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SIDON PARTITIONS AND />-SIDON SETS

RON C. BLEI

Let Γ be a discrete abelian group, and ΓA = G its compact
abelian dual group. E c Γ is called a p-Sidon set, 1 ^ p < 2,
if C^(G)Λ c ^(2£). In this paper, a sufficient condition for
p-Sidon is displayed and some applications are given.

The notion of p-Sidon sets was first explored in [2]. One of the
highlights of [2] was the observation that if Ex and E2 are infinite,
mutually disjoint sets, and E1 U E2 is dissociate, then E1 + E2 is 4/3-
Sidon, but not (4/3 — ε)-Sidon for any ε > 0. This was subsequently
extended in [4]: Let Eίf E2, , EN be infinite and mutually disjoint
sets whose union is dissociate. Then E1 + E2 + + EN is (2N/N+ 1)-
Sidon, but not (2N/(N + 1) - ε)-Sidon for any ε > 0. The methods in
[2] and [4] relied on the theory of tensors, and were based on
Littlewood's classical inequality ([6]): Let (c%)^ =1 be a complex
matrix so that |Σ α ϋ s i * i l = 1 f° r a n v (si)ίι a n d (ί, )f=i where \st\,
I ίy| ^ 1, i,j = 1, , N. Then, Σ* (Σi I ^ IT2 ̂  ^ where iΓ is a
universal constant (independent of N). In this paper, we do away
with the language of tensors, and isolate the ingredients that were
essential to the examples of p-Sidon sets constructed thus far
(Theorem A in § 1).

In § 2, we give some applications of Theorem A: If E c Γ is a
Sidon set, then E x E is 4/3-Sidon in Γ x Γ. We prove also that
if EdΓ is dissociate, then E ± E ± ••• ± E is (2N/N + 1)-Sidon.

iV-times

We conclude (§ 3) with some remarks on the connection between
harmonic analysis and the metric theory of tensors.

1* Sidon partitions*

DEFINITION 1.1. {Fj} is a Sidon partition for EaΓ if (i)
U Fj = E, and (ii) every bounded function that is constant on F3

can be realized as a restriction to E of a Fourier-Stieltjes transform.

REMARK. A simple category argument shows that there is C ^ 1
so that whenever φ e l^E) is constant on Fjf for all j , and | |^|U ̂  1,
then the interpolating measure μφ in the above definition can be
chosen so that \\μφ\\ ̂  C.

THEOREM A. Suppose that EczΓ can be written as E =
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{Viv...,iN}°°iV...,iN=u where for all 1 ^ j ^ N

is a Sidon partition for E. Then, E is 2N/(N + Ϊ)-Sidon.

We first collect 3 lemmas. The proof of Lemma 1.2 uses
standard arguments; Lemma 1.3 is a variation on a well known
theme (see [1] or Appendix D in [9]), and Lemma 1.4 is essentially
Littlewood's inequality stated in a harmonic analytic language.

Let {Fj} be a Sidon partition for E. For feCE(G) (continuous
functions with spectrum in E), write / = Σf, , where fά = χFj f (χFj =
characteristic function of Fj).

LEMMA 1.2. {Fj} is a Sidon partition for E if and only if there
is C ̂  1 so that

for all trigonometric polynomials f with spectrum in E.

Proof. (=») Let HΣilΛIIL = IΣyΛtoKI, and let μeM(G) be
so that μ = ei0J on Fs and | |μ | | ^ C. Then

IΣ,/,(<7)β^| ^ IIΣ/Λ y^lU ^ IIΣΛ( )IU -C .

(<=) Let (otj)J=x be any sequence of complex scalars, \a5\ ^ 1.

For any tr igonometric polynomials feCE(G), we have

Therefore, there exists μ 6 M(G) so that μ = a3- on

We recall that B c f i s a l̂(gr) set, for q > 1, if IΛ(G) = L|(G).
We set βM = **I>{\\f\\J\\f\l:feL%,fΦθ}.

LEMMA 1.3. Let E be as in the theorem. Then E is a A(q) set,
for all q. Furthermore, βE{q), the Λ(q) constant of E, is

Proof. The proof is by induction on N. When N = 1, E is a
Sidon set, and a Sidon set is Λ(q) for all q (see Th. 5.7.7 in [7]).
Let N > 1, and assume that the lemma is true for N — 1. Let /
be a trigonometric polynomial with spectrum in E, and write / = Σ fh
where fά — χF f and {F3 }3 is a Sidon partition for E. We follow the
outline of the proof of "A Sidon set is Λ(q), for all q:"

Write
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where (rβ) is the usual basis in 0 Z 2 , and a e (x)Z2. Since there is a
measure μa so tnat μa\F. = rά{a) and \\μa\\ <LC, it follows that

C\\fa\\q^\\f\\q, f o r a l l g > 2 .

Therefore, as we integrate over G and over (g)Z2, reverse the order
of integration, we obtain

ί (( I
J<?\J(g)Z2

But, (rs)ό c φZ 2 is /%) for all q (βirj)(q) is ^(g1/2)), and therefore

= c~

Applying Minkowski's inequality to (1) (see Appendix A.I in [9]),
we obtain

(2) c ^ x Σ i i i Λ i i ϊ r ^ ii/ii.

But, by induction hypothesis, the spectrum of each fs is a Λ(q)
set, for all q (with β(q) = έ?(qiίf-i)/2)). Therefore, we finally obtain

LEMMA 1.4. Let E be as in Theorem A, and f a trigonometric
polynomial with spectrum in E. Then

^C f f ΣII/i l lg, for all 1 ^ q < - ,

(the Cq's depend only on q, and necessarily tend to 0 as q —> °o).

Proof. By Lemma 1.2,

But, by Lemma 1.3, the spectrum of each fά is Λ(q), for all q (Λ(q)
constant is independent of (j), and assertion follows.

Proof of Theorem A. Let q = 2 in Lemma 1.4. For N = 2, the
assertion of the theorem follows by the same argument given by
Littlewood (p. 169 of [6]). The general case (N > 2) is argued in
Lemma 3 of [4].

2* Applications •

COROLLARY 2.1. Let E and F be Sidon sets in Γ so that
gp(E) n gp(F) = {0}. Then E + F is Aβ-Sidon.
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Proof. Let Λ = gp(E) and Γ2 = gp(F).

We assume that EaΓι and F c Γ2, and need to show that
E x F is 4/3-Sidon in Γx x Γ2. We write # = {λj, and i*7 = {vs},
and prove that {{λj x {̂  }JLi}Γ=i and {{y,} x {λJΓ=JΓ=i are Sidon parti-
tions for E x F: Let / e CEXF{GX x G2) where G, = Γ,Λ, i = 1, 2, and
/(0i> #2) = Σ t Σ i aiifa<, flϋO^, #2). Since i? and i<" are Sidon sets in /\
and Γ2, it follows that for any (gί9 g2) eG1 x G2

and

Our claim now follows from Lemma 1.2.

2.1 extends immediately to the fc-fold sum of Sidon sets that are
mutually independent. We also note that p = 4/3 (= 2k/k + 1) is
sharp: This follows from 2.7 in [2] (see also 1.1 in [4]).

The corollary below partly answers the following question raised
by Edwards and Ross (Remark 3.4 in [2]):

Let E c Γ be so that for some B > 0, R8(E, 0) ̂  Bs for all s > 0
(see p. 124 of [7]). Is E±E± ••• ±E (2k/(k + 1))-Sidon?

Λ-times

COROLLARY 2.2. Le E - (τ, ) c Γ be a dissociate set in Γ. Then
±E± ±E = Eκ is 2k/k + 1-Sidon.

/c-times

Proof. We first prove that E + E is 4/3-Sidon, and then indicate
how to proceed in the general case.

We claim that we can identify isomorphically CΈ+E(G) with
{/€C ίxI(G x G):/(7O 7J = /(7j, 7{)}: Let / be any trigonometric
polynomial with spectrum^in E + Eu f(g) = Σn& <*>%&» #)(7;> β)> a n d

define /0 e CExE(G x G) by /0(%, 7y) = fo(^ , %) = α^ . We need to show
that there is a if (independent of /) so that ϋΓ||/|U ^ 11/olU, for
then our assertion will follow from Corollary 2.1. Let g1 and g2 e G
be so that | |/ 0 |L = \fo(gί9 g2)\ By symmetry, it is clear that

, g2)\ = 1/2

Ύ y )(7 4 f flr,)(7y>

But each term on the right hand side is of the form
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2 Σ <Li3'Φ(ϊ)ΦU) 9 where | φ{ϊ) | ^ 2 for all i ,

and by considering Riesz products given by

μ = JJ Λ + Φ(3)(Vjf9) + Φ(3)(-Vsfg)\ 9

3 V 4 /

we obtain that

Therefore,

To extend the above argument to "E + + i? is 2&/& + 1-Sidon",
fc-times

we need to extend (1) above. This is simply done as follows: Let
0i, --fΰk be points in G so that \fo(g19 « , ^ ) | = | | / 0 |U (/ and fQ

are as above, f eCE+..,+E(G)9 and fo€CEx...XE(Gk)). For a subset
.Sc{l, •••, k}, write

= Σ

Again, by symmetry, it is clear that

I m = l \S\=m

Again, by appealing to Riesz products, we obtain that the right hand
side is dominated by KWfW^ (K depends only on k).

Our final task is to consider Ek = ±E ± ± E. We claim
k

the following: Let ε = (ε3-))=ι be any (fixed) choice of signs. Then
there is μ e M(G) so that μ = 1 on εj£ + + εkE = εE, and μ = 0
on ε[E + + s'kE = e'E, where ε' is any other choice of signs so
that \{j:sj — —1}\ Φ \{j: e] — —1}|. To verify this claim, we choose
d e [0, 2π) so that md Φ M(mod 2ττ) for —k^m<l^k, and write a
Riesz product

It is easy to check that

Now, let P be a polynomial with the property that P(aε) = 1 and
P(atr) = 0, for all ε' as above; μ = P(v) gives us the desired separa-
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tion. Therefore, by the above separation, to prove 2&/(&+l)-Sidonicity
of Ek, it suffices to show that εE is 2k/k + 1-Sidon for a fixed 6.
Slightly modified, the previous arguments now apply.

REMARK. It was brought to our attention that G. Woodward
independently obtained (Th. 4 in [10]) a somewhat weaker result
than the above Corollary 2.2.

3* Some remarks on the metric theory of tensors* We recall
that p-Sidon sets were originally manufactured by a machinary of
tensors. Our presentation that avoided that language suggests that
tensor analytic results can be produced in the analogous harmonic
analytic setting {E1 + E2, Eί U E2 dissociate), and then translated (via
Riesz products) to the language of tensors. Specifically, Lemma 1.4
when q = 2, and E — Ex-\- E2, Ex U E2 dissociate, is precisely Little-
wood's classical inequality. In fact, Grothendieck's inequality, which
is an extension of Littlewood's, can also be deduced in this setting,
through technically, it is the same proof as the one given by Gro-
thendieck (see pp. 62-64 in [3], and [5]).

The inequality can be stated as follows:
Let {#*}£=! and {Vj}f=ι be vectors on the unit sphere SN in RN,

equipped with the Euclidean norm. Let E = {λJΓ=i and {̂  }~=1 be
disjoint subsets in Γ so that E U F is dissociate. Set ψ(Xi + vs) =
0&<! Vi) for i, j — 1, , N, and 0 otherwise. ((•, •) denotes the usual
inner product in RN.) Then, \\Φ\\B(E+F) ^ KG> where KG is independent
of fa}, {Vj} and N.

The proof is based on the following elementary fact (see [3]):

LEMMA. Let a he the normalized rotation invariant measure
on SN. Then, for any x, y eSN

S o
sign (x, y) sign (y, u)dσ{u) = 1 arc cos (x, y) .

Proof of Grothendieck's inequality. For each u 6 SN, let μu be
the Riesz product so that μu(xt + vά) = sign (xtf u) sign (yjt u), and
integrate over SN the B-valued function μu:

μ = \ μudσ(u) e M(G) .

From the above lemma, it is clear that if v = sin ((π/2)μ) e M(G)r

then ί(Xi + vό) = (xif y5). Furthermore, ||y|| ^ sinh(7r/2).

Added in proof. Another proof of Grothendieck's inequality and
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some of its extensions are given by the author in "A uniformity
property for /ί(2)-sets and Grothendieck's inequality," (to appear).

REFERENCES

1. A. Bonami, Ensembles Λ(p) dans le dual de D°°, Ann. Inst. Fourier, t. 18, 2 (1968),
193-204.
2. R. E. Edwards and K. A. Ross, p-Sidon sets, J. Functional Analysis, 15, 4 (1974),
404-427.
3. A. Grothendieck, Resume de le theorίe metrique des produits tensoriels topologiques,
Bol. Soc. Matem. Sao Paulo, 8 (1956), 1-79.
4. G. W. Johnson and Gordon S. Woodward, On p-Sidon sets, Indiana Univ. Math. J.
(1974).
5. Y. Lindenstrauss and A. Pelczynski, Absolutely summing operators in ^p-spaces
and their applications, Studia Math. T., XXIX (1968), 275-326.
6. J. E. Littlewood, On bounded bilinear forms in an infinite number of variables,
Quarterly J. Math. Oxford Ser., 1 (1930), 164-174.
7. W. Rudin, Fourier Analysis on Groups, Interscience, New York, 1962.
8. J. Lopez and K. Ross, Sidon Sets, Marcel Dekker, Inc., New York, 1975.
9. E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton
University Press, Princeton, New Jersey, 1970.
10. G. S. Woodward, p-Sidon sets and a uniform property, Indiana Math. J., (to ap-
pear).

Received July 11, 1975 and in revised form March 15, 1976.

THE UNIVERSITY OF CONNECTICUT






