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ON ALMOST EVERYWHERE COVERGENCE OF ABEL
MEANS OF CONTRACTION SEMIGROUPS

S. A. MCGRATH

Let (X,Σ,μ) be a σ-fϊnite measure space and Lp(X,Σ,μ),
lfgpfgoo, the usual Banach spaces of complex valued functions.
Let {Tt: t ̂  0} be a strongly continuous semigroup of contrac-
tions of LP(X, Σ, μ) for some lgp<oo and set Rλf= ί e~λtTtfdt,

λ>0. If || Tt\U g 1 for all t ̂  0, then Urn;-*,λRrfXx) = f(x) a.e.
for all feLp(X,Σ,μ).

A strongly continuous contraction semigroup on LP(X, Σ, μ)

satisfies the following: (i) T8+t = Ts-Tt, s, i ^ O ; (ii) || Tt\\p^ 1, t ^ 0 ;

(iii) \\TJ- T,f\\p-+ 0 a s s - ί for any feLp = LP(X, Σ, μ). Merely
as a notational convenience, we assume that TQ — I. Before pro-
ceeding further it is necessary to clarify the definition of Rλf{x).
By Theorem IΠ.11.17 in |3], given fe Lp there exists a scalar function
g(t, x)y measurable with respect to the usual product measure on
[0, oo) x X, such that (i) for a.e. £, g(t, •) = Tff and (ii) there exists
a ^-null set E(f), independent of λ, such that x $ E(f) implies

S oo

e~λtg(t, x)dt, as a function of x, is in the equivalence class of
0

Soo

e~λtg(tyx)dt. The scalar representation g(t, x) is uniquely determined
o roo

up to a set of product measure zero. Defining Rxf{x) = \ e~λtg(t, x)dt,

we see that B2f(x) is in the equivalence class oί RJ = ί eΓnΎJdt
Jo

for all λ > 0. This justifies our definition of Rλf{x). Note that for
x g E(f), Rxf(x) is a continuous function of λ > 0.

The main result of this note (Theorem 4) extends a special case
of a theorem of N. Dunford and J. T. Schwartz [2, p. 178], If p = 1
in our theorem then the assumption | |2Y|U^;i for έ ;> 0 is un-
necessary [5].

Preliminary results*

LEMMA 1. Let {Tt: t ^ 0} be <a strongly continuous semigroup of
Lp contractions for some l^p<oo. Set ^ = {XRλf: 0<λ < ©o, / e Lp).
Then <Λt is dense in Lp and lrm ôo XR2f(x) = f(x) a.e. for any fe Lp.

The denseness of ̂ /έ follows from the fact that s—
[4, p. 321], and the existence of the pointwise limit follows from the
resolvent equation. The details appear in [5]. The next result is
proved in [1].
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LEMMA 2. Let {Tt: t ^ 0} be a strongly continuous semigroup
of Lp contractions for some 1 ̂  p < °o. Suppose that ||Γt||oo ^ 1
for all t^O. Then

( [ t f ( ) f ( ) a . e .
elθ \ $ /Jo

for every feLp.

For a given Lp semigroup {Tt: t ^ 0}, define T\ = β"*Γt. Then
{T\\ t ^ 0} is a semigroup; if {Tt: £ ̂  0} is strongly continuous so is
{T\\ t ̂  0}. We shall denote the resolvent of {T't} by R[. For fe Lp,
set /* = sup^>0|λi2';/i.

LEMMA 3. Suppose {Tt: t ^ 0} is a strongly continuous con-
traction semigroup on Lp for some 1 ̂  p < oo. If, in addition,
|| Γf|U ^ 1 /or αίZ ί ^ 0, ίfee^ /* < oo a .e. /or αwy / e L r

Proof. Fix fύLp and choose {εj such that εw ] 0. Set

gn = intlM'Γtf{x)dt\ ,
εt*εn[_ £ JO J

h, = βap\M'rtf{x)dt\,
t<,tn L ε Jo J

/.* = sup UST'tf(x)dt
O Jo

Let A be a measurable subset of X with 0 < μ(A) < oo. Since
{Tt:t^0} satisfies the conditions of Lemma 2, we have

lim—['T'tf(x)dt = fix) a.e. on X .
βio ε Jo

Hence lim^oo gn = lim^oo few = fix) a.e. By Egoroff's theorem, given
0 < δ < μiA)/2, there exists a measurable subset ΰ of 4 such that
μ(5) > μiA) — 25 and {gn}, {hn} converge uniformly on B to /(#).
Therefore, for some K, n^K implies |£Λ - f\ ^ 1 and |fcΛ - / | ^ 1
for all xeB. Consequently \gn\ ̂  | / | + 1 and \hn\ g | / | + 1 on B
for all w ̂  ίΓ. For given w, we have

ε Jo

for any ε <;.-eft. Thus for any xeB and n ^
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provided ε ^ εn. For some fixed n ^ K, set d = εn.
By an integration by parts, we have

χ\e-uT'tf{x)dt = χ2\~e-χtt\— [TJ(x)ds]dt a.e. on X .
Jo Jo L t Jo J

For t > δ we have

since

I T'sf(x)\ ds < co a.e. on X

,. Hence for a.e. xeB,

^ {21 f{x) I + 2} + (i-) j J T;/(a;) | ds

for all λ > 0. Hence f*<°° a.e. on j?. Since the set A was an
arbitrary set of finite measure and B is a measurable subset of A
having positive measure, we conclude that /*<<=« a.e. on X.

Main results.

THEOREM 4. Let {Tt: ί ^ 0} be a strongly continuous semigroup
of Lp contractions for some 1 <Ξ p < » . Suppose that | |Γ ( | | « ,^1
for all t^O. If fe Lp, then

lim XBλf(x) = f(x) a.e.

Proof. By Lemmas 1 and 3 and Banach's convergence theorem
13, p. 332-333], UmXR'λf(x) exists and is finite a.e. as λ—>oo through
some countable set, say Q+(= set of positive rationale). We recall
that XR[f(x) depends continuously on λ for x outside some null set.
Since Q+ is dense in R+ it follows that lim^oo xR'λf(x) exists and is
finite a.e. for all / e Lp. Since s — lim^oo XR\f — /, we must have
lim^oo XR\f(x) = f(x) a.e. Upon noting that lim^oo Rλf(x) = 0 a.e. for
any feLp, we see that
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lim XRJ(x) = lim (λ + 1)RX+J(x)

= lim XR'λf{x)

= f(x) a.e.

The following result which generalizes Theorem 4 follows from (4.9)
in [1] and the arguments used in obtaining Theorem 4.

THEOREM 5. Let {Tt: t ^ 0} be a strongly continuous semigroup
of Lp contractions for some 1 ^ p < oo. Suppose there exists a
measurable function h on [ 0 , o o ) χ l such that

(i) h > 0 on [0, oo) x X9 and

(ii) feLp, \f(x)\ ^ h(t, x) μ-a.e. implies

I TJ(x) \^h(t + s, α) for all s, t ^ 0 .

Tft<m lim^oo xRJ(x) = /(») a.e. /or / e Lp.
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