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HOMOMORPHISM SPACES OF ALGEBRAS OF
HOLOMORPHIC FUNCTIONS

P. J. DE PAEPE

In this paper rationally convex sets, holomorphically convex
sets and holomorphic sets in Cn are under consid-
eration. Topological properties of these sets are given and
attention is paid to examples showing that these three concepts
are different. In the second section of the paper an example is
given of a fat, connected, holomorphically convex set, which is
not a holomorphic set.

A compact subset K of C" is called rationally convex if K can be
identified with the set of continuous complex-valued nontrivial
homomorphisms of the function algebra R(K), i.e. the algebra of
uniform limits on K of restrictions to K of rational functions whose pole
sets miss K. So K is rationally convex if and only if the rationally
convex hull r(K) of K defined by

r(K) = {x E C : \r(x)\^\\r \\κ for all rational functions r

not having poles on K}

= { x E C " : p ( x ) E p ( K ) for every polynomial p}

equals K. As usual || | |κ denotes the supremum norm on K. A
compact set K in Cπ is holomorphically convex if it is the space of
continuous complex-valued nontrivial homomorphisms of H{K), the
function algebra on K consisting of uniform limits on K of restrictions to
K of functions holomorphic in a neighborhood of K. K is said to be a
holomorphic set if K is a countable intersection of Stein manifolds in
Cn. We recall that a Stein manifold of dimension n is a complex analytic
manifold such that the following three conditions are satisfied: Hol(M),
the collection of holomorphic functions on M, separates the points of M;
for every xEM there exist fu -,/„ E Hol(M) such that fu •••,/„
provide local coordinates at JC; Hol(M)-hul l (X) = {JC E M: | /(JC) | ^
11/llκ for all /EHol(M)} is a compact subset of M for every compact
subset K of M. Note that an open subset of C" is Stein if the last
condition is satisfied. Of primary importance is the property of Stein
sets MCC", that the continuous homomorphism space of Hol(M)
equals M. Using this fact and a characterization of holomorphically
convex subsets of Cn of Birtel, [2], it is evident that holomorphic sets are
holomorphically convex.
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If K is a compact subset of Cn, r(K), hc(K), hs(K) respectively
denote the rationally convex hull of K, the smallest holomorphically
convex set in Cπ containing K, and the smallest holomorphic set in C"
containing K, the existence of which is shown in [11], chapter III.

Let M be a complex analytic manifold. Mer(M) will be the
collection of meromorphic functions on M, i.e. "functions" which locally
are the quotient of two holomorphic functions, the denominator not
identically zero on a component of its domain of definition. If M is Stein
it can be shown that every meromorphic function on M is the quotient of
two elements of Hol(M). If K is a compact subset of M, Mer(M)-
hull(K) will denote the set of points in M at which | m (x) | ̂  || m \\κ for all
m E Mer(M), m holomorphic near K.

We also need BirteΓs characterization of holomorphically convex
sets in Cπ, [2]. Let K b e a compact subset of C". Let U be an open
neighborhood of K and let E(U) be the continuous homomorphism
space of Hol(l/). By a famous theorem of Bishop E(U) can be given
the structure of a Stein manifold in such a way that Hol(t7) is isomorphic
to Hol(£(l/)), the isomorphism given by /—>/ where f(φ) = φ(f) for all
φEE(U). Note that E(U) coincides with t/, if U is Stein. Let
Π: £([/)->C" be the map

Π(φ) = (φ(Z,), •, φ(Zn)) = (Z,(φ), , Zn{φ)\

Z, being the Γth coordinate function on C". Then K is holomorphically
convex if and only if K = Π {YIE(U): U D K}.

For general background information about function algebras, com-
plex analytic manifolds and complex analytic varieties we refer to [4] and
[5].

1. Topological properties of homomorphism spaces.
Let K be a compact subset of C" and let Y be a compact holomorphically
convex set in Cn, containing K. We define M(Y,K) as the set of all
points x E Y with the property that for all compact subsets S of Y,
containing x, for all open neighborhoods U (in C") of 5 and for all
/EHol(L7) with /(JC) = O, / attains the value zero on bdrSU
(S Π K). Here bdrS denotes the boundary of S relative to Y. Note
that KCM(Y,K)CY.

THEOREM 1. M(Y,K) is holomorphically convex.

Proof. Suppose the theorem is false, then A = Π {Π E(U), U open
in C", UD M(Y,K)} is a subset of Y and A properly contains
M(Y, K). Let x G Λ, x £ M(Y, K). There exist S C Y, with x G 5, a
neighborhood [/ of S and a function /GHol(ί7) such that f(x) =
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0£/(bdr SU(SΠ K). By definition of M(Y, K), f has no zeroes on
M(Y, K) Π 5. Let Z be the zero set of /. By shrinking U, if necessary,
we may suppose Z has a positive distance to Y\S, in particular
Z Π Y = Z (Ί S. Let U' be a neighborhood of 5, relatively compact in
U. Let W be a neighborhood of M{Y,K) such that Π £ ( W ) Π Z is
contained in U'nUE(W). Clearly Π£(W\Z)CΠ£(W). We show
ΠE(W\Z) C(ΠE(W))\Z. Suppose this is false, let

Eλ = u\u n UE(W\Z)) n E(w\z\ hx = i//°π,

E2 = E(w\z)\c\(uι(nE(w\z) n c/')), h2 = o.

Here cl stands for closure. Then, because Cousin I problems are
solvable on the Stein manifold E(W\Z) ([5], p. 248), there is a
meromorphic function m on E(W\Z) such that m - 1//°Π is holomor-
phic on Ex and m is holomorphic on E2, so m is holomorphic on
W\Z. Therefore m is in Hol(£"(W\Z)), contradicting the definition of
m. So we have shown {y E E(W\Z): Π(y)G Z} is empty.

It follows that W\ZDM(Y,Kl x£ΠE(W\Z% hence J C ^ Λ , in
contradiction with our initial assumption. Therefore M(Y,K) is
holomorphically convex.

THEOREM 2. // Y is a holomorphic set, then M(Y, K) is a holomor-
phic set.

Proof. Let x E Y\M(Y, K). As in the proof of the previous
theorem, let S, U7f,Z and U' be given. Choose a Stein manifold W
containing Y such that Z Γ) W is contained in U' Π W. Solving a Cousin
I problem on W we find a meromorphic function m on W such that
m - 1 / / is holomorphic on [/Π W and m is holomorphic on
W\c\(U'). Then the Stein manifold {y E W : | m ( y ) | < C } for C suffi-
ciently large does not contain x and contains M(Y, K). Thus Λί( Y, ίί)
is the intersection of all Stein manifolds containing M(Y, K), so M(Y, K)
is a holomorphic set.

In the case Y is a holomorphic set which has a trivial second
cohomology group with coefficients in the integers, we have the following
characterization of M(Y7K):

THEOREM 3. Let Y be a holomorphic set and suppose H2(Y;Z)
= 0. Then M(Y,K)= Π {Mer(ί7)- hull(K): U open in C\ UD Y}.

Proof. Let JC E Y, x <£ Π {Mer( U) - hu\\(K): U D Y}. Then there
are a Stein manifold U containing Y and m EMer(ϊ7) such that m is
holomorphic near K and m(x)= 1 >\\m \\κ. By shrinking C/, if neces-
sary, we may assume that there are f g £ Hol(t/), relatively prime such
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that m=f/g (see [5], p. 251). Now the analytic variety W =
{y E U: f(y) = g(y)} does not meet K because at every point in K ΓΊ W
the irreducible branches of W through this point are contained in
{y E U: f(y) = g(y) = 0} since fig is holomorphic near K. This would
contradict the fact that / and g are relatively prime. So h = /' — g has a
zero at x and does not attain the value zero on K. Let ε > 0 be such that
\h(y)\>ε for all y E K, then S = {y E Y: | h(y)\ ^ ε} is a compact
subset of Y,x E 5, KΠ 5 = 0 and bdrS C{y E Y: \h{y)\ = ε}. Hence

Conversely, suppose x£ M(Y,K), so there are a subset 5 of Y,
x E S, a neighborhood (7 of S and / E Hol(ί7) such that /(x) = 0 and /
has no zeroes on bdr S U (S Π K). Again we may assume that the only
zeroes of / in Y are in S. Let Wbea Stein manifold containing Y such
that the zero set Z of / in U is an analytic hypersurface in W. Without
loss of generality we may assume there exists h EHol(W) such that
Z = {yEW:h(y) = 0} (see [9], p. 286). Hence h(x) = 0 and h does not
attain the value zero on K (even not on M(Y, K)), so \h(y)\ >2ε for all
yGK and some ε >0. Hence |(1/Λ + ε)(x)| > \\ί/h + ε ||κ, so

If we restrict ourselves to rationally convex sets Y, we obtain the
following result:

THEOREM 4. Let Y be rationally convex and H2(Y; Z) = 0. Then
M(Y,K) is rationally convex.

Proof As in the proof of Theorem 3, if x E Y\M(Y, K), then there
exists a Stein manifold W, W D Y, and h <ΞHol(W) such that h(x) =
0f£ h(M(Y, K)). Because Y is rationally convex, h can be approxi-
mated on Y by rational functions with pole sets which miss Y. So there
is a rational function r, holomorphic near Y with 0 < | r(x)\ < \ r(y)\ for
all y EM(Y,X). So | 1/Γ(JC)| >| | l/r | |M ( y^, hence

xfέr(M(Y,K)).

Hence M(Y,K) is rationally convex.
The next lemma has important consequences.

LEMMA 1. Let x E Y\K. If there exists a neighbourhood U of x
and a one-dimensional analytic subvariety V of U such that Y Π U C V
then-x£M(Y,K).

Proof Suppose such U and V do exist. We may assume U Π K =
0. Let / be a holomorphic function in a neighborhood W C U of x such
that f(x) = 0 and f(y) ̂  0 if y E V Π W, y ϊ JC. Let S be a compact subset
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of Y containing x in its interior and such that S CW. Then S Π K = 0
and 0£/(bdrS). Hence x£M(Y,K).

THEOREM 5. The sets hc(K), hs(K) do not contain points x&iK
such that there are a neighborhood U ofx and a one dimensional analytic
subυariety V ofU with the property hc(K) Πί/CV, respectively hs(K) Π
UCV. The same statement holds for r(K) if H2(r(K); Z) = 0.

Proof Note that hc(K) = M{hc{K\ K\ hs(K) = M(hs(K), K)
and r(K) = M{r{K\ K) if H2(r(K); Z) = 0. Now apply Lemma 1.

In the literature appear at least three examples of holomorphic sets
which are not rationally convex. First, Wermer in [10] gives an example
of a set K which is the biholomorphic image of a polydisc in C2 which is
not polynomially convex:
K = {(z bz 2,z 3)EC 3:2, = z, z2=zw, z 3 = w ( z w - l ) , | z | ^ l , | w | =i 1}.
Stolzenberg later in [8] shows that K is even not rationally convex and
r(K) = K U D, where

D = {(zu z2, z3): IZ! I < 1, z2 = 1, z3 = 0}.

Lemma 1 shows that K is a holomorphic set and M(r(K), K) = K; from
Theorem 4 it follows that H2(r(K); Z) is nontrivial. Stolzenberg in [9],
p. 272, gives an example of two disjoint polynomially convex sets Kx and
K2 whose union K is not polynomially convex.

X1 = { ( z 1 , z 2 , z 3 ) G C 3 : ( z 3 - l ) ( z 1 z 2 - l ) = 0, | z 3 | ^ 1, | z , | ^ 2 , | z 2 | ^ }

X = Kλ U X2.

Stolzenberg shows that r(K) D S = {(zu z2, z3): z}z2 = 1, z3 = 0, 1 ^
I Zi I ^ 2}. Now it is easily seen that r(K) = K U 5. Now
bdr5 U(SΠ AΓ) = bdr5 = S Π K. Therefore, for x = (xu JC2, X3)G 5,
x^bdrS, ZI-JCI attains the value zero at x and 0 £ ( z t - x^φdrS),
hence x ^ M(r(K), K). So M(r(K),K)= K, K is a holomorphic set,
and by Theorem 4, H2(r(K);Z)/ 0.

Much earlier Oka, [6], constructs a Stein manifold M in C2 with the
property that not every holomorphic function on M can be approximated
by rational functions on compact subsets of M. His domain M is of the
form

R Π{ |/ |<Λ}, where
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R = {(zb z2) G C2: I rt (z,, z2) < 1, i = 1, , N}, r, rational functions for
/ = 1, , N, and where / is a meromorphic function on R, gotten in the
following way. There is a polynomial h whose zero set in R consists of
two components Vi and V2; now / is the solution of a Cousin I problem
on R, holomorphic near Vλ and such that / - 1/h is holomorphic near V2

(so MΠV2 = 0) .
Oka constructs a compact set F in M such that r(F)/F, in fact

r(F)Γ) V2/0. Now K = {x G r(F): \f(x)\^B} is a holomorphic set
containing F if B is sufficiently large and is not rationally convex. Let S
be the closure of r(K)\K, then bdr S U (5 Π K) C{|/| = B}. By blowing
up the functions r, a little and enlarging A and B if necessary, we may
assume {|/| = B} Π Vi = 0 . So the polynomial h attains the value zero
on 5 and has no zeroes on {|/| = B). Hence M(r(K),K)/ r(K), so by
Theorem 4, H2(r(K);Z)^0.

It is apparent from the preceding discussion that all three examples
have a topological property in common: the second cohomology group of
the rationally convex hull of the set with coefficients in the integers does
not vanish. One might wonder whether it is possible to put purely
topological conditions on a holomorphic set or its rationally convex hull
to ensure that the set is rationally convex. Problem:

If K is a holomorphic set in Cn and if H2(r(K);Z) = 0, is K then
rationally convex?

2. A fat connected holomorphically convex set, not a
holomorphic set. We will now give an example of a compact set X
in C3 which is holomorphically convex, but is not a holomorphic
set. Moreover X will be connected and fat, i.e. X is the closure of its
interior.

In [3] Bjόrk gives the following example of a holomorphically
convex set in C2, not a holomorphic set:

K = {(z,w): zw =0, | z | ^ l , | w | ^ l }

U U {(*, w): 2-"-1 ^ I z I ^ T\ I w I = 1 - 1/n, n G N}.
n = \

He then imbeds this set in C3 and connects up the components by thin
spiral-like sets in order to get a holomorphically convex set, not a
holomorphic set, which is connected but has no interior ([3]).

Consider the following subsets of the complex ί-plane:
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where n G N and an, an —> 0, are small positive numbers to be determined

later.

To = {| t - 11 == 1, Im t g 0 = {| t - 11 § 1, \e-" | ^ 1}

Sn = {\ t + 2-4"-11 i= 2"4"-', 11 + 2"4" I g 2"4"}, n G N

T = U TnULJ Sn.

We need two properties of the algebra R(T): t = 0 is a peak point
for U(Γ), i.e. there exists f E R(T) with /(0) = 1 and | / ( ί ) | < l f o r all
t ET, t/0. Furthermore for t E Q\{0}, where Q is one of the sets Tn or
Sπ, there exists f E R(T) with / = 0 on T\Q and f(t) = 1. This follows
from the fact that every continuous function on T which is analytic in the
interior of T can be approximated on T by rational functions with poles
not meeting T.

Now define subsets of C3 by

Bn = { ( z , w , ί ) : 2 - π - 1 ^ | z | ^ 2 " n , l - 2 - 2 n g | w |

It is easily seen that βπ, n ^ 0, is connected and is the closure of its
interior. Our desired set X will be the union of the sets Bn, n ^ 0, and
sets Am n ^ 1, where Λn connects Bn and B n + b and such that An Π
{ί - 0} C (Bn U Bn+1) Π {ί = 0} and

z I ̂  2, I w I ̂  2, t E Sn for (z, w, ί) E Λn.

Define the function fn, analytic in a neighborhood of X as the branch
of l/2τrilog24n+1(ί + 2-4n-1) which is - (n - 1) on Bλ Π {ί = 0}, , - 1 on
βn-i Π {t = 0}, 0 on Bn Π {ί = 0} and 1 on (X\(Bλ U U JBΠ)) Π {t = 0}.
So, putting jβ n-2 4"+ 1(ί + 2-4-1), / n (0=l/27r/ log | j8 j + l/27rarg i8n,
where arg βn ranges on X from approximately - (n - 1)2TΓ to approxi-
mately 2τr.

Now on B i U A , U U A B . 2 U B H , arg/3n < - 3τr/2, hence
R e 3 / n < - 9 / 4 . Similarly on X ^ U A! U U Bn U An\ R e 3 / n >
9/4. Since | z \ ^ 2, | w | ^ 2 for (z, w, ί) E X, the zero sets of /z - 3/n and
iw - 3/n do not meet X\(An_2 U B Π U Aπ).

Since fn = 0 on Bn Π{t = 0} and z and w have no zeroes on Bn, we
can make αn (see the definition of Tn) sufficiently small to assure that the
zero sets of iz - 3/n and iw - 3/n do not meet Bn. We will construct the
sets An in such a way that the zero sets of iz - 3fm iz - 3fn+u iw - 3/n,
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iw -3/π+i do not meet Λn. This means that gn = l/(iz -3/π) and hn =
l/(/w - 3/n) are holomorphic in a neighborhood of X, i.e. hn, gn E H(X).

We proceed with the construction of the sets An. Consider the
following inequalities defining An.

(1)

(2)

(3)

(4)

(5)

(6)

t + 2~4"-* | ̂  2 '

ί + 2"4" g2"4"

2"+2(2-2""M)

2-^(2-2-"-')

2n(w-(l-2-

2n(w-(l-2-

From (3) and (5) it follows that Re z > 0 on An since 12n+2(z - 2""-1)! ̂  1
and \2n(w - (l-2~2n]))\^l on An. Also from the definition of fm

lmfn ^ 0 on Λn_! U A π , n ^ 1, Ao: = 0, since t E 5n if (i, w, ί ) E ^ n S o

/z - 3/n and /w - 3/π cannot have zeroes on An-X U Am so gn and hn

belong to H(X). Now it is easily seen that

(i) An is connected

(ii) An connects up Bn and Bn+ι

and An Π {ί = 0} C (Bn U Bn+ι) Π{t = 0}

(iii) Λπ is the closure of its interior
(iv) An as a closed analytic polyhedron is holomorphically convex.

Define X = U Bn U U An. First we show that the space £iH(X) of
continuous complex-valued nontrivial homomorphisms of H(X) can be
indentified with X, i.e. X is holomorphically convex.

Let φEΔH(X), so φ(t)ET.
Suppose φ(t) = 0. Since t = 0 is a peak point of R(T), there is a

function g E Λ ( Γ ) peaking at ί = 0. Now φ E Δ[ΛΓ(X)|X Π {t = 0}]
where [f/(X)|X Π {ί = 0}] is the function algebra on X Π {t = 0} gener-
ated by restrictions of elements of JFf (X). Suppose this is not the case,
then there is / E H(X) with φ(f)= 1 and 1 > ||/||xn{,=o}. Consider g in
the natural way as an element of H(X), then

Φ(fgm)=l>\\fgm\\χ

if m is sufficiently large, in contradiction with φ E ΔH(X).
Let m be a positive Jensen representing measure for φ on X Π

{ί = 0}, representing [H(X)|X Π {f = 0}]. So
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•g | log\f\dm

and

φ(f) = jfdm

for fe[H(X)\XΠ{t = 0}].
Suppose m (Bn Π {t = 0}) > 0 for some n E N. There is a linear

combination Fn of the functions /m which is 1 on Bn Π {t = 0}, 0 on
(X\Bn)n{t = 0}. Now

l o g | ψ ( F π - l ) | g | l o g | F n - i μ m = -<

Hence φ(F n )=l and it follows that m(£n Π {/ = 0}) = 1, so φE
A[H(X)\Bn Π{t = 0}]. Now ign and ihn are in H(X) and restrict to 1/z
and IIw on Bn Π {t = 0}. So

[H(X) I Bn Π {ί = 0}] = R (Bn Π {t = 0}).

Since ΔΛ(βn Γ){t = 0}) - £„ Π {t = 0}, ψ e B B Π { / = 0}.
If m(BnΠ{t = 0}) = 0 for all n G N, m(B0Π{ί = 0})= 1, so

<£ GΔ[H(X)|βon{r =0}. Since βoΠ{/ = 0} is polynomially convex,
φ 6 β o n { ί - 0 } . So if φEAH(X) and φ(t) = O, φEXΠ{t = 0}. If
ψ(f)eS,\{0}, φGΔ[H(X)|Λn]. If not, there exists gEH(X) with
Φ ( g ) = l > l | g K B u t there is f E R(T) with /(φ(f))=l, / = 0 on
T\SB. So Φ(g'"/)=l>| |gm/|U if »i is sufficiently large, a
contradiction. Now A[H(X)\An] = An since the defining functions for
An are in H(X). So φ E An.

If </>(ί)e T0\{0}, φ E Δ[H(X) |B 0 ] and since Bo is a compact closed
analytic polyhedron in C\ defined by functions in HoI(C3)

A[H(X)\B0] = Δ[Hol(C3)|B0] = Bo,

so φ G B 0 . If φ(t)ETn\{0}, φEΔ[H(X)\Bn]. Again we will show
[H(X)\Bn] = R(Bn). Now gn and hn are in H(X). Making an, one of
the determining constants of Bn small enough to get

on Bm we have 1/iz = Σ(-3/Λ)m -(gn)
m+1 where the series converges

uniformly on Bn to a function in [H(X)\Bn]. So 1/z G [H(X)\Bn] and
similarly 1/w G [H(X)|Bn]. So [fί(X)|Bn] = R(Bn) and hence φ G Bn.

This shows ΔH(X) = X.
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Now it is clear that X is not a holomorphic set since X Π {t = 0} is
not a holomorphic set by Bjόrk's example.

REFERENCES

1. F. T. Birtel, Function algebras and several complex variables, unpublished notes.

2. , Some holomorphic function algebras, Papers from the Summer Gathering on Function

Algebras at Aarhus, July 1969, 11-18.

3. J. E. Bjόrk, Holomorphic convexity and analytic structures in Banach algebras, Arkiv for

Matematik, 9 (1971), 39-54.

4. T. Gamelin, Uniform Algebras, Prentice Hall Inc. 1969.

5. R. C. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall

Inc. 1965.

6. K. Oka, Sur les functions analytiques de plusieurs variables. IV-Domaines dJholomorphie et

domaines rationellement convexes, Japan J. Math., 17 (1940), 517-521.

7. P. J. de Paepe, Analytic polyhedra, Tulane Dissertation, 1971.

8. G. Stolzenberg, An example concerning rational convexity, Math. Ann., 147 (1962), 275-276.

9. G. Stolzenberg, Polynomially and rationally convex sets, Acta Math., 109 (1963), 259-289.

10. J. Wermer, An example concerning polynomial convexity, Math. Ann., 139 (1959), 147-150.

11. W. Zame, Stable algebras of holomorphic germs, Tulane Dissertation, 1970.

Received January 24, 1974. The author wishes to thank Professor Frank T. Birtel for his guidance

and encouragement during the preparation of his dissertation, at Tulane University, New

Orleans. Part of the material in this dissertation forms the basis for this paper. The author held a

fellowship of the Niels Stensen Stichting in Amsterdam, The Netherlands, from September, 1970,

until August, 1971.

NEW ORLEANS, TULANE UNIVERSITY

AND

AMSTERDAM, UNIVERSITEIT VAN AMSTERDAM




