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CONSTRUCTION OF 2-BALANCED
(n, fc, λ) ARRAYS

F. K. HWANG AND S. LIN

Let In denote the set of positive integers {1,2, , n}, and Iλ

n

the multiset consisting of λ copies of /„. A submultiset 5 of /λ

n

is t -balanced if S can be partitioned into t parts such that the
sums of all elements in each part are all equal. A t -balance
(n, fc, λ) array is a partition of /£ into m multisets 5, , / =
1, , m, which are all of size k and t-balanced. In this paper,
we give a necessary and sufficient condition for the existence of
2-balanced (n, /c, Λ) arrays. Furthermore, we show how
2-balanced (rc, fc, λ) arrays can be used to construct a class of
neighbor designs used in serology, or to give coverings of
complete multigraphs by k -cycles.

I. Introduct ion. Let In denote the set of positive integers
{1,2, , n}, and Ik

n the multiset consisting of the multiset union ( + ) of λ
copies of In. Here we follow the notation of Knuth [1, Volume 2, p. 420
ex. 19] where multisets are defined as mathematical entities like sets, but
may contain identical elements repeated a finite number of times. If A
and B are multisets, we define their multiset union A + B as a multiset in
the following way: An element x occurring a times in A and b times in B
occurs a + b times in A + B. Submultisets of a multiset are similarly
defined, with A C B if x occurs a times in A implies x occurs b ^ a
times in B. The cardinality of a multiset A, denoted by \A |, is the sum
of the number of occurrences of all elements in A. We have clearly,
\A + B\ = \A | + | B | . If |A | = fc, we also call A a fc-multiset.

If S C In, let || S || denote the sum of all elements in S. For example,
if S ={1,2,2,4}, then \S | = 4 and \\S || = 9. S is t-balanced if S can be
partitioned into t submultisets S(1), S(2), , S(t\ such that || So ) | | = ί/t || S ||
for / = 1,2, ••-,*.

A t-balanced (n,/c, λ) array is a partition of Iλ

n into m fc-multisets
$, i = l, ,m which are all ί-balanced. Thus a ί-balanced (n, fc, A)
array may be considered as an arrangement of the nλ numbers in Iλ

n into
an m x fc matrix such that each row of the matrix is a f-balanced multiset.

As illustrations, we exhibit below a 3-balanced (14,7,1) array and a
2-J?alanced (8,3,3) array. The partitions of the S. 's into balanced
submultisets are indicated by " " .

A 3-balanced (14, 7, 1) array:
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5, = (14; 1,2,11; 3, 5, 6)

S2 = (9,12; 8,13; 4, 7,10)

A 2-balanced (8, 3, 3) array:

5, = (1,2; 3)

S3 = (1» 6; 7)

S 4 = ( 2 , 4 ; 6 )

S5 = (2, 5; 7)

5 7 = (3,5;8)

58 = (4, 4; 8)

Note that the 5/ 's need not be distinct and the partition of each 5,
into Sps needs not be uniform in sizes.

From the definition of a t-balanced (n, k, λ) array, it is clear that
k =s t and An = mk. Furthermore, since each S, is ί-balanced, || $ || =
0 (mod t) and hence

For t = fc, each 5, must consist of a single element occurring t = fe times
and hence λ = 0(mod ί). Clearly ί-balanced (n, ί, tλ') arrays exist for
all positive integers n, ί, and A'. Also, 1-balanced (n, fe, λ) arrays are
just arrangements of An integers into an m x k matrix and hence exist
for all (n, fc, A) provided An = 0 mod k. For n = 1, we must have
k ΞΞ 0 (mod ί) and A = 0 (mod k). Clearly, ί-balanced (1, fc, A) arrays
exist trivially for those parameters.

In this paper, we deal mainly with the case ί = 2, and establish
necessary and sufficient conditions for the existence of 2-balanced
(n,/c, A) arrays. The sufficiency proof will be constructive in
nature. Furthermore, we show how 2-balanced (n, fe, A) arrays can be
used to construct a class of neighbor designs used in serology, or to give
coverings of complete multigraphs by fe-cycles.

II. Necessary and sufficient conditions for the ex-
istence of 2-balanced (n? k, λ ) arrays. In the rest of the paper
we assume ί = 2 and denote 2-balanced (n, fe, A) arrays by
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A (ft, fc, λ). From the remarks made in the previous section, we further
assume fc ^ 2 and n > 1. We shall prove:

THEOREM 1. Lei fc ̂  2 αftd ft > 1, ί/zeft A (ft, fc, A) ex/sίs // and only
if ft, fc, λ satisfy the following conditions:

(a) An ^ 0 ( m o d fc).
(b) Aft (ft + l) = 0 (mod 4).
(c) A Ξ= 0 (mod 2) // fc = 2.
(d) ft > 2 // fc - 3.

The necessity of (a), (b) and (c) had already been shown. For k = 3,
ft = 2, the only possibility for the S. 's is (1, 1; 2) and J* cannot be so
partitioned, and hence (d) is also necessary. We prove below that
conditions (a), (b), (c), (d) are also sufficient constructively. For clarity,
the work is divided into a number of smaller steps.

First, in order to reduce the tedious effort of construction, we
establish below a set of lemmas where we can deduce the construction of
large classes of A (ft, fc, λ)'s from some "previously" constructed
ones. For convenience, we introduce the following notations:

1. N(fc, A) = the set of all positive integers n > 2 such that ft, fc, λ
satisfy the conditions (a), (b) and (c) in Theorem 1. (The construction of
A (2, fc, λ) will be treated separately.)

2. While A (ft, fc, λ) stands for a 2-balanced (ft, fc, λ) array, we shall
also refer to the list of multisets Si associated with A (ft, fc, λ) as the rows
of A (ft, fc, A).

3. A({ft}, fc, λ) = a set of A (ft, fc,λ)'s for all n EN(fc,λ).
4. We let Hι => H2 where H, and H2 are various collections of

A (ft, fc, λ )'s denote the statement: If we can construct the A (ft, fc, λ )'s in
Hu then we can construct the A (ft, fc, λ)'s in H2.

Let g = (fc, λ) denote the g.c.d. of fc and A, fc * = fc/g, λ * = λ/g. The
following lemma characterizes N(fc, A):

LEMMA 1. N(fc, A) consists of all positive multiples of k* which are
> 2 if λ is even and all positive multiples ofk * which are congruent to 0 or
3 mod 4 if A is odd, except for fc =2 where N(2, A) = 0 if λ is odd.

The proof follows from (a), (b) in Theorem 1 and the definition of
N(fc,A).

From Lemma 1, we see that N(fc, A) depends only on fc* and the
parity of A. Hence we have

LEMMA 2. Let fc ^ f c ' > 2 .
1. Ifk/λ = fc'/A' and A = λ'mod2, then N(k9λ) = N(k\λ').
2. Ifλ=g mod 2, then N(fc, A) = N(fc, g).
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3. If λ = 0 , g = Imod2, then N(fc,λ) = JV(fc,2g).

LEMMA 3. {Λ (n, k, λ,), Λ (n, k, λ2)} φ A ( n , U i + λ2).

Proo/. The rows of A (n, k, A,) together with the rows of A (π, k, Λ2)
form A(n, fc, A, + λ2).

COROLLARY 1. A(n, k, A) Φ {A(n, k, rλ), r = 1,2, •,}.

COROLLARY 2.

1. A({n}, fc,g)Φ A({n}, fc,λ) i/A = g mod 2,

2. A({n}, k , 2 g ) Φ A({n}, k,λ) //A = 0, g = 1 mod 2.

Proof. From (2) and (3) of Lemma 2 and Corollary 1.

LEMMA 4. // kJX{ = fc2/A2, ί/ien

{A (n, fcb A,), A (n, k2, λ2)} Φ A (n, fc, + k2, A, + A2).

Proo/. From kjλι = k2/λ2, we see that A (n, /cb λj) and A (n, fc2, λ2)
have the same number of rows. Let {S, } and {Tj}, / = 1,2, , m be the
rows for A{n,kukλ) and Λ(n, fc2, A2) respectively. Then {/?,-} = {S, +71},
ι = l,2, * ,m form the rows for an A(n, fc, + fc2, A, + λ2) with Rt =
R?)+ RW where R^ = S^^ T^\ j = 1,2.

COROLLARY 1. A(n, k, A) Φ {A(n, rk, rλ), r = 1,2, •}.

COROLLARY 2. A (n, k *, A *) Φ A (n, k, A).

COROLLARY 3. Lei k * g 3, g = 1 (mod 2), then

A({n},fc*,A*)φ A({π}, fc,λ).

Proo/. Since g Ξ 1 (mod 2), A and A * have the same parity and
hence N(k*,λ*) = JV(fc,λ) by (1) of Lemma 2. Hence Corollary 3
follows from Corollary 2.

Looking at A(rc, k, A)'s as m x k matrices of elements from J£, we
may view the constructions by Lemmas 3 and 4 as vertical and horizontal
compositions respectively, as illustrated by the following diagrams:

1.
A(n, k, A,)
A(n,k,λ2)

Φ (n, k,

2.
b A,) (n, k2, λ2) Φ {n,kt + k2, λ, + λ2)
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Corollary 3 states that we can reduce the construction of
A({n}, /c, A) to the construction of A({rc}, fc*, A*) provided fc* ^ 3 and
g = 1 (mod 2). The condition g = 1 (mod 2) may be removed by the
following lemma:

LEMMA 5. {even-even lemma).

If S = 0 (mod 2), ί/ien we can construct A ({n}? fc, A).

The construction is trivial since the rows of A (rc, fc, A) can consist of
elements from J£ occurring in pairs.

The following two lemmas take care of the situation when k * < 3.

LEMMA 6. Let fc* = 1 so ί/iαί A = fcλ'.

Proof. We may assume fc is odd, otherwise A({n}, fc, A) can be
constructed by the even-even lemma. Lemma 6 is obvious if k = 3,
hence we may assume /c ̂  5. Since k - 3 and (fc - 3)λ' are both even,
we can construct Λ({n}, fc — 3, (fc — 3)λ') by the even-even
lemma. From Lemma 1, we have N(/c, A) = N(3,3λ')C
N(^-3,(fe-3)A r) and hence {Λ({n}, 3, 3λ'),A({n}, fc - 3,(fc - 3)λ')}
Φ A ({/i}, fc, A) by horizontal composition, and the lemma follows.

LEMMA 7. Let k* = 2 so that fc = 2g, λ = g λ \ A' odd. ΓΛβn
Λ ( { M } , 6 , 3 A ' ) Φ Λ({n},fc,λ).

Proof. We may assume g is odd and > 3 as in the proof of Lemma
6. The lemma then follows by the following horizontal composition:

{A({n},6,3A'),Λ({n},fc-6,(g-3)λ')}Φ A({n},fc,A).

Details are similar to the proof of Lemma 6.
Lemmas 8 and 9 below reduce the construction of A ({n}, fc *, A *) to

the construction of A ({π}, fc, A) for 3 ^ fc ^ 6.

LEMMA 8. Lei (fc, λ ) = l . Determine the integer I so that 3 ^

fc-4/<7. Then

A({n},fc-4/,λ)φ A({n}, fc,A).

Proo/. Let n G J V ( U ) . Then λn = km. Since (fc, λ) = 1, we
must have n = ka and m = AΛ. For / ̂  1, let n' = n - Aal = (fc - 4/)α,
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then n ' E N(fc-4/, A) since Arc' - (fc - 4/)αλ = (fc -4/)m and n' ^
n (mod 4). (The case nf = 2 cannot occur since n' = (k -4/)α ^
3.) From an A(n -4α/, k -4/, A), which by assumption we can con-
struct, we construct A(n, fc, A) as follows:

The elements in the multiset Iλ

n which are not in Iλ

n-4ah namely, A
copies of each of the Aal integers from n - 4al + 1 to n, are placed into an
m x 4/ matrix B such that every row of B is 2-balanced. One way this
can be done is to fill the rows of B sequentially by A strings of integers
from n - Aal + 1 to n. Then every row of B consists of / sets of four
consecutive integers. Since for every four consecutive integers JC, x + 1,
x + 2, x + 3, x + (x + 3) = (x + 1) + (x + 2), the rows of B are clearly
2-balanced.

From B and A(n —Aal, k —4/, A), we construct Λ(n, /c, A) by
horizontal composition where row / of Λ(n, /c, A) = row / of
A(n-4fl/, fc-4/, A) + row i of £.

When A = 0 (mod 2), Lemma 8 can be strengthened to:

LEMMA 9. Let (k, A) = 1, A = 0 (mod 2). Determine the integer I
so that 3^/c -2/<5.

The proof of Lemma 9 is similar to that of Lemma 8 except that
nr = n - 2al and the rows of the m x 2/ matrix £ can merely consist of
numbers from Iκ

n — Ik

n-2al occurring in pairs.

LEMMA 10. {A({n}, fe, A), fc = 3, 4, 5, 6} Φ A(n, fc,λ) /or α// n^
3, fc, A satisfying the conditions of Theorem 1.

Proof. The proof of Lemma 10 sums up the applications of the
reduction lemmas given above.

1. If g = (fc, λ) = 1, use Lemma 8.
2. If g = 0 mod 2, use the even-even lemma.
3. If g > 1 and odd, use

(a) Lemma 6iffc* = fc/g = l,
(b) Lemma 7 if /c* = 2, and
(c) Corollary 3 of Lemma 4 if /c * g 3 to reduce the construc-

tion of A(n,/c, A) to A(n, fc*, A*), and use Lemma 8 to construct
A(n, fe*,λ*).

In the following, we shall construct A (2, fc, A), and A({rc}, fc, A) for
fc - 3 , 4 , 5 , 6 .

III. C o n s t r u c t i o n of A (2, k, λ ) . Let n = 2, then A must
be even, say A=2A' . From An = fcm, we have 4A' = fcm. If fc =
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0 (mod 2), we can construct A (2, fc, A) by the even-even lemma. Hence,
we may assume k ^ 5, is odd, and hence m = 0 (mod 4). The rows of
A (2, fc, A) can then consist of 1, 1,2, and (k - 3)/2 pairs of Γs or 2's,
which are available since both A - 2m = (k — 4)(m/2) and λ - m =
(/c - 2)(m/2) are even. (These are the number of Γs and 2's left for the
third to fcth columns of A(2, fc, A).)

IV. Construction of A (rc, 3, λ ).

Case 1. (3, A) = 1, A = 1 (mod 2).

From Corollary 2 of Lemma 3, we need only construct A (n, 3, 1) for
n E N(3, 1). From Lemma 1, n E N(3, 1) if n = 0 (mod 3) and n =
0,3 (mod 4). We have two subcases:

1. n = llw w = 1,2, •
The S/s(/ = 1, ,4w) are:

(1 +

(2 +

(2w,

(3w

(3w

2/, llw-

2y, 8w -

6w + 1;

+ 1 + 2y,

+ 2 + 2y,

-y; llw

/; 8w +

8w

6w

3w

+ 1)

-/;

-y;

+ 1

2 +

9w

6w

+

y)

+

+

y)

1 +

2 +

y)

7)

7=0,1,

7=0,1,

7=0,1,

7=0,1,

•••, w-1.

•• ,w-2.

•• ,w-l.

•• ,w-l.

It is easy to see that all the S.'s are 2-"balanced", and in the
following, we verify that the 5/s are indeed a parition of Iλ

n =
(1,2, , 12w). We shall leave similar verifications for subsequent
constructions to the reader.

The 5,'s may be expanded into the following schematic diagram:

(1,

(2w

(2,

(1-2)

-1,

(1-2)

llw;

T (ii)
lOw + 1;

8w;

t (8)

llw + 1)

1 (12)

12w)

8w +2)

1 (9)

(2w-2, 7w+2;

(2*) (6*) (8*)

1 Here and in all subsequent lists of 5,'s vacuous if the range of / is empty.
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(2w, 6W + 1; 8W + 1)

(3w

(5w

(3w

+ 1,

(4,5)

- 1 ,

+ 2,

(4,5)

6vv

T

3w

t

(6)

+ i;

(3)

9w

1
+ 1)

(10)

lOw)

6w

1

+ 2)

(7)

(5w, 2w + 1; 7vv + 1)

a a

Where ψ means increasing from a to b by steps of two and |

increasing from a to 6 by steps of one. Similarly for f . Following the
a

1 2

indicated order in parenthesis, we have ψ (1 — 2), ψ (1-2) account for
2w-ί 2w-2

numbers from 1 to 2vv - 1 , followed by 2vv in (2*), 2vv + 1 to 3vv in
3w lίw + ί

f (3), etc. until j (12) where all numbers in Iλ

n = (1,2, , 12 w) are
2w + l 12w

accounted.
2. n = 12w +3 w = 0,1,

The S ŝ (i = 1, ,4w + 1) are:

(1 + 2/, 11 w + 3 - / ; l l w + 4 + 7") / = 0,1, , w - 1.

(2 + 2/, 8 w + 2 - / ; 8w +4 + /) / = 0,1, , w - 1.

(3w +2 + 2/, 3w + 1-/; 6w +3 + /) / = 0,1, , w - 1.

(3w +3 + 2/, 6>v + 1-/; 9w +4 + /) / =0,1, , w - 1.

(2w + 1, 6w +2; 8u> +3).

Owe 2. (3, A) = 1, λ = 0 (mod 2).

Again from Corollary 2 of Lemma 3, we need only construct
A (n, 3, 2) for n G N(3, 2). From Lemma 1, n G N(3, 2) if n =
0 (mod 3). Although when n = 0,3 (mod 4) we can construct A (n, 3, 2)
from A(n, 3,1), we give another construction below which is simple and
uniform for all n = 3 w, w = 1,2, .

The Si's(i = 1, •• ,2w) are:

(1 + /, 3w - 1 - 2/; 3w - / ) / = 0,1, , w - 1.

(1+7, w + 1+/; w +2 + 2/) / = 0,1, , w - 1.
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From the schematic diagram below, it is easy to see that each of the
numbers from 1 to 3w is used exactly twice.

1

1
w

1

1
w

3 w - l

ft
w + 1

w + 1

1
2w

3w

T
2vv

w +

3w

Case 3. (3, λ) = 3, λ = 1 (mod 2).
We need only construct A (n, 3, 3) for all n £ JV(3, 3). N(3, 3)

consists of all numbers = 0,3 (mod 4). Again, we have two subcases.
1. n = 4w, w ^ l . The S,'s(ί = l, ,4w) are:

(1 + 2j, 3w - / ; 3w + 1+y) y = 0,1, , w - 1,

(1 + 2y, 3w - y ; 3w + 1 + /) j = 0,1, , w - 1,

(2 + 2/, 3w - 1 - y ; 3w + l + y ) y = 0,1, , w - 1,

(2 + 2/, w - l - y ; w + l + y) y = 0,1, , w - 2,

(w, 2w, 3w).

2. n = 4 ι v + 3 , w^O. The 5,'s (/ = 1, • ,4tv + 3) are:

(1 + 2/, 3 w + 2 - y ; 3 w + 3 + y) / = 0,1, , w,

(1 + 2/, 3w + 2 - / ; 3w+3 + y) / = 0,1, , w - 1,

(2 + 2/, 3w + 1 - / ; 3w + 3 + /) / = 0,1, , w,

(2 + 2/, w - y ; w + 2 + y) / = 0,1, , w - 1,

(w + 1, 3w +2; 4w +3).

Case 4. (3,A) = 3 , A = 0 (mod 2).
We need only construct A(n, 3, 6) for all n G iV(3, 6), which consists

of all positive integers > 2. Again, we have two subcases:
1. n=2w, w^2. The 5,'s (/ = l, ,4w) are:

(1 + 2/, w-j; w + ί+j) j = 0,l, ;w-l,

(1 + 2/, w + ί-j; w+2 + j) / = 0 , l , , w - 2 ,
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7=0,1,

7=0,1,-

/ = 0,1,

• , w

• , w

• , w

• , tv

- 1 ,

- 1 ,

- 1 ,

- 2 ,
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(2 + 2/, w-2-y; w+/) / = 0,l, ,w-3,

(2 + 2/, w - / w + 2 + 7) / = 0,1, , w - 2,

(1, 2w-2, 2w-l)

(l,2w-l,2w)

(2, 2w-2, 2w)

(w —1, w + 1, 2w)

2. n =2w + 1, IV ̂  1. The S, 's (/ = 1, ,4w +2) are:

(1 + 2/, w + 1-/; w + 2 + /)

(1 + 2/, w + 1-/ ; w + 2 + /)

(2 + 2/, w - / ; ιv+2 + /)

(2 + 2/, w-1-7"; w + 1 + 7)

(l,2w;2w + l)

(1, 2w; 2w + 1)

(w, w + 1; 2w + 1).

Note that we could have constructed most of the A (n, 3, 6)'s from
A(n, 3,1), A(n, 3, 2), and A(n, 3, 3)'s, leaving us with those values of
n = 12w + 1,12w + 2,12w + 5,12w + 10 which do not belong in
N(3,1)UJV(3,2)UJV(3,3). However, the unified construction here is
actually simpler.

This completes the construction of all A (n, 3, λ)'s for n E N(3, λ).

V. Construction of A (n, 4, λ ). We may assume λ is odd
and (4, λ) = 1 otherwise A (n, 4, λ) can be constructed by the even-even
lemma. Hence we need only construct A(n, 4,1) for n = 4vv, w ̂  1.

The S. 's are (ΐ = 1,2, , w)

(1 + 4/, 4 + 4/; 2 + 4/, 3 + 4/) / = 0,1, , w - 1.

Note the similarity of this construction and the construction of
matrix B in Lemma 8. Another equally simple construction is

(n> -/, 4w - / ; 2w -/, 3w - / ) / = 0,1, , w - 1.
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VI. Construction of A (n, 5, λ).

Case 1. (5, λ) = 5, A = 5 λ ' .

We can construct A(n, 5, λ) from A(n, 3, 3λ') by Lemma 6.

Case 2. (5, λ) = 1, λ = 0 (mod 2).
We can construct A(n, 5, λ) from A(n' , 3, A) by Lemma 9.

Case 3. (5, A) = 1, A = 1 (mod 2).
From Corollary 2 of Lemma 3, we need only construct A (n, 5,1) for

n G N(5,1). From Lemma 1, n e N(5,1) if n = 0 (mod 5) and n =
0,3 (mod 4). We have two subcases:

1. n = 20^, w ^ 1 .
The S,'s(i = 1, ,4w) are:

(1+/, 10w + 1+7, 14w + 2 + /; 6w + 1 + /, 18w + 3 + 2/)

7 = 0 , 1 , • • - , * - 2 .

(w + 1+7, l lw + 1+7, 15w + 1 + / ; 9w + 1 + /, 18w + 2 + 2/)

7 = 0 , l , , w - l .

(2w + I + 7, 4w + I + 7, 13w + 2 + 7; 3w + 1+7, 16w + 3 + 2/)

/ = 0,l, , w - l .

(5w + 1 + 7, Ίw + 7, 12w + 2 + 7 8w + 1 + 7, 16w + 2 + 2/)

/ = 0 , l , , w - l .

(w, llw, 12w + 1; 8w, 16w + 1).

For example, let w = 2, the 8 S,'s are:

(1, 21, 30; 13, 39)

(3, 23, 31; 19, 38)

(4, 24, 32; 20, 40)

(5, 9, 28; 7, 35)

(6, 10, 29; 8, 37)

(11, 14, 26; 17, 34)

(12, 15, 27; 18, 36)

(2, 22, 25; 16, 33).
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2. n = 20ιv + 15, w ^ 0 .
The S,'s(t = l, -,4w+3) are:

(2 + /, 10w+7 + /, 14w + 11+/; 6w +6 + /, 18w + 14 + 2/)

/ = 0,l, , w - l .

(w +2 + /, llw +7 + y, 15w + 11+/; 9w +7 + /, 18w + 13 + 2/)

7 = 0 , l , , w - l .

(2w + 3 + 7, Aw + 3 + /, 13 w + 10 + /; 3w + 3 + /, 16w + 13 + 2/)

7 = 0 , l , , w - l .

(5w + 5 + /, Ίw +6 + /, 12w + 10 + /; 8w +7 + /, 16w + 14 + 2/)

/ = 0,l, , .w-l.

(1, 5w +3, 5w +4; 2w +2, 8w +6)

(6w + 5, 12w + 7, 16w + 12; 14w + 10, 20w + 14)

(12w + 8, 12w + 9, 16w + 11; 20w + 13, 20w + 15).

For example, w = 1 gives the following A (35, 5, 1):

(2, 17, 25; 12, 32)

(3, 18, 26; 16, 31)

(5, 7, 23; 6, 29)

(10, 13, 22; 15, 30)

(1, 8, 9; 4, 14)

(11, 19, 28; 24, 34)

(20, 21, 27; 33, 35).

VII. Construction of Λ(n, 6, λ ) . We may assume λ =
1 (mod 2), otherwise A(n, 6, λ) can be constructed by the even-even
lemma. We have two cases.

Case 1. (6, λ ) = l .

Again from Corollary 2 of Lemma 3, we need only construct
A(n, 6,1) for n E JV(6,1). From Lemma 1, n G N(6,1) if n = 12w,
w ^ 1. It is easy to construct Λ(12w, 6,1) and one simple way is as
follows:
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Let (α, />, c d, e, f) and (a\b\c';d\e\f) be the rows for any
A (12, 6,1), such as

(1, 3, 7; 2, 4, 5) and (6,10,12; 8, 9,11).

Then the rows for Λ(12w, 6,1) may be

(α + 12/, 6 + 12/, c 4-12/ d + 12/, e + 12/, / + 12/),

(α'+12/, 6'+12/, c'+12/; d'-f 12/, e'+12/,/'+12/)

/ = 0 , l , , w - l .

Case 2. (6, λ) = 3.

We need only construct A (n, 6, 3) for n E N(6,3) which consist of all
numbers n = 4w, w = 1,2, . The construction again is easy and
analogous to case 1. Let A (4,6,3) be (α, b,c\d, e, /) and
(a',b'9c';d',e'9f')9 say, (1,1, 4; 1, 2, 3) and (2, 3, 4; 2, 3, 4). Then the
rows for Λ(4w, 6, 3) may be:

(α+4/, 6+4/, c + 4 / ; d+4/, β + 4 / , / + 4/),

(α' + 4/, 6' + 4/, c' + 4/'; ^' + 4/, e' + 4/, /' + 4/)

/ = 0 , l , , w - l .

This completes the proof of Theorem 1.

VIII. Applications.

A. Construction of neighbor designs. Rees [2] introduced the
concept and name of neighbor designs for use in serology. He wrote,
"A technique used in virus research requires the arrangement in circles
of samples from a number of virus preparations in such a way that over
the whole set a sample from each virus preparation appears next to a
sample from every other virus preparation." Figure 1 shows such an
arrangement of a set of antigens (virus preparations) around an an-
tiserum on a circular plate. On the plate, every antigen has as neighbors
two other antigens.

More generally, a neighbor design is an arrangement of v kinds of
objects on b such plates, each containing k objects, such that, each
object is a neighbor of every other object exactly λ times. The same
object may appear more than once in a plate but adjacent (neighboring)
objects must be distinct.
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Figure 1

It can be easily shown that each object must appear exactly
r = λ(υ - l)/2 times on the b plates in a neighbor design. By simple
counting, we also have υr = bk, hence b = λv(v - l)/2k. Thus a neces-
sary condition for a neighbor design with parameters υ, k, λ to exist is
that k > 1 , and both r and b be positive integers. Denoting such a
neighbor design by ND(v, fc, λ), it is clear that ND(υ, fc, λ) =>
ND(v,k,tλ) since we can duplicate each plate of ND(v,k,λ)t times.

Rees constructed ND(v, fc, λ) for every odd υ with k - v, and for
every υ ^ 41, k ^ 10, λ = 1; some by using Galois field theory and others
just by trial and error. Hwang [2] constructed some infinite classes of
neighbor designs with parameters as follows:

1. k > 2 , v = 2fc + l, λ = 1.
2. k ^ 0 ( m o d 2), v =2lk + 1, i = 1,2, , λ = 1.
3. k = 0 ( m o d 4), v = 2/fc + 1, / = 1,2, , λ = 1.

We show below how 2-balanced (n, fc, λ) arrays may be used to construct
a new class of ND(v, k, λ)'s.

Without loss of generality, we may let the set of υ kinds of objects be
designated by V = {1,2, , v} and a plate B containing k objects
b\, b2, , bk, (not necessarily all distinct) from V, and arranged circularly
in that order, by the sequence (bu b2, , bk). For convenience, let
bk+λ = bλ so that the k pairs of neighbors in B are (bj+ubj), j =
l,2, ,fc. Let B{l) = (b{l\bψ,-",b{

k

l)\ I = 0,1, ,υ - 1, be a set of ϋ
plates cyclically generated from B by the rule b]l)= b, H- / where bψ is
reduced mod υ if necessary to an element of V. We call B = B ( 0 ) the

/β^ and the set of plates B(/), / = 0,1, , u - 1, the /w// cyc//c 5βί o/
generated by B and denote it by [J3]. We may also view [J5] as a

v x k matrix where the /th row is B(l). The columns of [B] are then
some cyclic permutations of (1, 2, 3, , v).
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For any pair of distinct objects a and b in V, let d(α, fe), the distance
between a and b, be the smallest positive residue mod v which is congruent
to either (a - b) or (b - a). For example, if v = 7, then d(2, 6) = 3,
d(l ,7)= 1. We may also visualize d{a, b) as the distance between a
and 6 on the Hamiltonian cycle (1,2, , v, 1).

It is clear that l^d(a,b)^[υ/2] and that in [B], d(b%b(

j

l)) =
d{bj+u bj) for all / = 0,1, , v - 1. Furthermore, every pair υu v2 E V
with d(ϋi, ϋ2) = d(bj+u bj) appears exactly once as neighbors in the / + lth
and /th column of [J5], except when d(vu v2) = d(bj+u bj) = υ/2, (v must
then be even), where every such pair appears exactly twice. We state
this result as

LEMMA 11. Given any plate B = (bub29 —',bk)> let DB =
{d(bj+u bj), j = 1,2, , k). If vu v2 are any two distinct objects in V,
then the number of times vu v2 appear as neighbors in [B] = the number of
occurrences ofd(vu v2) in the multiset D β , except for d(vu v2) = v/2, where
it is doubled.

With Lemma 11, we prove:

THEOREM 2. A(n, fc,λ) Φ ND(2n + 1, k, A).

Proof For each row S = (au α2, , ak) of A (n, fc, λ) let S = P + N
be a balanced partition of 5. (The order in which the α,'s are written is
immaterial.) Define S* = (dud2,- ,dk) where d{, = at if α, E P, and
di = - α, if at E N. Let bub2, -,bk,bk+ι be constructed from S* as
follows:

= 6, y = i,2, ,fc,
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reduced mod v if necessary so that bj+ί E V. We have clearly, bj+ί ^ bh

bk+ι = bx (since | |S* | | = 0), and thus B = (bu b2y , bk) form a plate with
DB = S since d(bj+ι, bj)=\dί \ = af.

We assert that the vm plates [Bχ\, , [Bm] constructed from rows
Su — -,Sm of A(rc, fc, A) in this manner do indeed form a ND(2n +
1, k, λ). Since υ is odd, by Lemma 11, every two distinct objects υu D2in
V appear as neighbors in {[J3, ], / = 1,2, , m} exactly the total number
of times 1 ^ d(t>i, ι;2)= ft appears in {Sh i = 1,2, , m}, which is exactly
λ.

B. Coverings of Complete Multigraphs by k-Cycles. By a complete
multigraph Kλ

v we mean a multigraph on v vertices without self-loops
and having exactly A edges joining every pair of distinct vertices
υu v2. When λ = 1, this reduces to just the complete graph Kv. A plate
B of a neighbor design ND(v, k, A) may be interpreted as a k -cycle
(bu b2,-'', bk, bλ) on Kk

Ό and thus the b plates of ND(v, k, λ) induces an
edge cover of Kλ

v by b k -cycles. If the objects in B are distinct, then the
cycle (bu b2, , bk, bλ) is elementary. If the B's are constructed from
the S's of an A (n, /c, A) as described in Theorem 2, then the objects in B
and all v plates in [B] are distinct if and only if no proper substring T of
5* = (dud2, - -,dk) has || T|| = 0 mod v. Thus we have:

THEOREM 3. Let (n,/c, A) satisfy the necessary conditions of
Theorem 1. Then K2n+] can be covered by b = λn(2n + l)/fc fc-
cycles. In particular, for A = 1, 3 ^ /c g 6, f/ie fe k-cycles can be chosen to
be elementary.

Proof. The first part of the theorem follows the previous discus-
sions and we need only verify the last statement. An inspection of the
constructions for A(n, k, 1) for 3 ^ k ^ 6 shows that the S*'s have no
proper substring || Γ||. = 0 mod υ, and hence the k -cycles so constructed
are elementary.

REMARK 1. A more detailed analysis of our construction for
A(n,/c, A) shows that we can choose the S. 's such that there exist
corresponding S*'s free of proper substrings T with | |Γ | | = 0 (mod υ)
more generally than the cases stated in Theorem 3. For example, this is
true for k = 3, 4, any A, and k = 5, (5, A) = 1, A odd, or A = 2. For
fe = 4, we have to (and can) avoid S =(a,a;a,a) while S* =
(a,b,-a,-b) is acceptable. However, the interesting problem of
constructing A (n, /c, A)'s for all n E N(/c, A) with this property so that we
can cover K2n+ί with elementary k-cycles in this manner is still open.

REMARK 2. ND(v, 3, λ)'s are also triple systems. In [3], we con-
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structed triple systems directly for all parameters satisfying the necessary
conditions λ(v - 1) .= 0 (mod 2), λυ(v - 1) = 0 (mod 6), which is more
general than the values v = In + 1 , 3, λ constructable from A (n, 3, λ)'s
in this paper. The neighbor designs constructed here have parameters
satisfying υ = In + 1, λn = 0 (mod fc), λn(n + 1) = 0 (mod 4), λ =
0 (mod 2) when k = 2, and ϋ ^ 5 when k = 3. In a forthcoming paper
[4], we use the results given here together with other constructions to
show that we can always construct a neighbor design for all values of the
parameters satisfying the following obvious necessary conditions:
λ(v - 1) = 0 (mod 2), λϋ(υ - 1) = 0 (mod 2k), λ = 0 (mod 2) if k = 2, and
fc = 0 (mod 2) if v = 2.
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