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DELOOPING THE CONTINUOUS K-THEORY
OF A VALUATION RING

J. B. WAGONER

In this note the continuous algebraic K-theory groups of
a complete discrete valuation ring are described as the in-
verse limit of the ordinary algebraic K-theory of its finite
quotient rings.

In [4] we defined continuous algebraic K-theory groups KIv,
1 = 2, both for a complete discrete valuation ring ¢ with finite
residue field of positive characteristic p and for its fraction field
and proved that K® agrees with the fundamental group of the
special linear group as defined in [2] by means of universal topological
central extensions. The definition of Ki® in [4] is in terms of BN-
pairs and is similar to the theory K7V of [5] which is known [6] to
deloop to ordinary algebraic K-theory. The purpose of this note is
to deloop K¥*(<”) in the sense of the following result: Let & N &2
be the maximal ideal and let K, be the algebraic K-theory groups
of Quillen [3].

THEOREM. For 1 = 2 there is a natural isomorphism

K©¥() = lim K(&| ") .

In a forthcoming paper of the author and R. J. Milgram, this equa-
ation allows us to use the continuous cohomology of SL(I, #?) to
compute the rank of the free part of Ki®(¢*) as a module over the
p-adic completion of the rational integers.

In §2 a step in the proof of this theorem is used to describe
the homotopy fiber of BE(A)* — BE(A/J)* where J is an ideal in a
commutative ring A such that 1 + JC 4*. At least, we construct
a space B{Uz(4, J)}* whose homotopy groups fit into the appropriate
exact sequence.

Actually, in this paper we shall let

K“(2) = lim [lim z,_, SLY?(1, )]
— —>
mln i

whereas in [4] the order of the inverse and direct limits is reversed.
The above definition is perhaps better as it still gives the main
results of [4]. To see the two are the same one would have to
prove that

— T, SL:LOD (l’ ﬁ) — T SL;OP (l + 1, ﬂ) —
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eventually stabilizes to an isomorphism.
The theorem makes it clear that the natural map K(&)—
K**(”) comes from the ring maps & — &/ F".

1. Delooping. Let n and I be fixed. The main step is to prove

PRrOPOSITION 1.1. There is a natural homotopy equivalence
SL» (1, &/.9°") = SLi* (I, &)
such that +f m|n there is a homotopy commutative diagram

SL (I, ] 7°") = SL» (1, &)

(*) | |

SL* (1, /™) = SLr (I, &) .
See [4] for notation. From this result and [6] we see that for 1 =2
lim z,_, SL¥* (I, 27) = lim &,_, SL* I, &| ")
D T

= w,., SL” (&/.F"")
= K{(&|F") .

Here SL* (A) of [4] is the same as E*¥(A) of [5]. The main theorem
now follows from commutativity of (*).

For simplicity of notation let S, = SL*(, ~/Z") and T, =
SLy? (I, 7). Let P'(resp. Q') be the complex whose k-simplices are
(k + 1)-tuples (F, < F, < ... <F}) where F, is a linear (resp. affine)
facette or R!'. P'c S, by the imbedding F— U, and Q'C T, via
F—U; Let st (4) < @ be the star of 4 consisting of all affine
facettes F' such that 4 < F. Let K, < T, be the subcomplex whose
k-simplices (a,- Up, < -+ <a,-Ug,) have F,est,(4).

Now for each affine facette F est,(4) there is a unique linear
facette F” which contains F' such that FF < G implies F' < G’. The
map st;(4) — P' sending F to F' is an isomorphism of partially
ordered sets. Let z: SL (I, ) — SL(l, 7/ Z°") be reduction modulo
F**, We claim that

(1.2) a(Uz) = U,

for Fest;(4). This is clear for the fundamental chamber C = {z, +
1>x > --- > 2} and also for any F < C. For an arbitrary F e st,(4)
choose an element w of the linear Weyl group W, so that w-F < C.
Thus by [4, Lemma 3]
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(U2 = a(w (wUrw Hw)
=wten(U%.p) - w

= w-—l' Uw.F:'w

= Upr .
Moreover for each F €st,(d) we have
(1.2) = (Up) = Us

These two equations imply the correspondence
a-Ut— n(a)- Uy

preserves order and defines a simplicial isomorphism K, — S;,. Hence
to prove (1.1) it suffices to show K, is a deformation retract to 7).

Let f;9: @ — @ be two simplicial maps arising from order
preserving maps of vertices.

LEMMA 1.3. There is a triangulation (@, X I) of Q, X I as a
partially ordered set which refines the standard triangulation
leaving Q' X 0 and Q' x 1 fixzed and there is a simplicial map
w: (@ x I) — Q' such that

(@) w@x0=fand w|@ x1l=g

(b) if 6= <---<,) s a simplex of the standard triangula-
tion @ X I, veo ts a vertex in the mew triangulation, and e ;(\)
is in Up,, for 0 < s <k, then

6.;_,,'()\;) S Uﬁ(v) .

This is the affine analogue of Lemma 3.3 of [6] and the proof is
similar. For (b) compare (B) of Lemma 4 of [4].
Now let r: @' — st, (4) < @' be defined by

the unique affine facette of st,(4) which is

r(F) = . . .
contained in the same linear facette as F

This is an order preserving map which is the identity on st, (4).

LEMMA 1.4. For each affine facette F we have Uy C UZp,.

Proof. If weW,, then w-r(F) = r(w-F) and w-Fp-w™* = UZ.;;
so by choosing a w such that w-F is contained in the closure C, of
the fundamental linear chamber C, = {x, > --- > x;} We can assume
FcC, In this case »(F)=C. When ¢> 4, ¢,—¢; =0 on F; so
for the generator e;;(\) of UZ the element A€ ¢” can be arbitrary
and ¢;;(\)e Us. Wheni <7, ¢, —¢; <0 on F so k(F,e; —¢;), =n=
k(C, ¢; — ¢;),; hence any generator e;;(\) of Uz also belongs to U™
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We can now complete the proof of (1.1). Apply Lemma 1.3 in
the case f=1id and g = r to get w: (@' x I) — @' satisfying (2) and
(b). The map p: T,— Q' taking «-Up to F is nondegenerate on
simplices and so is o X 1: T, X I — Q' X I. Therefore the triangula-
tion (@' x I) induces a subdivision (T, X I) of T, X I. Let o=
(@, Up, < -+« < ,-Ug) be a simplex of T, and let v be a vertex of
o xI. Letu = (p X 1)(v). By (1.4) we have Uy cU,. Hence by
(b) of (1.3) we still have

(1.5) Ui, CUiw

if v is any vertex of (o x I).

Let R: T,— T, be defined by R(a-Up) = a-U?;,. This retracts
T, onto K,. Define a homotopy H: (T, X I))— T, from the identity
to R as follows: Let v be a vertex (¢ X I)" and let w = (o X 1)(v).
Let

H(’U) = ao’ UZU,) .

Then (1.5) shows this is independent of the choice @, € Uy, so we get
a well defined map.

2. A fibration in K-theory. Let A be a commutative ring and
JC A be an ideal such that 1 + Jc A*. Then K,(4)— K/(4/J) is
surjective for 7 = 1,2. In this section we build a space B{U(4, J)}*
such that for ¢ = 2 there is a natural exact sequence

(2.1) o —— Ko l(AlT) — T B(UAA, D)
—— K (A) — K(AJ])—> -+

Let P! denote the set of linear facettes in R' and identify P!
as a subset of P'*' by the map

(xu %y xl)—_)(mu cecy, Xy xl) .

Let P>= U, P'. If FeP~ define the subgroup Up(4,J) of the
group E(A) of elementary matrices to be the one generated by

(a) e;;(\) where e A for ¢, —¢; >0 on F

(b) e,;(») where xeJ for ¢, —e; <0 on F

(¢) diagonal matrices diag {L + A\, ---, 1+ A,} of determinant
one where )\, €J.

If F<@G, then Uy(4, J)<Ux«A4, J). When J =0, we just get the
groups U, of [4] and ]5]. In this case we write Ux(4, J) = Uy(4).
Let 7: E(A) — E(A/J) be reduction mod J. Then as in (1.2) and
(1.2) we have

(2.2)  #[Ux(4, )] = U(A/J) and n[Ux(A/])] = U4, 7).
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Let B{Uj(4, J)} be the realization of the simplicial space which
in dimension k# = 0 is the disjoint union of the spaces

(Fo< e < Fk) X BUFO(A,J)
where F;c P*. Let E{a-Up(A, J)} be defined as the pullback
Ela-Uy (A4, J)}— EG

| l

B{Us(A, J)} — BG

where G = E(A). When J = 0 we recover E{a-U,} as in [1]. More-
over just as in [1] the space E{a-Uy(A4, J)} has the homotopy type
of the space E®Y(A, J) whose k-simplices are (k& + 1)-tuples

g, UFO(A, J) < vee < e UFk(A$ J)

where a- Ux(4, J)<B-UxA, J) iff F<@G and a-Uy(4, J)CB-UlA, J).
As in [1] we have a homotopy fibration

Ele- Up(4, J)} — B{Ux(4, J)} — BE(4) .

Suppose for the moment we have
LemmA 2.3. 7 B{Uy(A, J)} is perfect.

Then essentially the same argument as in [1] shows that
) Ele-Ui(A, J)} — B{Ux(4, J)}* — BE(A)*
is also a homotopy fibration. It follows from (2.2) that the map
E™(A, J)— EPY(A]J)

given by a-Ux(4, J) — n(a)- Uy(A/J) is an isomorphism. By [6] we
therefore have w,_ E*"(A, J) = K,(A/J) and the homotopy sequence
of the fibration (**) gives (2.1).

To prove the lemma, it is enough to show the generators are
products of commutators and the formula w-U,-w™ = U,., reduces
the argument to the case where FF=C,={x, >x,> --- > 2} con-
sidered as lying in P'. Here Il = 3. For generators ¢,;(\) of 7,(BU,,)
the third Steinberg relation e,;(@B) = [e;;(), ¢;(8)] shows e;;(\) is a
commutator: for example, if » €.J we have e, (\) = [ex(1), €, (\)]. Now
consider the generators (75 2_1>, xel + J, where \ is in the ¢th row

and <th column and N\7! is in the jth row and jth column. For sim-
plicity take 1 =1 and 5 = 2. Recall that if M, Nc U, are considered
as generators of 7, BU, their composition as loops is homotopic to
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MN. Let x=1+ ¢ and V'=1+4 7 where 7,0€J. We have the
following matrix identity valid in E(A):

o )=l D) 3 D6 6 )

Thus modulo the commutator subgroup

R e O oy B A

Nowlet D={x, =2, > - >x} and Co={x, >x, > +--- >a;}). We

have Uy, D U, C Uy and the matrix (_‘17+0 g__ 0) lies in Up. Each

of ( 1 0>, <1 0), and G (1)> belong to Ug; and therefore by the above

—-11/\01
argument lie in the commutator subgroup. Therefore so does
<1iz '17__ 0), and we conclude that the loop (3 g-,) lies in the com-

mutator subgroup.

It is probably true that
B{U(4, J)}* — BE(A)* — BE(A/J)*

is a homotopy fibration.
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