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SUBSEQUENCES AND REARRANGEMENTS
OF SEQUENCES IN FK SPACES

ROBERT D E V O S

The purpose of this paper is to study FK spaces which
contain all subsequences or all rearrangements of a given
sequence. Using a result of Bennett and Kalton we are able to
show that if a separable FK space contains all subsequences or
all rearrangements of a sequence with two or more finite cluster
points, then it contains m. We are also able to show that if €p

contains all rearrangements of some sequence not in /p , then it is
a wedge space. This leads to proofs that if X is a solid symmetric
FK space, X\ipϊ φ, X/ s, then X^ ίp

Λ for any matrix A and if
in addition X is not wedge then X and (p are not linearly
homeomorphic, via a matrix, hence extending a result of Banach.

1. Recently there has been a large number of papers [8], [9], [11],
[13], [14] and [15] considering subsequences and rearrangements of
sequences in cA and ίA. In this paper we consider these operations in an
FK space setting and are able to generalize many of these results.

The author would like to thank G. Bennett, F. W. Hartmann, A. K.
Snyder and A. Wilansky for inspiration and many valuable conversa-
tions.

Let s denote the space of all complex-valued sequences. An FK
space is a vector subspace of 5 which is also a Frechet space, (complete
linear metric) with continuous coordinates. A BK space is a normed FK
space. Some discussion of FK spaces is given in [19]. Well-known
examples of BK spaces are the spaces m, c, c0 of bounded, convergent,
null sequences respectively, all with ||JC||OC = sup|xfe |,

= {xEs:\\x\\p

(and we write £ = €ι.)
Let m0 be the linear span of all sequences of O's and Γs and Ex the

set of all finite sequences; that is, sequences all but finitely many of whose
terms are zero. We shall assume that all FK spaces contain Ex. Let A
be a matrix, E an FK space, EA = {x E s: Ax E E} is well known to be
an FK space.

Let e = (1,1,1, ), e' = (0, ,0,1,0, ) (with 1 in rank /). We
denote the nth section of an element x E E by Pnx - ΣΓ=i jc e1 and say
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that x has AK provided that Pnx -» x in E. The FK space E is called
wedge when en->0 in £.

The a and β duals of a subset X of s are defined by

Xα = I y E 5: 2 | x,y, | < °° for each x E

X β = j y E 5: ^ xιyι converges for each x E X\ .

E is solid if x E £ implies (α, jc, ) E £ for each a & m. Let X denote
all permutations (rearrangements) of the positive integers. E is sym-
metric if x E £ implies xσ = (jcσ(I))E E for each σ E X.

In [6], R. C. Buck proved the Tauberian theorem that if x is
nonconvergent, then no regular summability matrix can sum every
subsequence of x. I. J. Maddox in [15] improved Buck's theorem by
showing that if A sums every subsequence of a divergent real sequence
then cA D m.

In [11], J. A. Fridy proved a theorem analogous to Buck's, in which
subsequence is replaced by rearrangement. T. A. Keagy in [13] extends
Fridy's theorem as Maddox extended Buck's.

In the following two theorems, we consider subsequences and
rearrangements of a sequence in an FK space. Theorem 2, along with the
facts

(i) cA is always separable;
(ii) if xίZ: m and every subsequence (rearrangement) of x is in cA

then 3 N such that a]n = 0 for n ^ N, and this implies that cA = s;
gives us their results.

THEOREM 1. Let E be an FK space D Ex. The following are equi-
valent.

(a) There exists an x E E with the properties:
(i) for some p, q real numbers, p^ q, pe and qe are subsequences of

x.
(ii) E contains all subsequences of x.

(b) EDm
(c) EDm0

(d) e E E and there exists a y E E with the properties:
(i) for some p, q real numbers, p^ q, pe and qe are subsequences of

y

(ii) E contains all rearrangements of y.

Proof Clearly (b) => (a), (b) => (c) and (b) φ (d).
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(c) φ (b) Bennett and Kalton's extension of Seevers results
Theorem 1, p. 513 of [5].

(a) => (c) E contains all sequences of p's and g's hence E contains
all sequences of O's and Γs.

(d) => (c) Let z be a sequence of O's and Γs such that only finitely
many z, = 1 or = 0 . Since e E E and E00 C E then z E E. Let z be a
sequence of O's and Γs with an infinite number of z, = 0 and an infinite
number of z, = 1.

Let r{k) and s(k) be such that z Γ ( k ) = l , zs(k) = 0 for all fc and
{r(k)}U{s(k)} = Z\

Let y\y2, y3, y4 be rearrangements of y such that

Hence

3(P-q) [(yι - y2)+(p- <i)e + (y3 ~ y 4 ) + ( P - <?)*]= z

and so z E £ Since z was arbitrary it follows that E D m0.

Using a form of the closed graph theorem due to Kalton, Bennett
and Kalton as Theorem 25 p. 577 of [4] prove

THEOREM (BENNETT-KALTON). If E is a separable FK space D Ex

and E + c0D mQ then E D m.

Using this theorem and arguments similar to those of Theorem 1, we
have

THEOREM 2. Let E be a separable FK space D Ex. The following are
equivalent.

(a) 3 x E E with at least two distinct finite cluster points and E
contains all subsequences of x.

(b) EDm.
(c) E D m0.
(d) 3 y E E with at least two distinct finite cluster points, E contains

all rearrangements of y and e E E.

LEMMA 1. Let Y be a linear sequence space, x E Y\ίp such that
every rearrangement of x belongs to Y. Then there exists a z E Y\£p such
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that every rearrangement of z belongs to Y and | z, | = 0 for an infinite
number of subscripts.

Proof Let y be a rearrangement of x such that the even coordi-
nates form a sequence which rs not in €p and the sequence (y4n -
y4n-2)& tp. Let yf be the rearrangement of x which permutes the 4nth
and the 4n - 2nd slots of y. Let z = y - y'. The odd coordinates of z
are 0 and z E Y\€p. Clearly any rearrangement of z belongs to Y.

THEOREM 3. Let A = (al}) be a matrix, an the nth column of A and
1 ^ p < oo. If there exists an x E £P

A\£P such that every rearrangement of x
belongs to ίp

A then | | α " | | p - > 0 .

Proof By a Lemma in [11], each row of A is in c0. Ifx^m then the
rows of A are in E00, for if 3 p such that (α p n )"=i^ J5" then 3 a
rearrangement of JC such that Σ apΛxσ{ι) is not convergent. Let βn be the
nth row. If 3 N such that PNβn - βn =0 for all n then Λ = s and
|| α" ||p = 0 for H^ N. If JV does not exist then 3 a monotonic increasing
sequence of positive integers (p(k)) and a rearrangement jcσ of x such
that

> 1

which implies ;c σ ^ ^ , a contradiction; so N exists. If x E m, we may
assume | |x| |oc^i. Suppose | | α π | | p τ ^ 0 , then there exists e > 0 and an
increasing sequence of integers r such that | | α r ||p ^ €, for all i. We now
define a subsequence (^(/c)) of r and (m(/c)) of positive integers. Let
€Q)=ru m(0) = 0 and m(l) be such that \\am-Pm{λ)a

m\\p<\e. Since
the rows are in c0, pick ^(2)>^(1) such that | |P m ( 1 ) α' ( 2 ) | | p <\e. Pick
m ( 2 ) > m ( l ) such that | | α ' ( 2 ) - P m ( 2 ) α ^ ( 2 ) | | p < i β .

Proceeding in this manner we inductively define increasing se-
quences (ΐ(k)) (a subsequence of r) and (m(k)) such that

Hence
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By Lemma l , 3 z £ fp

A\ίp such that | zx | = 0 for i^ £{k) for some k and
11*11-̂ 1 since | | x | M | . Hence

Σ <ln,€(k)Z€(k)\ ) ^

call it γ°. Let

(i.e. the absolute value of each term)

IOΓ M =

2" ~

Let δ = ΣΓ=oy
i. Since ΣΓ= 0 | |γΊ|p <°°, it follows that δ E ίp. Let

m(s - 1)< q ^m(s)

aq,t(k)Zf(k) +

Hence the sequence

8' =

But

which implies z G /p, a contradiction. Hence | |α π | | p —>0.
This theorem was stated tor p = 1 in the Notices by Keagy [14]. In

[2] Bennett defined the concept of a wedge space. He then proves
several equivalent conditions one of them being EDza for some
z E c0. As Theorems 36 and 41, he shows €P

A is wedge iff | |α n | | p—>0
where an is the nth column of A.
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COROLLARY 1. LetXbe a non-wedge FK space, y E X\£p such that
yσEX for all σ E l Then X/ ίp

A for any matrix A.

COROLLARY 2. Let X^ s be a solid symmetric FK space XVP^ Φ
Then Xj£ ίp

A for any matrix A.

Proof In [12] Garling proves that X Cm; but all wedge spaces
contain unbounded sequences hence X is nonwedge.

Since €q is always solid symmetric we have

COROLLARY 3. / / q > p then ίq^ ίp

A for any matrix A.

This was proved using wedge spaces by Bennett in [2] and other
techniques by DeVos in [10].

THEOREM 4. Let X be a non-wedge FK space with AK, y E X\€p

such that yσ E X for all σ G l Then X cannot equal £P

A nor can it be a
closed subspace of ίp

A for any matrix A.

Proof Let z E ra0 be chosen such that zn{k) = 1 and z{ = 0 for
ιV n(k) where (n(k)) is an increasing sequence of positive integers such
that len(k)\ ^ c > 0 where ! ! is the paranorm of X and | |α n ( k ) | | p < l/2k

where an(k) is the n(k) column of the matrix A. zξέ. X and z E £P

A with
AK hence z is the closure of X in ίp

A. Hence X is not closed in (P

A.
Garling in [11] defines the spaces

μ z = I x E s: s u p 2 I xσ{i)Zi \ < oo
I σGl ι=\

and shows that μz is a symmetric solid BK space. As Proposition 11 he
shows for z E c 0 , μz^ί'. Combining these results we add another
condition to Bennett's Theorem 36.

THEOREM 5. The following conditions are equivalent for any matrix
A.

(i) €A is a (weak) wedge space

(ii) Hα-11,-^0
(iii) 3 xEίA\€ such that xσ E ίA for all σ E Σ.

For p > 1, the converse of Theorem 3 is false. For the following
example let all sequences be real. In [16] Ruckle defines the sequence h
such that K = n1/p - (n - ΐflp and shows that μh^tp. Let A be the
matrix such that

aln = hn a n d apn = 0 for p>l;
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Thus, ίp

A = sA = hβ D μh. Let x E hβ such that xσ£hβ for all permuta-
tions σ. Then xσ E ha for all permutations σ. Hence x E μh which
implies x E ίp.

Banach in [1] shows that if py^ q, q'^l then £p and (q are not
linearly homeomorphic. He does this by showing that their linear
dimensions are incomparable. If X and Y are linear topological spaces
then dim^X^dim^y iff X is isomorphίc to a closed subspace of Y. The
following theorems which follow easily from Theorem 3 are extensions of
these results.

THEOREM 6. Let X be a nonwedge FK space such that 3 x E X\ίp

with xσ E X for all σ E Σ. Then X and €p are not linearly homeomorphic
via a matrix.

THEOREM 7. Let X be a nonwedge FK space with AK such that 3
x E X\£p with xσ E X for all σ E Σ. Then dim^X^ dim,/p.
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