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ENUMERATING IMMERSIONS AND EMBEDDINGS
OF PROJECTIVE SPACES

L. L. LARMORE AND R. D. RJGDON

0. Introduction and statement of results. Let [M CRn]
and [M C J R " ] denote, respectively, the set of isotopy classes of embed-
dings and regular homotopy classes of immersions of the m -dimensional
manifold M in n-dimensional Euclidean space Rn. Certain maps arise
naturally in the study of [ M C J R Π ] and [M C Rn]. These maps are

φn

which are obtained, respectively, by regarding an embedding as an
immersion, an immersion in JR" as an immersion in JRn+1, and an
embedding in Rn as an embedding in Rn+\

Let Pm be real projective m-space. The main purpose of this paper
is to determine the following diagram for m ̂  8:

(0.1)

The paper is divided into two parts. In §§1-3, we review twisted
cohomotopy theory and describe the results of Haefliger, Hirsch, Becker,
McClendon, and others which reduce the study of [MCRn] and
[MCRn] to the study of cohomotopy groups. In §§4-6, we calculate
diagram (0.1).

For more extensive calculations of immersion groups of projective
spaces, see Robinson [18]. Many of the results of this paper have been
obtained independently by David Bausum in [1] and [2].

The main results are as follows. For 2 n > 3 ( m + l ) , [MCRn]
naturally has the structure of an Abelian affine group, while if 2n >
3m + 1, [M C Rn] is an Abelian affine group [3]. The functions φn, %n,
and $n are each affine morphisms whenever both domain and target are
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affine groups, and an Abelian affine group becomes an Abelian group by
choice of zero. Thus, if an embedding /: Pm -» R2m~2 is chosen, (0.1)
becomes a diagram of Abelian groups and homomorphisms.

THEOREM 0.1. Let m ^ 8, such that Pm CR2m~2. Fix such an
embedding. Then

Case I. m =0mod4. Then diagram (0.1) becomes

z2-2-

0 >0

Case II. m=\ mod4. Then diagram (0.1) becomes

7 0 γ

where

^ 2 - 2 ( 1 , 0 , 0 ) = ff 2 l l ,_ 2 (0,1,0) - 0, %2m_2(0,0,1) = 1

Λ»-i(l, 0,0) = Λ*-i(0,1,0) = 0, Sim-iφ, 0,1) - 1

^2—2(1,0) = (1,0,0), Λm_2(0,1) = (0,1,0)

φZm_I(l)= (0,1,0)

φ2m-2(h 0,0) = <£2m_2(0,1,0) = (0,0), φ2m_2(0,0,1) = (0,1)

Case III. m = 2 mod 4. Diagram (0.1) becomes

I 2m~2

where ^2 m-2 is mono.
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Case IV. m = 3 mod 4. Diagram (0.1) becomes

1

Φlm-l
4

7 φ, 7 ' >7 ffs 7

^ 4 VX7 ^ 8 * ^ 4 \jy ^8

where

*2«-l(l)=l

«2«- 2 (l,0)=l and g2m-2(O,l) = O

^2m-i(l,0) = 0 and Λ « - i ( 0 , l ) = l

^2-2(1,0) = (1,0) and Λ-.-2(0,l) = (0,1)

φ2m_1(l) = (l,0)

^2m-2(l,0) = (l,0) and <fem-2(0,l) = (0,0) or (2,0)

It is well-known that Pm embeds in R2ml unless m is a power of 2
and in R2m in all cases. By Mahowald [13] and Handel [8], Pm embeds in
R2m'2 if and only if m = 2Γ 4- 5 with 2 ^ s < 2 r . Hence the results of
Theorem 0.1 apply to the whole of diagram (0.1) for m>9 and
m = 2r + 5, 2 ^ 5 < 2r to the top square of (0.1) for m > 5 and m not a
power of 2, and to the top line for any m > 3.

To resolve the uncertainty in φlm-i when m = 3 mod 4, the following
problem must be solved: is ker(<£2m-2) = ker(φ2m_2)? That is, is it true that
two embeddings Pm —> R2ml are isotopic as embeddings in R2ml if and
only if they are regularly homotopίc as immersions in R2m2ί) The authors
have been unable to solve this problem.

1. Twisted c o h o m o t o p y . We generally use the notation of
[10]; the results of that paper carry over to weak fibrations [5]. The
theorems and constructions in this section are essentially the same as
those done by Becker [4] for vector bundles.

Let p : Y - > X be a weak k-sphere fibration, for some k^-\
(where S"1 is the empty set). If A CX, we define τrj,(X,A), the ith
cohomotopy group of (X, A) twisted by p, for any integer i, to be the
direct limit

π;(X, A ) = Lim [X, A ;Ω&ϊi-k-1SxY]

where 5 X and S x are the fiberwise two-point (unreduced) and fiberwise
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one-point (reduced) suspensions, respectively, and Ω x is the fiberwise
loop.

Twisted cohomotopy satisfies all the usual axioms for a twisted
cohomology theory, since πj,(X, A) = Hik(X,A; <£(p)), where %{p) is
the X-spectrum associated with p [10].

If p is the sphere bundle associated with a real vector bundle ξ, we
write π^X, A) for πj,(X, A). Note that in that case, in the terminology of
McClendon [14], ττ (̂X, A) is a cohomology group in the category of
spaces over BO. In fact, in the notation of Becker [4], π^(X,Λ) =
H'(X,A,/;50, where & is the sphere spectrum, and /: X-^BO clas-
sifies ξ.

Clearly, an equivalence of weak sphere fibrations induces an
isomorphism of cohomotopy groups twisted thereby. More strongly:

THEOREM 1.1. Forp: Y-> X and p': Y'-> X are stably equivalent
weak sphere fibrations, then ττι

p{X, A) and ττ'ιp (X, A) are isomorphic for
each integer i.

Proof. It is sufficient to consider the case Y' = SXY. The collapsing
map SXY'= SχSxY->ΊίxSχY, an equivalence of weak (fc + 2)-sρhere
fibrations, induces the desired isomorphism (where k = dimp), and we
are done.

Whitney sum and cup product. Let p: Y->X and p': Y'->X be
weak k-sphere and k '-sphere fibrations respectively. We define the
Whitney sum p φ p ' = p * x p ' : Y* x Y'-*X, a weak (k + fc'+ l)-sphere
fibration over X (where * x is the fiberwise join). The Whitney sum
notation is justified by the fact that if p and p' are the sphere bundles
associated to vector bundles ξ and ξ',p@p' is the sphere bundle
associated to the usual Whitney sum ξ φ ξ'.

For any integers i and i', and for any A, A'CX, we define a cup
product:

7r;(X,Λ)X7r;'(X,Λ')->τr^(X,Λ UA')

as follows. If a E τrj,(X, A) and a'E 7rj,'.(X,A') are represented, re-
spectively, by a: X - > Ω x Σ x

+ ' k l S x Y and af: X->Ωx'Σx

+''- fc'15xY
/, let

(- ΐ)na U a' be represented by the composition

x

where we identify SXY ΛxSxY
f with SX(Y * x Y') in the obvious manner.
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The reader may verify that the cup product is well-defined, bilinear, and
associative.

Thorn isomorphism. Let p: Y - ^ X b e a weak k-sphere fibration,
and let π: D(p)^> X be the associated weak (fc 4- l)-disc fibration; i.e.,
D(p) is the mapping cylinder of p, and ΊT is the collapse map. Let
T(p) = D(p)/Y, the Thorn space of p.

Let Up G πk

p

+ι(D(p), Y), the universal Thorn class of p, be the
element represented by the composition

D{p) ΛXSXY

where c is the quotient map which collapses Y CDip) to the South polar
section in SXY. By a slight abuse of notation, we let Up E π£+1(X, Y).
The next remark follows directly from the definitions [10]:

THEOREM 1.2. // (X, A) is a C. W. pair and ifh: A^Yisa partial
section of p, then i * Up = Γ(p: h)G τrJ+1(X, A), the single obstruction to
extending h to a full section ofp: where i: (X, A)^>{Dip),Y) is any map
such that i\A = h and π: i = lx.

Now let p'\ Y'-»X be a weak kf sphere fibration. We then
immediately have (with the obvious notational abuses):

THEOREM 1.3. Up U Up = ί/p θ p.E TΓ^fe

pt
2(X, Y*XY')

Finally:

THEOREM 1.4 (Thorn isomorphism). Let (X, A) be af.d. C. W. pair,
let p!: Y -» X be a weak k-sphere fibration over X, and let p be any other
weak sphere fibration over X. Then

U Up.: π p ( X , A ) - + < ^ ( X , A U Y)

is an isomorphism (where (X, A U Y) denotes (D(/?'), π~ιA U Y)).

We omit the proof, an easy generalization "of the proof of Becker's
Thorn isomorphism [4, Th. 12.8].

2. Obstructions to embedding. Let Mm be any compact
differentiate manifold, and let M* be the reduced deleted product of M,
that is, M* = (MxM-A M )/Γ, where T exchanges coordinates. Let
JP(M) be the total space of the projective (m - l)-bundle associated with
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the tangent bundle, and let J: P(M)—>M* be the inclusion defined by
J[v] = [exp(ι ), exp(- υ)] for any unit tangent vector v of M, where exp
is the exponential function associated with a suitable metric on M. By
an abuse of notation, we shall write P ( M ) C M * . Let ft be the line bundle
over M* associated with T, let also ft = ft | P ( M ) , and let L be the
canonical line bundle over P00. The inclusion P n I C P00 can be replacedL

up to homotopy, by the 5 n l bundle over P associated with nL. If ft
classifies ft, we have a diagram:

pn-l

If f:M->Rn is any embedding, let f[x,y] =

[W)-f{y)Vίf{*)-f{y))] for all [x, y] E M*. Since i of is homotopic
to ft, nh has a section over M* if M embeds in jRn. If g: M-» 1?" is an
immersion, let g" be the composition P(M)-^> P(Rn) =

R n χ p« i _^ pn-i s i n c e f- o g,, j § homotopic to ft | P{M), we have that if M
immerses in i?n, nh has a section over P(M).

Heafliger [6] has shown that M embeds in i?n if and only if nh has a
section over M*, provided 2n ^ 3(m 4-1). Furthermore, if In > 3(n + 1),
there is a one-to-one correspondence of [MCRn] with the set of
homotopy classes of sections of nh. Similarly [7], if 2ni?3m + l, M
immerses, in JR π if and only if nh has a section over P{M), while if
2n >3ra -f 1, these sections are in one-to-one correspondence with the
elements of [MCi? π ] . If g: M-> i?" is a fixed immersion, then g is
regularly homotopic to an embedding if and only if g" can be extended
over all of M*, provided In g 3(m + 1), while if In > 3(ra + 1), there is a
one-to-one correspondence between rel P{M) homotopy classes of
extensions of g" and πλ(Έm(M, i?n),Im(M, Rn),g), where Em(M, Rn)
and Im(M, Rn) are the spaces of embeddings and immersions, respec-
tively.

Now let γπ(M) E ττ"h(M*) be the single obstruction to embedding M
in R", which we define to be the single obstruction to section of nh over
M*. By Theorem 1.3. γ"(M) = (y\M))\ Let ζn(M)E ττn

nh(P(M)) be
the single obstruction to immersion of M in R", which we define to be the
single obstruction to section of nh over P(M). Similarly, £Π(M) =
(ζ\M))\ If g:M->Rn is a fixed immersion, let γn(M,g)E
π"Λ(M*, P{M)) be the single obstruction to regular homotopy of g to an
embedding, defined to be the obstruction to extending g" to a section of
nh over M*. Now g may also be considered to be an immersion of M
into Rn+\ and by 1.3, γπ + 1(M,g)= y\M) U γπ(M, g).
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If ftofcM^R" are embeddings, let δ ^ / ^ π ^ M * ) be the
single difference class, the obstruction to isotopy of/0 and fx. Specifically,
δ(/0,/i) can be defined to be the obstruction to homotopy of the sections
/ό and f\ of nh over M* [10]. If, in addition, f0 = g0 and fx = gu where
gt:M->Rn, O ^ ί ^ l , is a regular homotopy, let δ(/0,/i;g,)E
T Γ ^ ^ M * , P(M)) be the obstruction to regular homotopy of {g,}, rel/<, and
/i, to an isotopy. If g0 and gλ are any immersions, let e(g0, gi)E
πlϋ;1(P(M)) be the obstruction to regular homotopy of g0 with gu defined
to be the obstruction to homotopy of the sections go' and gΐ of nh over
P(M) [10].

3. The obstruction sequence. Affine groups. A set A is said
to be an affine group if, for every a E A, an operation α is defined on A
such that (A, -a) is a group with identity α, and if, for all α, 6, JC, y E A,
JC by = xft^y, where the product and inverse on the right side of the
equation are taken with respect to β. Note that (A, α) is then isomorphic
to (A,-b) by x H> * -ab. Note that every group is an affine group, by
x -ay = xa~ιy.

If (A, β) is Abelian, we write +α for the operation, and we say that A
is an Abelian affine group. In that case, let A 0 = A x A/~ , the difference
group of A (defined only if A/ 0 ; where (JC, y ) ~ (w, v) if and only if
x+y v = w), an Abelian group isomorphic to each (A, +β), by [JC, α] ̂  JC.

Becker [3] has shown that in the metastable range, i.e., 2n >
3(m + 1), [M CRn] is an Abelian affine group which, if nonempty, has
difference group isomorphic to T Γ ^ M * ) , by [[/i],[/2]] ^ δ(/ l 5/2). If
fuhfaU a r e embeddings of M in Rn, [/i]+[/y[/3] = [/J if and only if
δ(/u/2) = δ(/4,/3). Thus [ΛίCJR"], if nonempty, is noncanonically
isomorphic (as an affine group) to 7r"h"

!(M*).
Similarly, in the metastable range, In > 3m + 1 in that case,

[M C i?n] is an Abelian affine group which, if nonempty, has difference
group πn

nh\P{M)), while if 2 n > 3 ( m + l ) and g is an immersion,
7Γi(Im(M,J?n),Em(M,]?π),g) is an Abelian affine group with difference
group τr^1(M*,P(M)).

Since twisted cohomotopy is a twisted cohomology theory, we have
an exact sequence

Now we say that a sequence A ^ A2^> A3 of Abelian affine groups
and morphisms is exact at A2 if either Ax is empty or there exists a E A3

such that α i ^ ) = α^a. If 2n > 3(m + 1), we have a sequence of Abelian
affine groups and morphisms
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(3.2)

where </>„ sends each isotopy class to the regular homotopy class
containing it; and where, if g is an immersion, κ[g] = yn(M;g). Now
(3.2) is exact, as the reader can easily verify, and the sequence of
difference groups of the nonempty portion of (3.2) is the corresponding
portion of (3.1).

We also have a commutative diagram of Abelian groups and
homomorphisms

^ π?n+1)h(P(M))

(3.3) fuW)

and a commutative diagram of Abelian affine groups and morphisms

[M CRn+ι]-^> [M C Rn+ι]

(3.4) |

[MCRn] >[MCRn]

The relationship between diagrams (3.3) and (3.4) is as follows: the
diagram of difference groups of the nonempty portion of (3.4) is the
corresponding portion of (3.3). Thus, if [M CRn] is nonempty, and if a
specific embedding / is chosen, the two diagrams can be identified.

4. Calculation of the groups. In §3, we observed that
computation of diagram (0.1) reduced to computation of the following
diagram, provided Pm embeds in R2m2.

(4.1)

In this section we compute the groups in (4.1); in succeeding
sections, we compute the maps.

Recall from [3, §4] or [10, §5] that if ξ is a vector bundle over X
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where (X,A) is an n-dimensional C.W. pair, the Atiyah-Hirzebruch
spectral sequence for ττ*(X, A) consists of filtrations

ττ\{X, A) = F°πι

ξ(X, A) D F π | ( X , A)D- D Fn-i+ίπι

ξ(X, A ) = 0

and canonical isomorphisms

where C'π&X, A ) C D J ^ ( X , A)CHi+s(X,A ττs ®Γ€). Here, π5 is the
5th stable homotopy group of the 0-sphere and Γξ is the local system of
integers determined by ξ. From now on, we identify
FSTT\{X,A)IFS+1K\{X,A) with DV[(X, A)ICsπι

ξ{X, A), and omit
"(X, A)" from the notation when no confusion can arise.

In the cases of interest to us, the cohomology dimension of X is
2m - 1 and i ^ 2m - 3. In this case, the descriptions of Csττ^ and D'π'ξ
are well-known.

Define homomorphisms «,-(£): H*(X, A ;Z2)-+H*(X, A ;Z2), for
i = 1,2, by a^)(x)=Sqlx + x Uw1ξ, and α2(f)(x) = Sq2x +
5^!x U w^ 4- JC U (vv!^)2+ x U w2ξ. The homomorphisms αi(^) and a2(ξ)
for all vector bundles ξ define cohomology operations ax{BO) and
a2(BO) in the category of spaces over BO (see [14]).

Let p : H * ( X , A ; Γ ^ H * ( X , A ;Z2) be reduction mod 2, and
Φ2(£O) be the twisted stable secondary cohomology operation (in the
category of spaces over BO) with the relation α2(JBO)°(α2(BO)°p) = 0,
which arises from the first three stages of the standard Postnikov
factorization of the sphere bundle of a universal n-vector bundle with n
large. Write

Φ2(ξ): kcr(a2(ξ)op)-> H*(X, A Z2)/Im(α2(£)).

PROPOSITION 4.1. Assume (X, A) has relative dimension ̂  i + 2.

(1) C°πί=0, D07r
(2) C V ^ α ^ p H ' - ^ A J Γf), D V ^ H'+1(X, A Z2)
(3) C2π^ - Im(Φ2(^) CHι+2(X, A Z2), D2TT\ = //i+2(X, A Z2)
(4) D ;π^= C V ^ O for j>i + 2.

Proposition 4.1 can be proved by the same technique that McClen-
don used to prove part 4 of Theorem 6.1 in [15]. Now since Φ2(ξ) has the
relation a2(BO)°(a2(BO)p) = 0, it follows immediately that

REMARK 4.2. C2πι

ξD a2(ξ)Hι{X, A Z2).
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When dim(X, A ) ^ i + 2, 4.1 allows for the calculation of π^ up to
extension. The following proposition allows for the calculation of the
extensions in many cases (and in particular for the cases in this paper).
Let R2 be the set of elements of F°πi

ξ/F1πiξ of order 2, and define

0f. R2-*Fιττi

ξIF2ττi

ξ

as follows: if z E F°πyF1πi

ξ and 2z = 0, let x E F°7Γξ which represents z.
Then θλ{z) is represented by 2x. If z E FXTT\IF2TT\ and x E F 1 ^ repre-
sents z, let 02(z) = 2JC.

Let 5 ( O : H * ( X , A ; Z 2 ) - * / i * ( X , A ; r f ) be the Bockstein of the

short exact sequence Γξ^>Γξ-> Z2 of coefficients. Note that ρδ(ξ) =

PROPOSITION 4.3 (Larmore-Thomas [12]). Identify FSTT\IFS+1TT\ with
DS7T'/CS^. (1) For any z E R2, θί(z) = a2(ξ)(δ(ξy\z)). (2) //
z E ΌλΊt'\lCxττ% let xED'π^ represent z. ΓΛen 02(z) = ax{ξ)x + C2ττ^.

To calculate the groups in diagram (4.1), we need the following
descriptions of the Z2-cohomology rings of P(Pm) and (Pm)*.

PROPOSITION 4.4 (see [9, Ch. 16]). Let v be the first Stiefel- Whitney
class of the canonical line bundle over P(Pm) and let q: P(Pm)^> Pm be
the bundle projection. Then q* is injective on H*(Pm;Z2), and, as an
H*(Pm;Z2) module, H*(P(Pm);Z2) has l,v,v\- -,vm~l as basis.
Moreover, vm =Σ?=ι(wiP

m)υm~\ where wIF
m is the ΐth Stiefel-Whitney

class of Pm.

PROPOSITION 4.5 (Handel [8]). Let u <ΞH\{Pm)*,Z2) be the first
Stiefel-Whitney class of the 0-sphere bundle Pm x Pm - APm - > ( P m ) * .
Then

(1) ( p m ) * has the homotopy type of a closed (2m - l)-manifold;
(2) There are elements yx E H\(Pm)*; Z2), y2 E H 2 ((P m )* ; Z2) such

that H*((Pm)*;Z2) = Z2[u, yu y2\\d where si is the ideal generated by

u2- uyu bm, and bm+ι; where bx = Σ}^'1 ( ' V7') yΐ2'y'2;

(3) Sqιy2= yγy2,
(4) Let m = 2r + s, 0 ^ s < Ύ. Then y p " 1 = 0

and uyΓ~2y2 generates H2m\{Pmy,Z2).
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We also need the following lemma. Let Z[a] be the local system of
integers over a space X, twisted by a £ H\X;Z2). Define
a: H*(X, A Z2)-> H*(X, A Z2) by a(x) = Sq ιx + x U a.

LEMMA 4.6. Assume H'(X, A Z[a]) is finitely generated. Let r(i)
be the dimension of aH'~\X, A Z2) and s(i) the dimension of kerα C
H'(X,A;Z2) (considered as vector spaces over Z2). Then
H'(X, A Z[a]) =G®H where G is the direct sum of r(i) copies of Z2

and H%Z2 has dimension ^ s(i) - r(i).

The proof is elementary and will be left to the reader. The reader
can also easily verify that H'((Pm)*;Z), Hi(P(Pm);Z), Hi((P'")*;Γh),
and Hi(P(Pm);Γk) are 2-primary groups for m < i < 2m - 1.

Most of the calculations of the groups in diagram (4.1) are direct
using 4.1 through 4.6; a few require some ingenuity. We indicate the
details in the case m = 3 mod 4 only. In that case, we have (where
m =2r + s, 0 ^ s < 2 r ) :

H2m-\(Pm)*;Z2)=Z2 generated by uyΓ'"2y5

H2m-\(Pm)*; Z) = Z2 generated by δ(uyΓ~3y0;

H2m-2((Pm)*;Z2) = Z2®Z2 generated by «yΓ"3y2 and yΓ"2y2;

H2m-\{Pm)*;Th) = Z2 generated by δ(Λ)(yΓ'-3y0;

H2"-3((P-)*;Z) = Z 2 0 Z 2 generated by δ(«yΓ'-5y0 and δ(yΓ'4y0;

pH2m-\(Pm)*;Yh) is generated by wyΓ'~2yΓ' and yΓ'"3y2

s+ uyΓ'^yl

H2m-\{Pm)*;Z) is generated by 8{uyTι~*yΊ") and δ(yΓ" 3yΓ')

We illustrate the use of 4.4, 4.5, and 4.6 by writing out the calculation
of H2m-2((Pm)*;Γh) and H2m-\{Pm)*;Z). First observe that
H2"-2((P'")*;Z2) = H\(P'»)*;Z2) = Z2®Z2 and so uyΓ^yί and
yΓ'"2y; generate H2m'\(Pm)*;Z2). Since

Lemma 4.6 implies that δ(Λ)(yΓ'"3y0 generates fί2 m-2((Pm)*; Γh). Since
5 ί

1(iiyΓ- 5y0=«yΓ 1- 4yl and Sq1(yΓ1-*yi)= yΓ'"3y!, we have that
δ(tιyΓ~5y0 and 5(yf+1"4y0 generate a subgroup of H2m\(Pm)*;Z)
isomorphic to Z 2 φ Z 2 . But H2m\(Pm)*;Z) must by isomorphic to
Z2 φ Z2 since
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Z2®Z2®Z2 = tf'-'((P- )*; Z2)

= (H2m\(Pm )*; Z) <g) Z2) e (H2m2((Pm )*; Z) Z2)

and

H 2 "- 2 ((P m )*;Z)*Z 2

is isomorphic to Z2, where * is the torsion product.
Calculation of ^ " ^ ( ( P 1 " )*): By Proposition (4.1),

)*) = H 2 m l ( ( P ' n )• Z ) = Z 2 .

Calculation of ττ2Γm-i1)Λ((Pm)*):

α2((2m - ί)h)(yrι'3yί+ uyΓ'-'yί) = uyΓ^yΓ.

LEMMA 4.7. // s is odd, yΓ^yi*1 = 0.

Proof. It is clear from 4.5 that if yf '~4yΓ'7^ 0, it must equal
y2 ~2y2 But in the next section (Proposition 5.3), we shall see that
/*(«) = /*(yi)= v and /*(y2)= z2+zι> where z is the generator of
H\P{Pm);Z2). Hence by 4.4

J*(y2Γ'4ys2+1) = vr+l-\z2 + zv)s+l = 0;

J*(y f'-ly I) = „2"'-2(2

 2 + zo)V 0.

Thus yΓ"~4y2

+1 must be 0.
Applying Proposition 4.1 again, we have then

Doir2?m-2

x)h{{Pm)*) = Z2 generated by δ(Λ)(yΓ"-3y0;

D'ττlTΛΛPm)*) = Z2 generated by uyΓ'2yΫ,

The extension is nontrivial since

a2((2m - ί)h)(yΓ-y2)= uyΓ'2yi + yΓ'-3y2

+ι =

which implies that 0, of Proposition 4.3 is nontrivial.
Calculation of π&f_3

2)fc((P") ):

D°7r2Γm-i2),((P
m)*) = Z 2 φ Z 2 generated by δ(uyΓ'~sy!) and δ(yΓ" 4y0;
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D1

1r
2

tr«--32)*((P")*) = Z 2 0 Z 2 generated by wyΓ~3y^ and yΓ ι ' 2 y 2 ;

*) = 0;

r) = Z2 generated by uyΓΎi,

The computations of these groups are all direct with the exception of that
of C2π2Z~-2)h((Pm)*) which is given at the end of this section. All of the
extensions are nontrivial as is shown by direct calculation of θλ and θ2

using Proposition 4.3.
In a similar manner, we obtain:

D07r^m-3ιv,(P(Pm)) = Z2φZ2 generated by δ(h)(zmv°-3)

and 8(h)(zm'2vm-') where z is the generator of Hι(P(Pm);Z2));

D1τr2

(2

m

m\\)h(P(Pm)) = Z2 generated by zmυm-χ\

D0π2

2

m

m%h(P(Pm))= Z2φZ2generated by δ(zmι>"-4) and δ(zm-2vm-2);

Dιπ2?m\%h(P(Pm)) = Z2®Z2 generated by zm~xvm-x and zmvm~2;

D2τr2

2

m

m\\)h(P(Pm)) = Z2 generated by zmvm~l;

The extensions in τr2

2

m

m

2

ι)h(P{Pm)) and 7τ\2

m^2)h{P{Pm)) are all nontrivial.
The remainder of §4 is devoted to proving that C2ττ\Tm-2)h{{PmT) = 0.

Recall that that group equals the image of Φ2((2m -2)h) where
Φ2((2ra -2)h) is twisted by (2m -2)h, or, what is the same thing when
thought of as an operation in the category of spaces over BO, twisted by
a classifying map/: (Pm)*->BO for the stable class of (2m -2)h. Since
any multiple of 4h is a spin bundle, / factors through BSpin, which is
3-connected. Now the degree of Φ2(BO) (and its pullback to BSpin) is 3;
thus Φ2((2m - 2)h) = Φ2, where Φ2 is a (non-twisted) secondary cohomol-
ogy operation with relation Sq2°Sq2 = 0. (See [16, §3].)

Observe that

Sq2(pδ(uyΓ'4ya2-1) = Sq2(uyΓ-3yn = 0

so that Φ2 is defined on all of H2m\{PmY\ Z). By Handel [8] there is a
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(2m -2)-dimensional space BG, a map k: (Pm)*-> BG and elements
xux2eH*(BG;Z2) such that fc**, = y, for i = 1,2. Then

Φ2(δ(y Γ" 3 y Γ1)) = k *Φ 2 (S(xΓ- 3 *Γ 1 )) = 0

for dimensional reasons.
In order to calculate Φ2(δ(«yf+ι~4yΓ1)), we need the following

construction which will also be used in §5. For any space X, let A2 X be
the space of unordered (not necessarily distinct) pairs of elements of X,
topologized as a quotient space of X2. Then ΔX C A2 X and X* C Λ2 X.

For any 1 ̂  3 ^ m, let P%=Pm/PJ-\ In [11], elements
ΛZ1 E ίf'(Λ2P™, ΔP™;Z2) are defined for J>^i^m, and an action of
Z2[w] on //*(Λ 2P™, ΔP™;Z2) is defined (where w can be regarded as the
element in Proposition 4.5). The elements uι A Z\ for 0 ^ i ^/, $ ίk]^
m, generate J F / * ( Λ 2 P ^ , Δ P ^ ; Z2) as a ring; the relations among the w' Λ Z ;

are described in [11]. (Note that w1
 Λ zi E H*(Λ2PIZ,APJ;Z2) is mapped

to w'Λzy
 G H * ( Λ 2 P ^ _ 1 , Δ P 7 _ 1 ; Z 2 ) by the obvious map.)

Now let /: ( P m ) * - ^ (Λ 2Pm,ΔPm) be the inclusion.

LEMMA 4.8.

(1) ;*(Λzw- 3Λzw- 1)=MyΓ 1~ 3yΓ 1 + yΓ 1" 2yΓ 1;
(2) /•(Λz"- 3Λz-)=MyΓ 1" 4y5+yΓ 1- 3y5;
(3) /*(Λzm~ 2Λzm)= w y Γ ^ y ^ + y Γ 1 " ^ ! .

We give the proof below; but first we finish the calculation of
C2π2

2rΛ).((Pm)*) Let g : (Λ 2 P m ,ΔP m )->(Λ 2 Pr 3 ,ΔP£_ 3 ) be the natural
map. Since m = 3 mod 4, P£_3 has the same homotopy type as
P™_2vS™-3. Let ft: ( Λ 2 P Γ 2 , Δ P Γ 2 ) - > ( Λ 2 P ^ _ 3 , Δ P ^ _ 3 ) be the map in-
duced by PZ-2-* Pm-2 v S m 3 - > P£- 3 where the first map is the inclusion
and the second is a homotopy equivalence.

Now Sqι(Azm~3AZm-2)= ΛZm~3AZm~1 by Lemma 10 of [11] and

by Lemma 4.8. Hence it suffices to show that Φ2(δ(ΛZm"3ΛZm"2)) = 0 in
H 2 m l (Λ 2 P^_ 3 ,ΔP^_ 3 ;Z 2 ) . But Φ2 is defined on δ(ΛZm 3Λzm- 2) and we
have a commutative diagram

;_3; Z 2 ) > H2m~ι(Λ2PZ-2, Δ P : _ 2 ; Z 2)

(4.2) | φ 2 | φ 2

H2"-\Λ2PZ-I, ΔP™-3; Z ) > H 2 "- 4 (Λ 2 P™_ 2 , ΔP^_2; Z)

/I *(δ(Λzm"3
 ΛZ" 1 " 2 )) = 0 in the lower line of diagram (4.2), while the upper

line is injective, and the image of Sq2 in the upper right group is 0. Thus
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Φ 2 (δ(ΛZ m 3 ΛZ m 2 )) = 0. This concludes the calculation of

Proof of 4.8. We prove (2) only; the proofs of (1) and (3) are
similar. By Lefschetz duality and Proposition 4.5

m, ΔP" Z2) = H\{Pm)* Z2) = Z 2 φ Z 2 0 Z2.

Using Theorem 11 of [11], it is easily seen that Azm~3 AZm, Nim~2κzm \
um-3Λzm, um~2 Azm~x must be a Z2-basis of ff2m 3 ( Λ

2 P m , Δ P m Z2) and
ΛzmΛ2m"2, Azm~ιAzm~\ um~2AZm must be a Z2-basis of
H 2 m- 2(Λ 2P l f l,ΔPM;Z 2).

In the next section (see Diagram 5.1) we show that

H * ( Λ 2 P m

? Δ P m ) - ^ H * ( ( P m ) * ) - ^ H * ( P ( P m ) ) is exact. Since uy]τ+x-Ays

2 +

yΓ~3ys2 = Sq^uyΓ^yl + yΓ~ 4 y0 and /*(Wyf+I"5 + y Γ ^ y O = 0, there is
an element c in ker( k Sq 1 )CH 2 m 3 (Λ 2 P m ,ΔP m ;Z 2 ) which is mapped by /*
to uyΓ^yi+yΓ^yl But Sq1(M l f l"2Λzm"1)= Sqι(AZm~3 AZm) = 0,
Sq\Azm'2 Azm'ι)= Azm~ι Azm~\ Sqί(um~3Azm)= um~2 AZm. So c must be
a linear combination of um~2Azm~x and zm"3Λzm. Since, by Lemma 6 of

5. Calculation of J * β Let (X,A) be a finite dimensional
C.W. pair with inclusion j: A -» X, and let £ be a vector bundle over X.
Assume / g d i m X - 2 . In order to compute /*, we first consider the
more general problem of calculating b = /*: τrj(X)-> π^(/l).

Let bs: F^^(X)/Fs+l^(X)^Fsτrι

ξ(A)/Fs+ιπι

ξ(A) for 5 = 0,1,2 be
induced by b. To calculate b, in addition to the b\ we need the
following maps which are also induced by b

b°: ker b°

S°: ker ^-^cokerfc"1 = F2τrι

ξ(A)/(F2πι

ξ(A)Π b(Fιπι

ξ(X))).

These homomorphisms together with Propositions 4.1 and 4.3
determine ker b (up to isomorphism) since

ker bnF2πι

ξ(X) = kerb2;

(ker b Π F^KX))/(ker b Π F 2π^(^)) = ker 61;

(ker b Π Foτr^(X))/(ker 6 Π F'π^X)) = ker ί°.
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They also determine coker b since coker b°, coker b°, coker b° give the
quotients of the filtration:

(F2τ^(X)+ imb)limb C{F'TT\{X)+ imb)/imb CF°7r^X)/imb.

Let a2(BO) and Φ2(J5O) be as defined in §4, and let {a2{BO)ρ)i and
(a2(BO))j be functional operations in the category of spaces over BO as
defined in [14, p. 197]. Then (a2(BO)ρ)j twisted by ξ is defined by
(a2(ξ)p)ix = δ-\a2(ξ)p)k*ιx for x E H*(X;Γξ) and (a2(BO))j twisted
by ξ is defined by (α2(£))yy = δι(a2(ξ))k*ιy for y G H*(X;Z 2 ) , where
fc: X-»(X, A ) is the inclusion and δ: H * ( A ) - ^ H * ( X , A) is the co-
boundary operator.

Define (Φ2(J5O)); twisted by ξ by

fc*-1x) for x G H * ( X ; Γ , ) .

The following proposition is adequate to compute all of the horizon-
tal maps in diagram (4.1).

PROPOSITION 5.1. After the obvious identifications
(1) Ϊ° = (α 2 (f)p) > ;

(2) if C'fl^(A) = 0, bιjs the map induced by (a2(ξ)),;
(3) if Cλπ ξ(A) = 0, bo = (Φ2(ξ))i modulo the indeterminacy of

5.1 can be proved by looking at the first three stages of the standard
Postnikov factorization of a sphere bundle and using the alternate
definition of functional operation as given, for example, in [17, Ch. 16] or
[14, p. 197]. It is essentially a tautology. (See [18] for more details.)

Before we can caclulate the maps / * in Diagram (4.1), we need the
following explicit description of /. Let Vm+h2 be the Stiefel manifold
of orthonormal 2-frames in Rm+ι. If we identify (uu w2), (-uuu2),
(uu - w2), and ( - uu - u2) for any (uu u2) in Vm+lt2 the resulting quotient
space is P(Pm). Let π: Vm+h2-* P(Pm) be the quotient map. Define
g:P(Pm)-*PmxPm-ΔP" by g(τr(uu u2)) = ([iιb], [u2}\ where [u] is
the element of Pm determined by the nonzero vector u. It is shown in
[8] that g is a homotopy equivalence.

Let p: Pm x Pm - ΔPm -*(Pm)* be the projection and set SZ,
pg(P(Pm))C(Pm)*. We have a commutative diagram

e
) -?—> pm x pm -

M,2 '

szn
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where g is the inclusion and p = p\P(Pm). Then p is a double covering
and g, g are homotopy equivalences. (See 2.5 of [8].)

Define a homeomorphism /: SZm+h2—> SZm+h2 by f(p([v\],[v2])) =
p([vι + v2],[vt- v2]), for any unit vectors υλ and υ2.

PROPOSITION 5.2. / is homotopic to gfp: P(Pm)->(Pm)*.

Proof. It is clear that-there is a metric d on Sm left invariant by the
antipodal map, such that if expd is the exponential map defined with
respect to d, we have oxρd (vuv2) = (l/V/2)(ϋ1 + v2) for (vuv2)E Vm+h2

where we have identified Vm+U2 with the tangent sphere bundle of
Sm. Now d induces a metric, d, on Pm. Define / : P(Pm)->(Pm)* by
J_([v]) = [expd_(v), e x p j ( - v)] for v a unit tangent vector of Pm. Then
J = gfp and J is clearly homotopic to / (as defined in §2).

PROPOSITION 5.3.

(1) j*(u) = J*(yι)=v;
(2) J*(y2)=z2+zv.

Proof / * ( « ) = v since / is covered by a map of double covers.
Since by 4.5, u2 = wy1? we must also have /*(yθ = v. It is shown in [8] that
p * ( y 2 ) ^ 0 . By 5.2, this implies J * ( y 2 ) ^ 0 . Since Sqιy2=yιyi,
Sq(J*(y.^ί) = vJ*(y2). The only non-zero element of H2(P(Pm); Z2) with
this property is z 2 + z u ; hence, J*(y2) = z2+ zv.

Turning now to the calculation of /* in Diagram (4.1), we again
indicate the details in the case m = 3 mod 4 only.

/*: τ r ^ 1 ( ( P m ) * ) - > πlZhl(P(Pm)) is the 0-map because
J*(uy]r+1~2yl)= υ2r+ί-\z2+ zv)' = 0 by 5.3 and 4.4.

The calculation of J* on π2

2

m

m

2

λ)h((Pm)*) is similar to (and easier than)
the calculation of / * on τr2

2^-2)h{{PmY). So we include the computation of
the latter only.

It follows directly from the computations of §4 and Proposition 5.3
that

has image Z 2 generated by zm~2υm~1 + z

m~ιvm~2 and kernel Z 2 generated

by δiuyΓ-Yi+yΓ-'yϊ), and

))/F27τ2

{2

m

m%h(P(Pm)) s Z 2 0 Z 2
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has image Z 2 generated by zm~2vm + zm~ιυm~ι and kernel Z 2 generated by
uyΐ+ι~3y2 + yϊ+1~2ys2, while

*2

is the 0-map.
Recall that Λ2Pm is the set of unordered pairs in Pm, and we have

(Pm)*CΛ2Pm and ^Pm CA2Pm. The complement of J(P(Pm)) in Λ2Pm

has two components; let N be the closure of that containing ΔPm. Then N
is a tubular neighborhood of ΔPm. There is a commutative diagram

(5.1) (P-)

(Λ2Pm,ΔPm)

where all the maps are inclusions. Since both α and b induce isomor-
phisms of cohomology groups, we may replace k by / in the computation
of the functional operations of Proposition 5.1. The advantage in this is
that H * ( Λ 2 P W , ΔP m Z2) is completely described in [11]. (See Lemma 10 of
[11] for the action of the Steenrod algebra on H*(Λ2Pm, ΔP m Z2).)

We return now to the computation of / * on ττ2?m-2)h((Pm)*)'

PROPOSITION 5.4.

(α2((2M - 2)h))j (uyΓ-3y\ + y Γ " 2 y 0 = 0;

(Φ2((2m - 2)h))j{δ{uyΓ'5y\ + yΓ^yO) = 0

with 0 indeterminacy.

Proof. Recall (Lemma 4.8) that

/ *( Λ z m~3 Λ z m) = uy Γ'~4y 2 + yΓ+I^3y 2:

/ * ( Λ z m - 2 Λ z m ) = uyΓι~3ys2+y2Γ~2ys

2.

Since S^ ! (Λz m ~ 4 Λz m ) = ΛZm~3Λzm, we have
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Also, a2((2m - 2)h) = Sq2 and Φ2((2m - 2)h) = Φ2 (untwisted). Then
(α2((2m -2)h)p)j(δ(uyΓι~5y2+y2Γ~4ys2)) = 0 since Sq2(pδ(Λ zm~4Λ zm))
= Sq2(Λzm-3Λzm) = 0, while (α2((2m - 2)/ι))7(wyΓ~3y2 + y Γ ' y O = 0
because Sq2(ΛZm~2 ΛZ"1) - 0. The last assertion of Proposition 5.4 follows
immediately from:

PROPOSITION 5.5. Φ 2 (δ(ΛZ m 4 Λz m )) = 0 E H 2 m ( Λ 2 P m , Δ P m ; Z 2 )
with indeterminacy 0.

Proof. Recall from §4 the map g: (Λ2Pm,ΔPm)^(Λ2P"_3,ΔP™_3).
By part (vi) of theorem 20 in [11], Azm~3 AZm in H2m-3(Λ2P"_3,ΔP™_3;Z2)
is the reduction of some integer class x (because zm~3 and zm are both
reductions of integer classes in //*(P™_3)). Then g*x = δ(/\zm~4ΛZ"1)
(because pδ(/\zm~4/\zm) = Λzm-3Azm in H 2 m 3 ( Λ 2 P m , Δ P m ;Z 2)).

Now P^_3 has the same homotopy type as P^ll v 5 m (see Ch. 15 of
[9]). Let r: 5 m -> P^_3 be the inclusion of 5 m in P^z\ v 5 m followed by a
homotopy equivalence. We have a commutative diagram

H2m (Λ2Sm, ASm;Z2)J— H2m
 (Λ 2P£_ 3, ΔP^_3; Z2)

(5.2) | φ 2 JΦ2

Γ j 2 m - 3 / , 2 c m A C m . 7 \ y Tj2m-1>( A 2 T} m \ T}m . ΓZ\

H {A b , Δ ^ , Z ) < H ( Λ r m - 3 , Δ r m _ 3 , Z ) .

Now r*x = 0 in the lower line of (5.2) because r*(ΛZm~3ΛZ"1) = 0 in
H 2 m- 3(Λ 2Sm,ΔSm;Z 2) and

p:

is injective. Furthermore, r* is an isomorphism in the top line, and the
image of Sq2 in H2m(Λ25m,Δ5m Z2) is 0. Hence Φ2(JC) = 0 and
Φ2(δ(Λzm4ΛZm)) = 0 in H2 m(Λ2Pm,ΔPm;Z2) since g*x = δ(Λzm"4Λzm).
It is easily checked that the indeterminacy is 0. This completes the proof
of 5.5.

By Propositions 5.1 and 5.4, /* : n2

2^h((Pm^^^r^)h(P(Pm)) has
kernel and cokernel each of order 8. Utilizing Proposition 4.3 and
computing

α2((2m - 2 ) h ) P δ ( u y Γ ^ + yΓ" 4 y0 = uyΓ'3y\ + yΓ~2y5;

-3yί + y Γ ' 2 y 0 = wyΓ'2yΊ\
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we see that ker J* is actually isomorphic to Z8. In a similar manner, we
find that coker /* = Z8. This determines J* up to isomorphism.

6. Calculation of U γ ! ( P m ) and U ζι(Pm). Again, let
(X, A) be a finite dimensional C.W. pair and let ξ be a vector bundle over
X. Let η be a line bundle over X; and recall (§1) the cup product
πi

ξ(X,A)(g)πi

η(X)->πi

ξ^η(X,A). Thus U γ is a homomorphism
7Γξ(X, A)—> 77^0η(X, A), where γ is the single obstruction to a section
of 77.

PROPOSITION 6.1. Lei

cwp product with the (ordinary) Euler class of η. Then

and the following diagram is commutative

w/iere U γ and θs are induced by U γ and 05 respectively.

Proof Let Y be the total space of the sphere bundle of η. Then

Uγ is the composite π\{X,A) > π^ η (X, A U Y)-> τr^η(X, A)
where the first map is the Thorn isomorphism of §1 and the second map is
induced by the inclusion (X, A) C(X, A U Y). Since the Atiyah-
Hirzebruch spectral sequence is functorial, it suffices to show that U Uh

"preserves" the Atiyah-Hirzebruch spectral sequence in the obvious
way. (CV^X,A) and Dsπ^(X, A) are mapped to Csττ^η(X, A U Y)
and £>V^φη(X, A U Y), respectively, by the ordinary Thorn isomor-
phism.) But this is not difficult, if one uses the definition of the
Atiyah-Hirzebruch spectral sequence given in [3, §4]. We omit the proof.
(A detailed exposition can be found in [18].)

It is now a trivial matter to compute the maps
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These maps need not determine the maps U γι(Pm) and U ζι(Pm) up to
isomorphism (secondary homomorphisms of the sort discussed in §5
could play a role); however, in all of the cases of concern to us in this
paper, the above maps do determine those cup products.

As an example, we compute U γ 1 ( P m ) on τr2

2

m

m~-2)h((Pm)*)' Now
Z2φZ2 = D°πlZ%h((Py)^D°πμ\\)h((Pmy) = Z2 is onto, with ker-
nel generated by 8(uy]r+1~5ys

2-\- yf+ 1~4y0, while

is onto with kernel generated by uy2'+ι~3ys

2 + yf^~2y2. Now

l 2 ^

is trivially the 0-map with kernel generated by uy2r+1~2y2.
This establishes that U y\Pm) is onto π2

(2

m

m}ι},((Pm)*). The kernel of
that map must be isomorphic to either Z 8 or Z 2 0 Z 4 . That it is actually
isomorphic to Z 8 is shown by utilizing Proposition 4.3 and computing

α2((2m -

7. Closing r e m a r k s . The calculations of §4, §5, §6 are
sufficient to determine the maps of diagram (0.1) up to isomorphism. It is
then a simple matter to write down the complete diagram (except for the
uncertainty in φ2m-2 when m = 3 mod 4). The reader should be cautioned
that it need not be a simple matter, it just happens to be easy for
projective spaces. For example, determining the relationship between
ker(φ2m-2) and ker(<£2m-2) in general requires further calculation. But
when m ̂  3 mod 4, the triviality of the groups and the commutativity of
diagram (0.1) makes such calculation unnecessary.
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