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CONSTRUCTION OF 2-BALANCED
(n, k,A) ARRAYS

F. K. HwaNG AND S. LIN

Let I, denote the set of positive integers {1,2, - -, n}, and I,
the multiset consisting of A copies of I,. A submultiset S of I,
is t-balanced if S can be partitioned into ¢ parts such that the
sums of all elements in each part are all equal. A t-balance
(n, k,A) array is a partition of I, into m multisets S, i =
1, -+, m, which are all of size k and ¢-balanced. In this paper,
we give a necessary and sufficient condition for the existence of
2-balanced (n,k,A) arrays. Furthermore, we show how
2-balanced (n, k, A ) arrays can be used to construct a class of
neighbor designs used in serology, or to give coverings of
complete multigraphs by k-cycles.

I. Introduction. Let I, denote the set of positive integers
{1,2,---,n}, and I, the multiset consisting of the multiset union (") of A
copies of I,. Here we follow the notation of Knuth [1, Volume 2, p. 420
ex. 19] where multisets are defined as mathematical entities like sets, but
may contain identical elements repeated a finite number of times. If A
and B are multisets, we define their multiset union A * B as a multiset in
the following way: An element x occurring a timesin A and b times in B
occurs a +b times in A * B. Submultisets of a multiset are similarly
defined, with A C B if x occurs a times in A implies x occurs b = a
times in B. The cardinality of a multiset A, denoted by | A |, is the sum
of the number of occurrences of all elements in A. We have clearly,
|A*B|=|A|+|B|. If |[A|=k, we also call A a k-multiset.

If S C I, let || S| denote the sum of all elementsin S. For example,
if $=1{1,2,2,4}, then |S|=4 and ||S||=9. S ist-balanced if S can be
partitioned into ¢ submultisets $®, S@ - - S such that || S?| =1/t || S|
for j=1,2,---,t

A t-balanced (n, k,A) array is a partition of I, into m k-multisets
S,i=1,---,m which are all t-balanced. Thus a ¢-balanced (n, k,A)
array may be considered as an arrangement of the nA numbers in I, into
an m X k matrix such that each row of the matrix is a t-balanced multiset.

As illustrations, we exhibit below a 3-balanced (14,7, 1) array and a
2-balanced (8,3,3) array. The partitions of the S;’s into balanced
submultisets are indicated by “;”.

A 3-balanced (14,7, 1) array:
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S, =(14;1,2,11; 3,5, 6)
S,=(9,12;8,13; 4,7, 10)

A 2-balanced (8, 3, 3) array:

Si=(@1,2;3)
S,=(1,6;7)
S;=(1,6;7)
S:=(2,4;6)
Ss=(2,57)
S¢=(@3,5;8)
S;=(3,5;8)
Ss=(4,4;8)

Note that the S;’s need not be distinct and the partition of each S,
into S¥’s needs not be uniform in sizes.

From the definition of a t-balanced (n, k, ) array, it is clear that
k =t and An = mk. Furthermore, since each S, is ¢-balanced, ||S,| =
0 (mod t) and hence

S s l= 1120 = 222 = 0 gmod 1),

For t = k, each S, must consist of a single element occurring ¢t = k times
and hence A = 0(mod t). Clearly t-balanced (n, ¢, tA’) arrays exist for
all positive integers n, t, and A'. Also, 1-balanced (n, k,A) arrays are
just arrangements of An integers into an m X k matrix and hence exist
for all (n,k,A) provided An =0mod k. For n =1, we must have
k =0(mod t) and A =0(mod k). Clearly, t-balanced (1, k, A) arrays
exist trivially for those parameters.

In this paper, we deal mainly with the case t =2, and establish
necessary and sufficient conditions for the existence of 2-balanced
(n,k,A) arrays. The sufficiency proof will be constructive in
nature. Furthermore, we show how 2-balanced (n, k, A) arrays can be
used to construct a class of neighbor designs used in serology, or to give
coverings of complete multigraphs by k-cycles.

II. Necessary and sufficient conditions for the ex-
istence of 2-balanced (n, k, A) arrays. In the rest of the paper
we assume t=2 and denote 2-balanced (n,k,A) arrays by
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A(n, k,A). From the remarks made in the previous section, we further
assume k =2 and n >1. We shall prove:

THEOREM 1. Letk =2 and n > 1, then A (n, k, \) exists if and only
if n, k, A satisfy the following conditions:

(a) An =0 (mod k).

(b) An(n+1) =0 (mod 4).

(¢) A =0(mod?2) if k =2.

(d) n>2if k=3.

The necessity of (a), (b) and (c) had already been shown. For k =3,
n =2, the only possibility for the S;’s is (1, 1;2) and I, cannot be so
partitioned, and hence (d) is also necessary. We prove below that
conditions (a), (b), (c), (d) are also sufficient constructively. For clarity,
the work is divided into a number of smaller steps.

First, in order to reduce the tedious effort of construction, we
establish below a set of lemmas where we can deduce the construction of
large classes of A(n,k,A)’s from some ‘‘previously” constructed
ones. For convenience, we introduce the following notations:

1. N(k, A) = the set of all positive integers n > 2 such that n, k, A
satisfy the conditions (a), (b) and (c) in Theorem 1. (The construction of
A (2, k, A) will be treated separately.)

2. While A (n, k, A) stands for a 2-balanced (n, k, A ) array, we shall
also refer to the list of multisets S; associated with A (n, k, A) as the rows
of A(n,k,A).

3. A({n}, k,x)=a set of A(n,k,A)’s for all n € N(k, A).

4. We let H = H, where H, and H, are various collections of
A (n, k, A)’s denote the statement: If we can construct the A (n, k,A)’s in
H,, then we can construct the A (n,k,A)’s in H,.

Let g = (k, A) denote the g.c.d. of k and A, k* = k/g, A* = XA/g. The
following lemma characterizes N(k, A):

LEmMA 1. N(k, A) consists of all positive multiples of k* which are
> 2 if A is even and all positive multiples of k * which are congruent to 0 or
3 mod 4 if A is odd, except for k =2 where N2, A\) = if A is odd.

The proof follows from (a), (b) in Theorem 1 and the definition of
N(k,A).

From Lemma 1, we see that N(k,A) depends only on k* and the
parity of A. Hence we have

LEmMA 2. Let k =z k'>2.
1. Ifk/A=k'/A" and X = X' mod 2, then N(k,A) = N(k',A").
2. Ifx =g mod?2, then N(k,A) = N(k, g).
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3. IfA =0, g=1mod2, then N(k,A) = N(k,2g).
LEmMA 3. {A(n, k,A), A(n k,A)} = A(n k, A+ Ay).

Proof. The rows of A (n, k, A,) together with the rows of A (n, k, A,)
form A (n, k, A, + A,).

CorOLLARY 1. A(n k,A)=> {A(n k,rA), r=1,2,---}.

COROLLARY 2.

1. A(n}, k,g)> A({n}, k,A) if A = g mod2, and

2. A({n}, k,2g)> A({n}, k,A) if A =0, g =1mod2.

Proof. From (2) and (3) of Lemma 2 and Corollary 1.

LEMMA 4. If ki/A, = k,/A,, then

{A(n ki, L), A(n, ky, A = A(n ki + kyy A+ 4).

Proof. From k,/A, = k,/A,, we see that A (n, ky,A;) and A(n, k,, Ay)
have the same number of rows. Let {S;} and {T},i =1,2,---, m be the
rows for A (n, k;,A;) and A (n, ko, A,) respectively. Then {R;} ={S," T},
i=1,2,---,m form the rows for an A(n,k, +ky A, +A,) with R, =
R®M* R® where RV=SV*TY j=1,2.

CorROLLARY 1. A(n k,A) > {A(n,rk,rA), r=1,2,---}.

COROLLARY 2. A(nk*,1*)=> A(n, k,X).

COROLLARY 3. Let k*=3, g =1 (mod 2), then

A({n}, k*,A%) > A({n}, k, X).

Proof. Since g =1 (mod 2), A and A* have the same parity and
hence N(k*,A*)= N(k,A) by (1) of Lemma 2. Hence Corollary 3
follows from Corollary 2.

Looking at A (n, k,A)’s as m X k matrices of elements from I, we

may view the constructions by Lemmas 3 and 4 as vertical and horizontal
compositions respectively, as illustrated by the following diagrams:

A(n, k, A)

A(n, k, \y) > Aln kAt )

2| Ak, 2 | Ak, d)| 2 [ Al ki+kn M+ )
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Corollary 3 states that we can reduce the construction of
A ({n}, k, 1) to the construction of A({n}, k*, A*) provided k* =3 and
g = 1(mod 2). The condition g = 1 (mod 2) may be removed by the
following lemma:

LEMMA 5. (even-even lemma).
If g = 0(mod 2), then we can construct A ({n}, k, A).

The construction is trivial since the rows of A (n, k, A) can consist of
elements from I, occurring in pairs.
The following two lemmas take care of the situation when k * < 3.

LEMMA 6. Let k*=1 so that A = kA'. Then
A(n},3,31") > A({n}, k, )

Proof. We may assume k is odd, otherwise A ({n}, k, A) can be
constructed by the even-even lemma. Lemma 6 is obvious if k =3,
hence we may assume k = 5. Since k —3 and (k —3)A’ are both even,
we can construct A({n}, k —3,(k —3)A’) by the even-even
lemma. From Lemma 1, we have N(k,A)=N(3,31")C
N(k —=3,(k —3)A") and hence {A({n},3,31"),A({n}, k —3,(k —3)A")}
= A({n}, k, }) by horizontal composition, and the lemma follows.

LEMMA 7. Let k*=2 so that k =2g, A =gA', A' odd. Then
A({n},6,31") > A({n}, k, A).

Proof. We may assume g is odd and > 3 as in the proof of Lemma
6. The lemma then follows by the following horizontal composition:

{A({n},6,317), A({n}, k —6,(g —3)A")} > A({n}, k, ).
Details are similar to the proof of Lemma 6.
Lemmas 8 and 9 below reduce the construction of A ({n}, k*, A*)to

the construction of A ({n}, k, A) for 3=k =6.

LeEmMMA 8. Let (k,A)=1. Determine the integer | so that 3=
k —41<7. Then

A({n}, k—4L2)=> A({n}, k1)

Proof. Let n&€ N(k,A). Then An =km. Since (k,A)=1, we
must have n = ka and m = Aa. Forl=1,let n'=n—4al =(k —4l)a,
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then n'€ N(k —4L A) since An'=(k —4l)ar =(k —4l)m and n'=
n (mod 4). (The case n’'=2 cannot occur since n'=(k—4l)a=
3.) From an A(n —4al, k —41 )), which by assumption we can con-
struct, we construct A (n, k, 1) as follows:

The elements in the multiset I, which are not in I,_,,, namely, A
copies of each of the 4al integers from n —4al + 1 to n, are placed into an
m X 4] matrix B such that every row of B is 2-balanced. One way this
can be done is to fill the rows of B sequentially by A strings of integers
from n —4al +1 to n. Then every row of B consists of / sets of four
consecutive integers. Since for every four consecutive integers x, x + 1,
x+2, x+3, x+(x+3)=(x+1)+(x +2), the rows of B are clearly
2-balanced.

From B and A(n —4al, k —4l A), we construct A(n, k,A) by
horizontal composition where row i@ of A(n k,A)=row i of
A(n—4al,k —4L )" row i of B.

When A = 0 (mod 2), Lemma 8 can be strengthened to:

LEMMA 9. Let (k,A)=1, A =0 (mod 2). Determine the integer |
so that 3=k —21<5. Then

A({n}, k=21x)=> A({n}, k, 1).

The proof of Lemma 9 is similar to that of Lemma 8 except that
n’=n —2al and the rows of the m X 2/ matrix B can merely consist of
numbers from I, — I, ,, occurring in pairs.

LEmma 10. {A({n}, k, L), k =3,4,5,6} > A(n,k,A) for all n =
3, k, A satisfying the conditions of Theorem 1.

Proof. The proof of Lemma 10 sums up the applications of the
reduction lemmas given above.
1. If g=(k,A)=1, use Lemma 8.
2. If g =0 mod 2, use the even-even lemma.
3. If g >1 and odd, use
(@) Lemma 6 if k*=k/g=1,
(b) Lemma 7 if k*=2, and
(c) Corollary 3 of Lemma 4 if k* =3 to reduce the construc-
tion of A(n,k,A) to A(n,k* A*), and use Lemma 8 to construct
A(n, k* A%).
In the following, we shall construct A (2, k, A), and A ({n}, k, A) for
k =3,4,5,6.

III. Construction of A (2, k, A). Let n =2, then A must
be even, say A =2A'. From An =km, we have 4A'=km. If k =
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0 (mod 2), we can construct A (2, k, A) by the even-even lemma. Hence,
we may assume k =5, is odd, and hence m = 0 (mod 4). The rows of
A (2, k, A) can then consist of 1,1,2, and (k — 3)/2 pairs of 1’s or 2’s,
which are available since both A —2m =(k —4)(m/2) and A —m =
(k —2)(m/2) are even. (These are the number of 1’s and 2’s left for the
third to kth columns of A (2, k, A).)

IV. Construction of A (n, 3, A).
Case 1. (3,A)=1, A =1 (mod 2).

From Corollary 2 of Lemma 3, we need only construct A (n, 3, 1) for
n€N@B,1). From Lemma 1,n€N(@3,1) if n =0(mod 3) and n =
0,3 (mod 4). We have two subcases:

I. n=12ww=1,2,--:

The S’s(i =1,---,4w) are:

(T+2), 11w —j; 11w +1+7) j=0,1,---,w—1.
(2+2j, 8w —j; 8w +2+)) j=0,1,---,w—=2"
2w, 6w +1; 8w +1)

@Bw+1+2j,6w—j;9w +1+7)) j=0,1,--,w—1
Bw+2+2),3w—j;6w+2+]) j=0,1,--,w—1

It is easy to see that all the S,’s are 2-“balanced”, and in the

following, we verify that the S,’s are indeed a parition of I, =
(1,2,---,12w). We shall leave similar verifications for subsequent
constructions to the reader.

The S,’s may be expanded into the following schematic diagram:

(1, 1w, 1w +1)
U (a-2) 1an 1 (12)
2w —1, 10w +1; 12w)
(2, 8w; 8w +2)
V(1-2) 16 C)
2w -2, Tw+2;  9w)
(%) (6%) (8%)

' Here and in all subsequent lists of S,’s vacuous if the range of j is empty.
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(2w, 6w+1; 8w+1)

Bw +1, 6w; ow +1)

Y @45 16 l (10)
(5w -1, Sw+1; 10w)

(Bw +2, 3w; 6w +2)

V@s) 103 L ()

(5w, 2w+1l;  Tw+1)
Where sﬁ« means increasing from a to b by steps of two and i
b b

b
increasing from a to b by steps of one. Similarly for 1. Following the

1 2
indicated order in parenthesis, we have {} (1—2), {J (1 -2) account for
2w—1 2w=2

numbers from 1 to 2w —1, followed by 2w in (2*),2w +1 to 3w in
3w

11w+1
T (3), etc. until | (12) where all numbers in I} = (1,2, --,12w) are
12w

2w+l
accounted.
2. n=12w+3 w=0,1,---
The S;’s(i=1,---,4w +1) are:

(1+2), 11w +3—j; 11w +4+)) j=0,1,---,w—1.
2+2),8w+2—j; 8w +4+j) j=0,1,---,w—1.
Bw+2+2,3w+1—j;6w+3+j) j=0,1,---,w—1.
Bw+3+2j,6w+1—j;9w +4+)) j=0,1,--- w-1.
2w +1, 6w +2; 8w +3).

Case 2. (3,A)=1, A =0 (mod 2).

Again from Corollary 2 of Lemma 3, we need only construct
A(n,3,2) for n€NQ@G,2). From Lemma 1,n€N(@3,2) if n=
0 (mod 3). Although when n = 0,3 (mod 4) we can construct A(n, 3, 2)
from A (n, 3, 1), we give another construction below which is simple and
uniform for all n =3w, w=1,2,---.

The S;’s(i=1,---,2w) are:

(1+j,3w—-1-2j;3w—j) j=0,1,--- w—1.
A+, w+l+j; w+2+2j) j=0,1,--- w-—1.
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From the schematic diagram below, it is easy to see that each of the
numbers from 1 to 3w is used exactly twice.

1 3w—1 3w

i) i 7
w w+1 2w +1
1 w+1 w+2
y l 0z
w 2w 3w

Case 3. (3,A)=3, A =1(mod 2).

We need only construct A(n,3,3) for all n € N(3,3). N(3,3)
consists of all numbers = 0,3 (mod 4). Again, we have two subcases.

1. n=4w, w=1. The S’s(i=1,---,4w) are:

(1+2j,3w—j;3w+1+]j) j=0,1,---,w—1,
1+2,3w—j;3w+1+j) j=0,1,---,w—1,
2+2j,3w—1—j;3w+1+j) j=0,1,---,w—1,
C+2,w—1—j;w+1+j) j=0,1,---,w—2,
(w, 2w, 3w).

2. n=4w+3, w=0. The S’s(i=1,---,4w +3) are:

(1+2j,3w+2—j;3w+3+)) j=0,1,---
1+2j,3w+2—j;3w+3+j) j=0,1,---,
2+25,3w+1—j;3w+3+)) J=0,1,---,w,
2+2,w—j;w+2+j) j=0,1,---,w—1,
(w+1,3w+2; 4w +3).

» W,
w—1,

Case 4. (3,A)=3, A =0 (mod 2).

We need only construct A (n, 3, 6) for all n € N (3, 6), which consists
of all positive integers >2. Again, we have two subcases:

1. n=2w,w=2. The S’s(i=1,---,4w) are:

A+2, w—j; w+1+4j) j=0,1,---,w—1,
A+2,w+l—j;w+2+j) j=0,1,---,w—2,
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C+2j,w—2—j;w+tj) j=0,1,---,w -3,
QC+2,w—j;,w+2+j) j=0,1,---,w—=2,
(1,2w—2,2w —-1)

(1,2w —1,2w)

(2,2w —2,2w)

(w—=1,w+1,2w).

2. n=2w+1,w=1. The S’s(i=1,---,4w +2) are:

A+2j,w+1—-j;,w+2+j) j=0,1,---,

b

A+2,w+l—j;,w+2+j) Jj=0,1,---, ,

w—1
ceew =1
QR+2j,w—j;w+2+j) J=0,1,--,w—1,
R+2,w—-1—-j;w+t1l+j) j=0,1,---,w=2
(1, 2w; 2w + 1)

(1, 2w; 2w + 1)

(w, w+1;2w +1).

b

Note that we could have constructed most of the A (n, 3, 6)’s from
A(n,3,1), A(n,3,2), and A(n,3,3)’s, leaving us with those values of
n=12w+1,12w +2,12w +5,12w + 10 which do not belong in
N@B,1)UN(@3,2)U N(3,3). However, the unified construction here is
actually simpler.

This completes the construction of all A (n,3, A)’sforn € N(3, A).

V. Construction of A (n,4, A). We may assume A is odd
and (4, 1) =1 otherwise A (n, 4, 1) can be constructed by the even-even
lemma. Hence we need only construct A(n,4,1) for n =4w, w = 1.

The S’s are (i =1,2,---,w)

(1 +4j, 4+4j;2+4j,3+4j) j=0,1,---,w—1.

Note the similarity of this construction and the construction of
matrix B in Lemma 8. Another equally simple construction is

w-—j4w—j;2w—}3w—-j) j=0,1,---,w—1
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VI. Construction of A (n,5, A).

Case 1. (5,A)=5, A =5A".
We can construct A(n, 5, A) from A (n,3,3A') by Lemma 6.

Case 2. (5,A)=1, A =0 (mod 2).
We can construct A(n,5,A) from A(n’,3,A) by Lemma 9.

Case 3. (5,A)=1, A =1 (mod 2).
From Corollary 2 of Lemma 3, we need only construct A (n, 5, 1) for
n € N(5,1). From Lemma 1,n € N(5,1) if n =0(mod 5) and n =
0,3 (mod 4). We have two subcases:
1. n=20w, w=1.
The S’s(i=1,---,4w) are:

(I+j,10w+1+j, 14w +2+j; 6w +1+j, 18w +3+2j)
j=0,1,---,w—2.
(w+1l+j, 11w +1+j,15w+1+j;9w +1+j, 18w +2+2j)
j=0,1,---,w—1.
Cw+1l+j,4w+1+j, 13w +2+j; 3w+ 1+, 16w +3+2j)
j=0,1,---,w—1.
Gw+1+j,7w+j, 12w +2+j; 8w + 1+, 16w +2+2j)
j=0,1,---,w—1.
(w, 11w, 12w +1; 8w, 16w +1).

For example, let w =2, the 8 S,’s are:

(, 21, 30; 13, 39)
3, 23, 31; 19, 38)
(4, 24, 32; 20, 40)
(5,9, 28; 7, 35)

(6, 10, 29; 8, 37)

(11, 14, 26; 17, 34)
(12, 15, 27; 18, 36)
(2, 22, 25; 16, 33).
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n=20w+15 w =0.
The Si’s(i=1,---,4w + 3) are:

QR+, 10w +7+j, 14w +11+j; 6w + 6+, 18w + 14+ 2j)

j=0,1,--w-1.

(wH+2+j, 11w +7+j, 15w +11+j; 9w + 7+, 18w + 13+ 2j)

=01, w—1.

Cw+3+j,4w +3+j, 13w +10+j; 3w +3+j, 16w +13+2j)

j=0,1,--,w—1.

Gw+5+j,Tw+6+j, 12w +10+]; 8w + 7+ j, 16w + 14 +2j)

j=0,1,---,w—1.

(1, 5w +3, 5w +4; 2w +2, 8w +6)
(6w +5, 12w +7, 16w +12; 14w + 10, 20w + 14)
(12w +8, 12w + 9, 16w + 11; 20w + 13, 20w + 15).

For example, w =1 gives the following A (35, 5, 1):

@, 17, 25; 12, 32)
(3, 18, 26; 16, 31)
(5,7, 23; 6, 29)
(10, 13, 22; 15, 30)
1,8, 9; 4, 14)

(11, 19, 28; 24, 34)
(20, 21, 27; 33, 35).

VII. Construction of A (n,6, A). We may assume A =
1 (mod 2), otherwise A (n,6,A) can be constructed by the even-even

lemma.

We have two cases.

Case 1. (6,1)=1.

Again from Corollary 2 of Lemma 3, we need only construct
A(n,6,1) for n € N(6,1). From Lemma 1,n € N(6,1) if n = 12w,

w=1.
follows:

It is easy to construct A(12w, 6,1) and one simple way is as
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Let (a,b,c;d,e, f) and (a’,b’,c';d’,e',f) be the rows for any
A(12,6,1), such as

(1,3,7;2,4,5) and (6,10,12;8,9,11).
Then the rows for A (12w, 6, 1) may be

(a+12j, b +12j, ¢ +12j; d + 12j, e + 12], f + 12)),
(a'+12j, b'+ 12j, '+ 12j; d'+ 12j, e’ + 12, f'+ 12j)
=01, w—1,

Case 2. (6,1)=3.

We need only construct A (n, 6, 3) for n € N (6, 3) which consist of all
numbers n =4w, w=1,2,---. The construction again is easy and
analogous to case 1. Let A(4,6,3) be (a,bc;de f) and
(a',b',c';d' e, f"), say, (1,1,4;1,2,3) and (2,3,4;2,3,4). Then the
rows for A (4w, 6,3) may be:

(a +4j, b+4j, c+4j; d +4j, e +4j, f+4)),
(a'+4j, b'+ 4, ¢'+4j'; d'+4j, e’ +4j, f'+4))
=01, w—1.

This completes the proof of Theorem 1.

VIII. Applications.

A. Construction of neighbor designs. Rees [2] introduced the
concept and name of neighbor designs for use in serology. He wrote,
“A technique used in virus research requires the arrangement in circles
of samples from a number of virus preparations in such a way that over
the whole set a sample from each virus preparation appears next to a
sample from every other virus preparation.” Figure 1 shows such an
arrangement of a set of antigens (virus preparations) around an an-
tiserum on a circular plate. On the plate, every antigen has as neighbors
two other antigens.

More generally, a neighbor design is an arrangement of v kinds of
objects on b such plates, each containing k objects, such that, each
object is a neighbor of every other object exactly A times. The same
object may appear more than once in a plate but adjacent (neighboring)
objects must be distinct.
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Figure 1

It can be easily shown that each object must appear exactly
r=A(v—1)/2 times on the b plates in a neighbor design. By simple
counting, we also have vr = bk, hence b = Av(v — 1)/2k. Thus a neces-
sary condition for a neighbor design with parameters v, k, A to exist is
that k >1, and both r and b be positive integers. Denoting such a
neighbor design by ND(v,k,A), it is clear that ND(v,k,A) >
ND (v, k, tA) since we can duplicate each plate of ND (v, k,A)t times.

Rees constructed ND (v, k, 1) for every odd v with k = v, and for
every v =41, k =10, A = 1; some by using Galois field theory and others
just by trial and error. Hwang [2] constructed some infinite classes of
neighbor designs with parameters as follows:

1. k>2,v=2k+1, A=1.

2. k=0(mod?2), v=2k+1,i=12,---, A =1

3. k=0(mod4), v=2jk+1,j=1,2,---,A=1
We show below how 2-balanced (n, k, A) arrays may be used to construct
a new class of ND (v, k, A)’s.

Without loss of generality, we may let the set of v kinds of objects be
designated by V ={1,2,---,v} and a plate B containing k objects
by, by, - - -, by, (not necessarily all distinct) from V, and arranged circularly
in that order, by the sequence (b, b,, -+, b.). For convenience, let
b, =b, so that the k pairs of neighbors in B are (b..,b), j=
1,2,---,k. Let BO=(b{",bY,---,b¥), 1=0,1,---,v—1, be a set of v
plates cyclically generated from B by the rule b{" = b, + | where b is
reduced mod v if necessary to an element of V. We call B = B the
base plate and the set of plates B", 1 =0,1,---, v — 1, the full cyclic set of
plates generated by B and denote it by [B]. We may also view [B] as a
v X k matrix where the Ith row is B”. The columns of [B] are then
some cyclic permutations of (1,2,3,---,v).
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For example, if v =7 and B =(1,2,4), then

—_
=
Il
BN Y N ST
e = NV, B N UCR )
T T S RS = TV, I N

For any pair of distinct objects a and b in V, let d(a, b), the distance
between a and b, be the smallest positive residue mod v which is congruent
to either (a —b) or (b —a). For example, if v =7, then d(2, 6) =3,
d(1,7)=1. We may also visualize d(a, b) as the distance between a
and b on the Hamiltonian cycle (1,2,---, v,1).

It is clear that 1=d(a,b)=[v/2] and that in [B], d(b{, b{")=
d(b;., b)) for all | =0,1,---,v—1. Furthermore, every pair v,, v,E V
with d(v,, v;) = d(b;.1, b;) appears exactly once as neighbors in the j + 1th
and jth column of [B], except when d(v,, v,) = d(b;.,, b)) = v/2, (v must
then be even), where every such pair appears exactly twice. We state
this result as

LemMma 11. Given any plate B = (b, by, b)), let Dy =
{d(b.1, b)), j=1,2,--- k}. If v,, v, are any two distinct objects in V,
then the number of times v,, v, appear as neighbors in [B] = the number of

occurrences of d (v, v,) in the multiset Dy, except for d(v,, v,) = v/2, where
it is doubled.

With Lemma 11, we prove:
THEOREM 2. A(n,k,A)=> ND@2n +1,k, ).

Proof. For each row S = (a,,a, -+, a.)of A(n,k,A)let S=P*N
be a balanced partition of S. (The order in which the a;’s are written is
immaterial.) Define S* =(d,,d,, -, d,) where d, = a, if a, € P, and
d=—a if a, EN. Let b,b, -, b,b.., be constructed from S* as
follows:

j
bj+1=bi+di=b1+2d,' j=1,2,"',k,

1
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reduced mod v if necessary so that b, € V. We have clearly, b, # b,
be.i = b, (since || S*| = 0), and thus B = (b, b,, - -, b,) form a plate with
Dy = S since d(b.,, b)=|d; | = a;.

We assert that the vm plates [B,],- - -, [B.] constructed from rows
Sy, S, of A(n,k,A) in this manner do indeed form a ND(2n +
1, k, A). Since v is odd, by Lemma 11, every two distinct objects v,, v, in
V appear as neighbors in {[B;], i = 1,2, - -, m} exactly the total number
of times 1 = d(v,, v,) = n appears in {S,, i = 1,2, - - -, m}, which is exactly
A

B. Coverings of Complete Multigraphs by k-Cycles. By acomplete
multigraph K we mean a multigraph on v vertices without self-loops
and having exactly A edges joining every pair of distinct vertices
U1, v, When A = 1, this reduces to just the complete graph K,. A plate
B of a neighbor design ND (v, k, A) may be interpreted as a k-cycle
(b1, by, - -+, by, b)) on K and thus the b plates of ND (v, k, A) induces an
edge cover of K, by b k-cycles. If the objects in B are distinct, then the
cycle (b, by, - -+, by, b)) is elementary. If the B’s are constructed from
the §’s of an A (n, k, A) as described in Theorem 2, then the objects in B
and all v plates in [B] are distinct if and only if no proper substring T of
S§*=(di, d,," -+, d) has | T||=0mod v. Thus we have:

THEOREM 3. Let (n,k,A) satisfy the necessary conditions of
Theorem 1. Then K,,., can be covered by b= An(2n+1)/k k-
cycles. In particular, for A =1,3=k =6, the b k-cycles can be chosen to
be elementary.

Proof. The first part of the theorem follows the previous discus-
sions and we need only verify the last statement. An inspection of the
constructions for A (n, k, 1) for 3=k = 6 shows that the S*%’s have no
proper substring || T'|| = 0 mod v, and hence the k-cycles so constructed
are elementary.

REMARK 1. A more detailed analysis of our construction for
A(n, k, 1) shows that we can choose the S;’s such that there exist
corresponding S*’s free of proper substrings T with | T| = 0 (mod v)
more generally than the cases stated in Theorem 3. For example, this is
true for k =3,4, any A, and k=5, (5,A)=1,A odd, or A =2. For
k=4, we have to (and can) avoid S =(a,a;a,a) while S$*=
(a,b, —a, — b) is acceptable. However, the interesting problem of
constructing A (n, k, A)’s for all n € N(k, A) with this property so that we
can cover K3,,, with elementary k-cycles in this manner is still open.

REMARK 2. ND(v,3,A)’s are also triple systems. In [3], we con-
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structed triple systems directly for all parameters satisfying the necessary
conditions A(v —1) =0 (mod 2), Av(v —1) = 0 (mod 6), which is more
general than the values v =2n + 1,3, A constructable from A (n,3,1)’s
in this paper. The neighbor designs constructed here have parameters
satisfying v=2n+1, An =0(mod k), An(n+1)=0(mod 4), A =
0 (mod 2) when k =2, and v# 5 when k =3. In a forthcoming paper
[4], we use the results given here together with other constructions to
show that we can always construct a neighbor design for all values of the
parameters satisfying the following obvious necessary conditions:
A(v —1)=0(mod 2), Av(v —1)=0 (mod 2k), A =0 (mod 2) if k =2, and
k =0 (mod?2) if v = 2.
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