,. In this paper we consider these operations in an
FK space setting and are able to generalize many of these results.

The author would like to thank G. Bennett, F. W. Hartmann, A. K.
Snyder and A. Wilansky for inspiration and many valuable conversa-
tions.

Let s denote the space of all complex-valued sequences. An FK
space is a vector subspace of s which is also a Fréchet space, (complete
linear metric) with continuous coordinates. A BK space is a normed FK
space. Some discussion of FK spaces is given in [19]. Well-known
examples of BK spaces are the spaces m, c, ¢, of bounded, convergent,
null sequences respectively, all with || x [.. = sup|x [,

¢r = {x es: x|, = (21 [ xi I")HP<°°} (I=p<w)

(and we write ¢ = ¢'))

Let m, be the linear span of all sequences of 0’s and 1’s and E~ the
set of all finite sequences; that is, sequences all but finitely many of whose
terms are zero. We shall assume that all FK spaces contain E*. Let A
be a matrix, E an FK space, E, = {x € s: Ax € E} is well known to be
an FK space.

Lete=(1,1,1,---),e’ =(0,---,0,1,0,---) (with 1 in rank j). We
denote the nth section of an element x € E by P,x =X, xe' and say
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that x has AK provided that P.x — x in E. The FK space E is called
wedge when e" —0 in E.
The o and B duals of a subset X of s are defined by

X = {yEs: i [xy.| < for each xEX}
1=t

XF = {y €s: >, xy, converges for each x € X} .

1=1

E is solid if x € E implies (ax;) € E for each a € m. Let X denote
all permutations (rearrangements) of the positive integers. E is sym-
metric if x € E implies x, = (x,) € E for each o € 2.

In [6], R. C. Buck proved the Tauberian theorem that if x is
nonconvergent, then no regular summability matrix can sum every
subsequence of x. 1. J. Maddox in [15] improved Buck’s theorem by
showing that if A sums every subsequence of a divergent real sequence
then ¢, D m.

In [11], J. A. Fridy proved a theorem analogous to Buck’s, in which
subsequence is replaced by rearrangement. T. A. Keagy in [13] extends
Fridy’s theorem as Maddox extended Buck’s.

In the following two theorems, we consider subsequences and
rearrangements of a sequence in an FK space. Theorem 2, along with the
facts

(1) ca is always separable;

(i) if xZ m and every subsequence (rearrangement) of x is in c,
then 3 N such that a, =0 for n = N, and this implies that ¢, = s;
gives us their results.

THEOREM 1. Let E be an FK space D E*. The following are equi-
valent.
(a) There exists an x € E with the properties:
(i) for some p, q real numbers, p# q, pe and qe are subsequences of

X.
(ii) E contains all subsequences of x.

(b)) EDm

() E2mg

(d) e € E and there exists a y € E with the properties
(i) for some p, q real numbers, p # q, pe and ge are subsequences of
y.
(ii) E contains all rearrangements of y.

Proof. Clearly (b) > (a), (b) = (c¢) and (b) = (d).
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(c) > (b) Bennett and Kalton’s extension of Seevers results
Theorem 1, p. 513 of [5].

(a) = (c) E contains all sequences of p’s and q’s hence E contains
all sequences of 0’s and 1’s.

(d) = (c) Let z be a sequence of 0’s and 1’s such that only finitely
many z, =1 or =0. Since e €EE and E*CE then z € E. Let z be a
sequence of 0’s and 1’s with an infinite number of z, = 0 and an infinite
number of z, = 1.

Let r(k) and s(k) be such that z,,,=1, z,,=0 for all k and

{r(k )} U {s(k)} = 2.
Let y',y% y° y* be rearrangements of y such that
Yren = P, Vi = ¢
)’E(Qk) = q, )7§(k) =D yz(zkfn = yl(2k~l)
Y§(2k—1)= )2 yz(k): q

4 — 4 p— 4 —_
Yrok-n= G, Ysxy= D, Yrek) = Yrek)-
Hence

3(p1_q) [V =y)+(—qe+(y’—y)+(p—q)e] =2z

and so z € E. Since z was arbitrary it follows that E D m.

Using a form of the closed graph theorem due to Kalton, Bennett
and Kalton as Theorem 25 p. 577 of [4] prove

THEOREM (BENNETT-KALTON). If E is a separable FK space 2 E~
and E + ¢,D m, then E D m.

Using this theorem and arguments similar to those of Theorem 1, we
have

THEOREM 2. Let E be a separable FK space D E~. The following are
equivalent.

(@) 3 x € E with at least two distinct finite cluster points and E
contains all subsequences of x.

(b) EDm.

(c) E D my.

(d) 3y € E with at least two distinct finite cluster points, E contains
all rearrangements of y and e € E.

LEMMA 1. Let Y be a linear sequence space, x € Y\{” such that
every rearrangement of x belongsto Y. Then there exists a z € Y\{” such
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that every rearrangement of z belongs to Y and |z;|=0 for an infinite
number of subscripts.

Proof. Let y be a rearrangement of x such that the even coordi-
nates form a sequence which s not in €7 and the sequence (y., —
Yan-2) € €7. Let y’ be the rearrangement of x which permutes the 4nth
and the 4n —2nd slots of y. Let z =y —y'. The odd coordinates of z
are 0 and z € Y\¢”. Clearly any rearrangement of z belongs to Y.

THEOREM 3. Let A = (a,) be a matrix, a” the nth column of A and
1= p <. If there exists an x € €%\ €’ such that every rearrangement of x
belongs to ¢* then ||a"|, — 0.

Proof. By alemma in [11], each row of A isin ¢,. If x & m then the
rows of A are in E-, for if 3 p such that (a,.);-;& E* then 3 a
rearrangement of x such that X g, ,x,(, is not convergent. Let 8" be the
nth row. If 3 N such that PyB8"— B" =0 for all n then ¢4=s and
la"|l, =0 for » = N. If N does not exist then 3 a monotonic increasing
sequence of positive integers (p(k)) and a rearrangement x, of x such
that

z 1,

l 2 A k), 1x0 ()
i

which implies x,&Z ¢%, a contradiction; so N exists. If x € m, we may
assume [ x|l.=1. Suppose [|a"|, 40, then there exists € >0 and an
increasing sequence of integers r such that ||a"||, = €, for all i. We now
define a subsequence (¢(k)) of r and (m(k)) of positive integers. Let
¢(1)=r, m(0)=0 and m(1) be such that ||a‘®~ P,ya ‘|, <ie Since
the rows are in ¢, pick ¢(2)> ¢(1) such that || P, a‘®|, <}e. Pick
m(2)> m(1) such that |a‘®— P,pa‘®||, <ie.

Proceeding in this manner we inductively define increasing se-
quences (¢(k)) (a subsequence of r) and (m(k)) such that

ol = e

1
| Prgya ‘<), < ki €

L
| Py ‘@ — a ‘@), < 5% €.

Hence
l Py = Pnw-n)a f(k)”p = le. (k z2)
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By Lemma 1, 3 z € £5\¢” such that |z, | = 0 for i # ¢(k) for some k and
| z|.=1 since | x|l.=4. Hence

<

Z Ay, (k)2 e(k) ) € ¢F
k=1

call it y°. Let

'Yl = ,al’(l)_ Pm(l)a M)l
(i.e. the absolute value of each term)
v =™ = (P = Pum-n)a®™@| for nz=1

R 1
Iyl =g e+ e =5

Let 6§=27,y". Since Z7,|y‘|, <, it follows that &€ ¢*. Let
m(s—1)<q=m(s)

| @y e)Ze0s)

D g Zew | T 2 g cwrzew]
k=1 k=1

k#s
= ’gl g exyZeay |t ’Zl | @, el
k#s

=< 5,

Hence the sequence

—_— [4¢! £(k
8" = ZeyPuy@ ‘@ + ) Zet(Pry = Pre-n) ‘@ € €7
k=2

But

161l = [ zecy Py “l5 + ;7 | Zeao [P | (Prscty = Prnge—y)a “®[Jp
= b E)" + S b (5)"
= |Zm)| (2 kZ |Zf(k)| 2

which implies z € ¢7, a contradiction. Hence [|a" |, = 0.

This theorem was stated for p = 1 in the Notices by Keagy [14]. In
[2] Bennett defined the concept of a wedge space. He then proves
several equivalent conditions one of them being E D z* for some
Z € ¢, As Theorems 36 and 41, he shows ¢% is wedge iff |a"|, =0
where a” is the nth column of A.
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CorOLLARY 1. Let X be a non-wedge FK space, y € X\¢€” such that
V. € X for all 0 €%. Then X # €% for any matrix A.

COROLLARY 2. Let X# s be a solid symmetric FK space X\€" # ¢.
Then X# ¢% for any matrix A.

Proof. 1In [12] Garling proves that X C m; but all wedge spaces
contain unbounded sequences hence X is nonwedge.
Since ¢ is always solid symmetric we have

CorOLLARY 3. If g > p then €°# €% for any matrix A.

This was proved using wedge spaces by Bennett in [2] and other
techniques by DeVos in [10].

THEOREM 4. Let X be a non-wedge FK space with AK, y € X\¢€?
such that y, € X for all o € %. Then X cannot equal €% nor can it be a
closed subspace of ¢% for any matrix A.

Proof. Let z € m, be chosen such that z,,,=1 and z, =0 for
i# n(k) where (n(k)) is an increasing sequence of positive integers such
that !e"®! = ¢ >0 where !! is the paranorm of X and [|a"®|, < 1/2*
where a"® is the n(k) column of the matrix A. z& X and z € ¢4 with
AK hence z is the closure of X in ¢4. Hence X is not closed in 4.
Garling in [11] defines the spaces

. = {x € s:sup D, Ix(,(,-)z,-}<oo}
ocEX

1=1

and shows that u, is a symmetric solid BK space. As Proposition 11 he
shows for z € ¢y, u.2¢'. Combining these results we add another
condition to Bennett’s Theorem 36.

THEOREM 5.  The following conditions are equivalent for any matrix
A.

(i) €. is a (weak) wedge space

(i) fla"],—0

(i) 3 x € €,\¢ such that x, € €, for all o € X.

For p >1, the converse of Theorem 3 is false. For the following
example let all sequences be real. In [16] Ruckle defines the sequence h
such that h, = n"? —(n —1)" and shows that u, & ¢?. Let A be the
matrix such that

a,=h, and a,=0 for p>1;
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Thus, €4 =s, = h®? D u,. Let x € h*? such that x, € h? for all permuta-
tions o. Then x, € h* for all permutations 0. Hence x € u, which
implies x € £°.

Banach in [1] shows that if p#q, g =1 then ¢? and ¢¢ are not
linearly homeomorphic. He does this by showing that their linear
dimensions are incomparable. If X and Y are linear topological spaces
then dim, X =dim,Y iff X is isomorphic to a closed subspace of Y. The
following theorems which follow easily from Theorem 3 are extensions of
these results.

THEOREM 6. Let X be a nonwedge FK space such that 3 x € X\¢?
with x, € X for all o € 2. Then X and ¢° are not linearly homeomorphic
via a mairrix.

THEOREM 7. Let X be a nonwedge FK space with AK such that 3
x € X\¢? with x, € X for all ¢ € 3. Then dim, X Z dim, ¢*.
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