ON ALMOST EVERYWHERE COVERGENCE OF ABEL MEANS OF CONTRACTION SEMIGROUPS

S. A. MCGRATH

Let (X, Σ, μ) be a *σ*-finite measure space and $L_p(X, \Sigma, \mu)$, $1 \leq p \leq \infty$, the usual Banach spaces of complex valued functions. Let $\{T_t : t \geq 0\}$ be a strongly continuous semigroup of contrac tions of $L_p(X, \Sigma, \mu)$ for some $1 \leq p < \infty$ and set $R_\lambda f = \int_{-\infty}^{\infty} e^{-\lambda t} T_t f dt$, *λ*>0. If $||T_t||_{\infty} \le 1$ for all $t \ge 0$, then $\lim_{\lambda \to \infty} \lambda R_{\lambda}f(x) = f(x)$ a.e. for all $f \in L_p(X, \Sigma, \mu)$.

A strongly continuous contraction semigroup on $L_p(X, \Sigma, \mu)$ satisfies the following: (i) $T_{s+t} = T_s \cdot T_t$, $s, t \ge 0$; (ii) $|| T_t ||_p \le 1$, $t \ge 0$; (iii) $\|T_t f - T_s f\|_p \to 0$ as $s \to t$ for any $f \in L_p = L_p(X, \Sigma, \mu)$. Merely as a notational convenience, we assume that $T_0 = I$. Before pro ceeding further it is necessary to clarify the definition of $R_{\lambda}f(x)$. By Theorem III.11.17 in [3], given $f \in L_p$ there exists a scalar function $g(t, x)$, measurable with respect to the usual product measure on $[0, \infty) \times X$, such that (i) for a.e. t, $g(t, \cdot) = T_t \hat{f}$ and (ii) there exists a μ -null set $E(f)$, independent of λ , such that $x \notin E(f)$ implies $\frac{1}{2}$ ⁰ $\int_0^{\infty} e^{-\lambda t} g(t, x) dt$, as a function of x, is in the equivalence class of
 $\int_0^{\infty} e^{-\lambda t} g(t, x) dt$. The scalar representation $g(t, x)$ is uniquely determined up to a set of product measure zero. Defining $R_{\lambda}f(x) = \int_{0}^{x} e^{-x}g(t, x)dt$,
We see that $P_{\lambda}(x)$ in in the equivalence class of $P_{\lambda}f = \int_{0}^{\infty} e^{-kt}f(t)dt$ we see that $B_{i,j}(x)$ is in the equivalence class of $B_{i,j} = \int e^{-t} I_{i,j} dt$
for all $\lambda > 0$. This justifies our definition of $B_{i,j}(x)$. Note that for for all $\lambda > 0$. This justifies our definition of $R_{\lambda}f(x)$. Note that for $f(x) \notin E(f)$, $R_1 f(x)$ is a continuous function of $\lambda > 0$.

x The main result of this note (Theorem 4) exten of a theorem of N. Dunford and J. T. Schwartz [2, p. 178]. If $p=1$ in our theorem then the assumption $||T_t||_{\infty} \leq 1$ for $t \geq 0$ is un $necessary [5].$

Preliminary results.

LEMMA 1. Let $\{T_t : t \geq 0\}$ be a strongly continuous semigroup of L_p contractions for some $1 \leq p < \infty$. Set $\mathscr{M} = {\lambda R_1 f: 0 < \lambda < \infty}$, $f \in L_p$. *Then M* is dense in L_p and $\lim_{\lambda \to \infty} \lambda R_i f(x) = f(x)$ a.e. for any $f \in L_p$.

The denseness of \mathscr{M} follows from the fact that $s-\lim_{\lambda\to\infty}\lambda R_{\lambda}f=f$ [4, p. 321], and the existence of the pointwise limit follows from the resolvent equation. The details appear in [5]. The next result is proved in [1].

LEMMA 2. Let $\{T_i : t \geq 0\}$ be a strongly continuous semigroup *of* L_p contractions for some $1 \leq p < \infty$. Suppose that $||T_t||_{\infty} \leq 1$ *for all* $t \geq 0$ *. Then*

$$
\lim_{\varepsilon\downarrow 0}\Big(\frac{1}{\varepsilon}\Big)\!\!\int_0^{\varepsilon}\!T_tf(x)dt=f(x)\;\text{ a.e.}
$$

for every $f \in L_p$.

For a given L_p semigroup $\{T_t : t \geq 0\}$, define $T'_t = e^{-t}T_t$. Then ${T_t : t \geq 0}$ is a semigroup; if ${T_t : t \geq 0}$ is strongly continuous so is $\{T_t : t \geq 0\}$. We shall denote the resolvent of $\{T_t\}$ by R_t' . For $f \in L_p$, set $f^* = \sup_{\lambda>0} |\lambda R'_{\lambda}f|.$

LEMMA 3. Suppose $\{T_t : t \geq 0\}$ is a strongly continuous con- $\emph{traction semigroup on L_p for some $1\leq p<\infty$. If, in addition,$ $||T_t||_{\infty} \leq 1$ for all $t \geq 0$, then $f^* < \infty$ a.e. for any $f \in L_p$.

Proof. Fix $f \in L_p$ and choose $\{\varepsilon_n\}$ such that $\varepsilon_n \downarrow 0$. Set

$$
g_n = \inf_{\varepsilon \leq \varepsilon_n} \left[\frac{1}{\varepsilon} \int_0^{\varepsilon} T'_t f(x) dt \right],
$$

\n
$$
h_n = \sup_{\varepsilon \leq \varepsilon_n} \left[\frac{1}{\varepsilon} \int_0^{\varepsilon} T'_t f(x) dt \right],
$$

\n
$$
f_{\varepsilon}^* = \sup_{\delta \leq \varepsilon} \left| \frac{1}{\delta} \int_0^{\delta} T'_t f(x) dt \right|.
$$

Let A be a measurable subset of X with $0 < \mu(A) < \infty$. Since ${T'_t: t \geq 0}$ satisfies the conditions of Lemma 2, we have

$$
\lim_{\epsilon \downarrow 0} \frac{1}{\epsilon} \int_0^{\epsilon} T'_t f(x) dt = f(x) \text{ a.e. on } X.
$$

Hence $\lim_{n\to\infty} g_n = \lim_{n\to\infty} h_n = f(x)$ a.e. By Egoroff's theorem, given $0 < \delta < \mu(A)/2$, there exists a measurable subset B of A such that $\mu(B) > \mu(A) - 2\delta$ and $\{g_n\}$, $\{h_n\}$ converge uniformly on *B* to $f(x)$. Therefore, for some *K*, $n \ge K$ implies $|g_n - f| \le 1$ and $|h_n - f| \le 1$ for all $x \in B$. Consequently $|g_n| \leq |f| + 1$ and $|h_n| \leq |f| + 1$ on B for all $n \geq K$. For given n, we have

$$
g_n(x) \leqq \frac{1}{\varepsilon} \int_0^x T'_t f(x) dt \leqq h_n(x)
$$

for any $\varepsilon \leq \varepsilon_n$. Thus for any $x \in B$ and $n \geq K$,

$$
f_*^*(x) \leq |g_n(x)| + |h_n(x)|
$$

$$
\leq 2 |f(x)| + 2,
$$

provided $\varepsilon \leq \varepsilon_n$. For some fixed $n \geq K$, set $\delta = \varepsilon_n$. By an integration by parts, we have

$$
\lambda \int_0^{\infty} e^{-\lambda t} T'_t f(x) dt = \lambda^2 \int_0^{\infty} e^{-\lambda t} t \left[\frac{1}{t} \int_0^t T'_s f(x) ds \right] dt \text{ a.e. on } X.
$$

For $t \geq \delta$ we have

$$
\left|\frac{1}{t}\int_0^t T'_s f(x)ds\right|\leq \frac{1}{\delta}\int_0^\infty |T'_s f(x)|ds<\infty \ \ \text{a.e. on }\ X
$$

since $\left\| \bigcup_{n=1}^{\infty} |T'_s f(x)| \right\| ds \right\|_{\infty} \leq \left\| f \right\|_{p}$. Hence for a.e. $x \in B$,

$$
\lambda^2 \int_0^\infty e^{-\lambda t} t \left[\frac{1}{t} \int_0^t T'_s f(x) ds \right] dt
$$
\n
$$
\leq \lambda^2 \int_0^s e^{-\lambda t} t [2 | f(x) | + 2] dt
$$
\n
$$
+ \left(\frac{\lambda^2}{\delta} \right) \int_0^\infty e^{-\lambda t} t \left[\int_0^\infty |T'_s f(x)| ds \right] dt
$$
\n
$$
\leq [2 | f(x) | + 2] \left[\lambda^2 \int_0^\infty t e^{-\lambda t} dt \right]
$$
\n
$$
+ \left[\frac{1}{\delta} \int_0^\infty |T'_s f(x)| ds \right] \left[\lambda^2 \int_0^\infty t e^{-\lambda t} dt \right]
$$
\n
$$
\leq \{2 | f(x) | + 2\} + \left(\frac{1}{\delta} \right) \int_0^\infty |T'_s f(x)| ds
$$

for all $\lambda > 0$. Hence $f^* < \infty$ a.e. on B. Since the set A was an arbitrary set of finite measure and *B* is a measurable subset of *A* having positive measure, we conclude that $f^* < \infty$ a.e. on X.

Main results.

THEOREM 4. Let $\{T_t : t \geq 0\}$ be a strongly continuous semigroup *of* L_p contractions for some $1 \leq p < \infty$. Suppose that $||T_t||_{\infty} \leq 1$ *for all* $t \leq 0$ *. If* $f \in L_p$ *, then*

$$
\lim_{\lambda\to\infty}\lambda R_\lambda f(x)=f(x)\ \text{a.e.}
$$

Proof. By Lemmas 1 and 3 and Banach's convergence theorem 13, p. 332-333], $\lim_{x \to \infty} \lambda R'_i f(x)$ exists and is finite a.e. as $\lambda \rightarrow \infty$ through some countable set, say Q^+ (= set of positive rationals). We recall that $\lambda R'_i f(x)$ depends continuously on λ for x outside some null set. Since Q^+ is dense in R^+ it follows that $\lim_{\lambda\to\infty} \lambda R'_i f(x)$ exists and is finite a.e. for all $f \in L_p$. Since $s = \lim_{\lambda \to \infty} \lambda R'_\lambda f = f$, we must have $\lim_{\lambda \to \infty} \lambda R'_\lambda f(x) = f(x)$ a.e. Upon noting that $\lim_{\lambda \to \infty} R_\lambda f(x) = 0$ a.e. for any $f \in L_p$, we see that

$$
\lim_{\lambda \to \infty} \lambda R_{\lambda} f(x) = \lim_{\lambda \to \infty} (\lambda + 1) R_{\lambda+1} f(x)
$$

$$
= \lim_{\lambda \to \infty} \lambda R'_{\lambda} f(x)
$$

$$
= f(x) \text{ a.e.}
$$

The following result which generalizes Theorem 4 follows from (4.9) in [1] and the arguments used in obtaining Theorem 4.

THEOREM 5. Let $\{T_t : t \geq 0\}$ be a strongly continuous semigroup *of* L_p *contractions for some* $1 \leq p < \infty$. Suppose there exists a *measurable function h on* $[0, \infty) \times X$ *such that*

 (i) $h > 0$ on $[0, \infty) \times X$ *, and*

 $f(n)$ $f \in L_p$, $|f(x)| \ge h(t, x)$ μ -a.e. *implies*

 $|T_s f(x)| \leq h(t+s, x)$ for all s, $t \geq 0$.

 $\lim_{\lambda \to \infty} \lim_{\lambda \to \infty} \sqrt{\lambda} \log(\lambda)}(x) = \int (x) \, dx$. $\int \sqrt{\lambda} \, dx$.

REFERENCES

1. J. R. Baxter and R. V. Chacon, A local ergodic theorem on L_p , Canad. J. Math., 26 (1974), 1206-1216.

2. N. Dunford and J. T. Schwartz, *Convergence almost everywhere of operator averages,* J. Math, and Mech., 5 (1956), 129-178.

3. *........, Linear Operators, part I, Interscience, New York, 1958.*

4. E. Hille and R. S. Phillips, *Functional Analysis and Semigroups,* rev. ed., American Mathematical Society, Providence, R.I., 1957.

5. S. A. McGrath, *Abelian ergodic theorems for contraction semigroups,* Studia Math, (to appear).

Received April 14, 1976 and in revised form June 30, 1976.

U.S. NAVAL ACADEMY ANNAPOLIS, MARYLAND 21402