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PARTIAL REGULARITY OF SOLUTIONS
TO THE NAVIER-STOKES EQUATIONS

VLADIMIR SCHEFFER

At the first instant of time when a viscous incompressible
fluid flow with finite kinetic energy in three space becomes
singular, the singularities in space are concentrated on a closed
set whose one dimensional Hausdorff measure is finite.

§1. Introduction. Let v: R3x R-+R3 (where R+=
{t E R: t >0} represents time) be a weak solution to the Navier-Stokes
equations of incompressible viscous fluid flow in 3 dimensional euclidean
space with finite initial kinetic energy and viscosity equal to 1. Our
definition of weak solution coincides with Leray's definition of "solution
turbulente" [4, pp. 240, 241, 235]. In that paper, Leray showed that
weak solutions always &xist for prescribed initial conditions with finite
energy. He also proved the following regularity theorem:

LERAYS THEOREM. There exists a finite or countable sequence Jo, Ju

J2, - - - such that Jq CR+, Jo = {t: t > a} for some a, Jq is an open interval
for q > 0 , the Jq are disjointed, the Lebesgue measure of R +- U ^ o Jq is
zero, v can be modified on a set of Lebesgue measure zero so that its
restriction to each R3 x / becomes smooth, and

Σ (length (J,
q>0

is finite.

It is not known whether there exist v with singularities (Jo = R+ is a
possibility). The purpose of this paper is to prove the following theorem
on the nature of possible singularities of υ. We assume that v has been
modified to be smooth on each R3xJq.Jq.

THEOREM 1. Let t0 be the right endpoint of an interval Jq with
q>0. Then there exists a closed set S CR3 such that v can be extended to
a continuous function on

(R3xJq)U((R3-S)x{t0})

and the 1 dimensional Hausdorff measure of S is finite.
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The definition of Hausdorff measure can be found in [2, p.
171]. We note in passing that Leray's theorem yields

THEOREM 2. The 1/2 dimensional Hausdorff measure of R +- U ^ o

Jq is zero.

There is a proof of Theorem 2 in [7]. Research on the Hausdorff
dimension of singularities of fluid flow was started by Mandelbrot
[5]. The conclusion of Theorem 1 resembles the partial regularity
results in [1, IV. 13 (6), p. 126].

Leray's theorem has been generalized by M. Shinbrot and S. Kaniel
to flows on a bounded domain [8]. I do not know whether Theorem 1
generalizes to that case.

NOTATION. We set (α, b) = {t: a < t < b}, [a,b) = {t: a S i < b},

and so on for (a, b] and [α, b]. If / is a function defined on a subset of
R3x R then fth ftφ etc. are the partial derivatives (d/dx^f {d2ldxidxj)f
etc. where xu x2, x3 are the coordinates of R3. The partial derivative
with respect to the R variable is denoted by ft. We set D°f = /,
D 1/ = Df = (fΛ, fa, /,3), D2f = (/,„) for i,/ G {1,2,3}, and so forth for D"/.
We let ID nf(x, ί) | be the euclidean norm. If, in addition, / has range JR 3

then f is the corresponding component of / for i = 1, 2, 3. In that case
we set div (/) = Σ?=1 /,,. The summation convention for repeated indices
is used throughout, e.g. div (/) = fu. If / is a function defined on a subset
of R3 then Df(x) and |D/(JC)| are the gradient and its norm.

An absolute constant is a finite positive constant that does not
depend on any of the parameters in this paper. The symbol C will
always denote an absolute constant, and the value of C may change from
one line to the next (e.g. 2C ^ C). The symbols d , C2, C3, are not
treated in this way, and their value does not change in the course of the
paper.

We begin to prove Theorem 1. Let φ: R3x {t: t <0}-^ R+ be
defined by

(1.1) φ(x, 0 = ( 2 V ^ Γ ( - 0"3/2exp(|x |7(40).

Since φ is just the fundamental solution to the heat equation running
backwards in time, it satisfies

(1.2) φ,a = - φ,t

and

lim j ^ /(y, t - e)φ(y -x,- e)dy = f(x, t)
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if / is continuous at (x, t) and I |/(y, s) \2dy is bounded as a function of
JR3

s. We also define ψ: R3x{t: t<0}^R+ by

(1.3) ψ(x,t)=-(4ir)-1jκa φ(y,t)\y-x\-ιdy.

This Newtonian potential of φ satisfies the Poisson equation

(1.4) φ,u = φ.

We have the estimates

(1.5) ~

where En is an absolute constant for each n.
Two consequences of the definition of weak solution are:

ί \υ{x,t)\2dx^C, if te U Jq
JR3 q^o

(1.6)

for some CΊ < °°, and

(1.7) div(i;)(jc,O = 0 if te U /,.

A third consequence is the following lemma:

LEMMA 1.1. If[tί912] CJqthenfori G{1,2,3} andx G R3 wehave

Vi(x,t2)

(1.8)

+ I I 3

 υ>(y> 0^(y 5 OΦΛy - *, t - h)dydt
Jti JR3

- \ \ υi (y ? t)vk (y, t)φ,ijk ( y - x , t - t2)dydt.
Jti JR3
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Proof. We fix i G {1,2,3} and x G R\ Let /: R3x {t: t < ί2}-»i?3

be given by

//(y, t) = φ(y-x,t-t2)- ψjjiy - x , t - t2) if / = i,

(1.9)
f,(y,t)= - ψΛ(y-χ,t-t2) if jΦ i.

We were careful not to write φιU in the first identity of (1.9) because there
is no summation over the index i. Using (1.4) we obtain

div (/) (y, t) = φA (y~x,t- h) - ψ,iH (y - x, t - t2)
(1.10)

= φ,,(y - x, t - t2)- </>,,(y ~x,t-h) = 0.

Now take 0 < e < t2 - h. The definition of weak solution, (1.10), and the
good behavior of f on R3x [tu t2- e] allow us to write (see (1.6))

3 vi(y,t2-e)fi(y,t2-
JR2

(1.11)

ί, (Vi)ifrM+fi,)
R3x[ti,t2-c)

- 3 WuiSi
J R X[ίl, ί2-€]

Integration by parts with respect to the jcy and xk variables, (1.6), and (1.7)
yield

υ,iy,t2-e)ψtii(y-x9-€)dy=0,

I v](y,tι)ψ,ij(y-x,t1-t2)dy=0,
JR3

Γ ί vj(y,t)(ψ,ιjkk(y-x,t-t2)
Jti JR3

(1.12)
+ ιp,iit(y-x,t-t2))dydt = 0,

jR3x[ll,ί2-e)

= - I 3 VkVjfhk.
JR3x[ti,t2-e]
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Identities (1.9), (1.11), (1.12), (1.2) yield

υi(y,t2-e)φ(y-x,-e)dy

= | ί v,(y,t)(φM(y-x,t-t2)
Ju JR3

(1.13) +ΦAy-χ,t-t2))dydt

jR3x[lι,l2-eJ

= 0 + Γ ί υk(y, t)υ,(y, t)φ,k(y-x,t- h)dydt
Λi JR 3

- Γ I ϋk (y? ί)υ ; (y, 0̂ ,//̂  (y " Λ, ί " t2)dydt.
Jti JR3

Now (1.13), (1.6), and (1.2) yield the conclusion of the lemma.
For aER3 and 0 < r < oo we set

(1.14) B(a, r) = {xER3:\x-a\^ r}.

If X is a set and /: X-+R is a function we write

(1.15) sup(/,X) = suρremum{/(x): x EX}.

LEMMA 1.2. Let /: J3(α, r)—»R be a smooth function and let
β(b,r/4)Cδ(α,r). Then

\ | / | 2 ^ Cr 2([ |D/|2)-fCr3sup(|/|2,B(6,r/4)).
jB(a,r) \jB(a,r) I

Proof. Let % be the set of lines L passing through b. Let μ be the
rotation invariant Radon measure on i? that satisfies μ ( i ? ) = 1. For
each L E ££ the fundamental theorem of calculus yields

f i/i2

\ \Df\\Df\
(B(a,r)-B(b,r/4))ΠL
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Hence

ί |/NCr2f (ί \f\ήdμ

^CrΛ (ί \Df\ήdμ
JX \J (B(a,r)-B(b,r/4))ΠL /(B(a,r)-B(b,r/4))ΠL

+ Cr3 sup (I /12, B(b,r/4))

f \Df\ή
B(a,r)-B(b,r/4) /

+ Cr3 sup (I /12, B (b, r/4)).

2. The basic estimate. Throughout this section we fix 0 <
do < (length (Jq))m, where Jq is the interval in the hypotheses of Theorem
1, and we fix JC0Ei?3. We define u: R3x [- 1,0)-+R3 by

(2.1) w(x, t)= dov(xo+ dox, to+d2

ot),

where t0 is the right endpoint of Jq as in Theorem 1, and observe that u
satisfies the Navier-Stokes equations with viscosity 1 in the same way as
v. Therefore Lemma 1.1 allows us to use the identity

(2.2) Ui{x,t)
JR

- J 3 UiUkφ[ijk

for - 1< t < 0, where

(2.3) φ'(y,s)=φ(y-x,s- t), ψ'(y, s) =ψ(y-x,s- t).

We also set

Ap={(y,s)ER3xR:\y\^l-2-^2-2"-l^s<0}

Bp={(y,s)ER3xR: 1 -21'" S \y \ ̂  1 + 2'-",- 1 S s SO}

C,={(y,s)ei?3xi?:-lSsgί}

(2.4)
V ' D = { ( y , s ) 6 Λ ' x Λ : |y | ̂  3/2,-1 ̂  s SO}

F = {y e Λ 3 : | y | s :
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for p = 1,2,3, and - 1< t < 0. In addition we set

(2.5) Ao = 0 , B-2 = B-i = Bo = B1.

LEMMA 2.1. There exist absolute constants C2, C3 swch

I iι(x, 01 S C3(f + 1)"1/2 ί I ii(y, - 1)|2(1 + | y \y*dy
JR3

+ C3(t +1)"3/2 ί I u (y, s) |2 (1 +1 y \T4dyds
Jc,

+ C3(ί + l)-I/2f |D«(y,-l)|2ίίy

(2-6) , ,
|D« | 2 )

BiΠC, /

p =

+ C2(Σ 2"P sup (I u |2, Λp Π C,)) + C2-'2-12

// (x, t) G An+1 - Λn for n ^ O .

Proo/. We fix (x, ί) E An+1 - An and define φ', (/f' as in (2.3). We
set

(2.7) Gp = {(y, 5 ) e l ? 3 x i ? : | y - j c | ^ 21"', ί - 2"2p ^ 5 ^ r}

for integers p ^ 2. We have

(2.8) G π + 4 C G B + 3 C A n + 2 n C ,

The integer m is defined by the relation

(2.9) 24"2(m-1) > ί + l g 24~2m.

The requirement (JC, r) G An+1, (2.9), and r + 1 < 1 yield

(2.10) 3 g m ^ n + 3,GpCC; for p ^ m.

For p G {2,3,4, } the point xp G R3 is defined as follows: If JC^ 0 then
xp = x - 3 2" !"p I JC I"1*, and if JC = 0 we choose JCP so that | xp | = 3 2"1~p

holds. We then set
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Hp = {(y,s): Iy - x p \^2~χ->, t-2~Zp^s^ t}.

Then HPCGP holds and (2.9), (2.10), a n d | x | < l yield

(2.11) HpCApnC, for p^m.

We set C's= i ? 3 x {s}. For s £ [ ί - 2~2p, t] Lemma 1.2 yields

(2.12) J G , n J M | 2

^ C2-2p ( ί I Du \2) + C2"3" sup (I u \\ Hp Π C's).
\jGp nc's I

Integration of (2.12) with respect to s and (2.11) yield

(2.13) f \u\2^C2-2p(ί |Dw|2)+C2-5psup(|w|2,ApnC,) if p ̂  m.
J Gp \J GP 1

Observing Gm+ι CGmCBuBίUD = Co, D Π G m = 0 , w e let /„ /2, /3 be
smooth functions from C, into [0,1] such that /i + /2 + f3 = 1, /j(y, s) = 1
for ( y , s ) £ B l 5 /!(y,5) = 0 for ( y , 5 ) ^ D , /2(y,s) = 0 for ( y , 5 ) ^ B 1 ?

/2(y, 5) = 0 for (y, s)eGm+u /2(y, 5) = 1 for (y, s)£ D U Gm, |D/2(y, s) | ^
C for (y, s) G D Π Bu \ D/2(y, s ) | ^ C2 m for (y, 5) G Gm - Gm + 1, /3(y, 5) =
0 for (y, 5) ̂  Gm and /3(y, 5) = 1 for (y, 5) G G m + ! (note that / is defined
only on Ct). Using (1.5) and x G An+1 we obtain

(2.14)

DΠC,

I u(y, s) |21 y\-'dyds.

We use integration by parts, (1.7), (1.5), the inequality ab
ea2/2 + e-ιb2/2, (2.13), and (2.9) to estimate

I uμ^φ'U + I ί Wφ'fa
Jc, I Jc,

+ UjUkyJψ[ιkf2 + UjUkψ[tkf2j
Jc, Jc,

\J{BιΓliΠC,)-Gw+i
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jGm-Gm + l

c ( 7 | « | 2 ) + c ί \u\224n

VJβinG / JGm

C23m(ί \Du\2)
\J BiΠC, )

+ C2 2 m (ί I Du \2) + C2~m sup (I u |2, Am Π C,)

| w | | D κ | 2 3 m ) +

\u\2)+

1

BiΠO

C(ί + 1Γ'2M \Du\2

) BiΠCt

+ C22m (ί I Du \2) + C2~m sup (I u \\ Am Π Q).

We use (2.10), (1.5), (2.13), (2.8), and (2.10) to estimate

w7w,φ;;/3 + UjUkφ[l}k)
Jc, Jc,

f ί
= m J Gp — Gp+1

\u\\\Dφ'

(2.16)

c ' | + |D>' |)sup(|u | 2 ,σ π + 4 )

Σ 22' ί I DM | 2)+ C(Σ 2-' sup(|M \\ Ap (Ί C,)
= m J Gp I \p = m

C2-"sup(\u\2,An+2DQ)

f I Du \2) + C (Σ 2-" sup (I u |2, Ap Π C,))
J GP / \p = l /
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Combining (2.14), (2.15), (2.16), (2.10), 0<t + ]
we obtain

U Uiφ' + I UjUkψ'ιlk

Jc ' Jc,

g C ( ί + l ) ' 3 / 2 f |w(y,s)|2(l + |
J c,

\) BiΠC, I

\Du

1, and fλ + f2 + /3 = 1

p = m J G

Since (JC, t) <£ Am we know that either (I) | JC | ^ 1 - Tn or (II) t + 1 ̂  2"2n

holds. If (I) is satisfied then Gp C JBP_4 for m ^ p ^ n + 3 (see (2.4), (2.5),
(2.7), (2.10), and use (x,t)EAn+1) and hence (see (2.5))

(2.18) § 2 2 p ί
Ό — m J G p = l

I D M

if ( I ) h o l d s . If, o n t h e o t h e r h a n d , ( I I ) h o l d s t h e n ( 2 . 9 ) y i e l d s m^n
a n d h e n c e ( 2 . 9 ) , ( 2 . 1 0 ) , a n d ( 2 . 7 ) y i e l d

(2.19) \Du
B i (Ί Gp = m J GP

if (II) holds. Hence (2.18), (2.19), and 0 < t + 1< 1 yield

(2.20) 2 22p [ I DM |2 ϋ C ( § 22p ί | DM | 2) + C(ί + I)"3 '2 ί | DM
p = m J GP \p = l J Bp I J β i Π G

Let gj, g2 be smooth functions from R3 into [0,1] such that (see (2.4))
gi + g 2 = l , g\ = 1 outside F, g2 = 1 outside E, \Dgλ\^C, and
C Using (1.1) {not (1.5)) we estimate

(2.21) ί Wι(y,-l)</>'(y,- | iι(y, - 1)| |y |"

We use the inequality
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valid for smooth functions /: R^—>R with compact support [3, p. 12],
Holder's inequality, and (1.1) to compute

u,(y,-l)φ'(y,-Vg2(y)dy

\g2(y)u{y,-l)\\φ'(y,-l)\dy

(2.22)
( | D g 2 ( y ) | | u ( y , - l ) |

\ 1/2

\g2{y)\\Du{y,-\)\fdy) (t + 1)"

u(y,-l)\2dy)"2\-l/4

5/6

iDMίy,-!)!2^

Now we combine (2.17), (2.20), (2.21), (2.22), gt + g2= 1, and (2.2) to
write

(2.23)

\u(y,-l)\\yrdy

+ C2(t + I)" 1 ' 4

+ C 2(ί + 1)"3/2

+ C2(f + I)" 3 ' 2

|Du(y,-l)|V
1/2

C2 ί y 22p\
\ p = 1 J BP

BiΠC,

Du

U,nc,)),

where C2 is fixed (see §1). For e > 0 we can use the inequality
ab ^ βα2/2+ €~V/2 to write
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(2 24) = j (I « ( y , - 1 ) | Iy|"2)(I

\y\~4dy)

and, for w = u or w = DM,

(2.25)

^(€-V2)(ί + i r 1

Since | y |~4dy is finite and C2 is fixed, we can choose e > 0 so that
JE

(2.26) C2 ((e/2) ( £ | y |"Vy) + e) ̂  C j^""

holds. Now (2.23), (2.24), (2.25), (2.26), and 0 < t + 1 < 1 yield (2.6).

LEMMA 2.2. There exists an absolute constant e > 0 such that the
following holds: If the conditions

f
c,

( 2 2 7 ) (ί + i
BiΠC,

ί
JB

2p

JBP

are satisfied for all t E (— 1,0) and p E {1,2,3, } then u can be extended
continuously to the closure of Aλ in R3x R.

Proof We choose e > 0 so that

(2.28) (12) C3e ^ C^l'12

holds (see Lemma 2.1). Let /: U^=i Aπ —> R+ be a continuous function
satisfying
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(2.29) C?2-w^f(x,t)^C?2*-Ί if (x,t)GAn+ι-An,

where n ̂  0 (see (2.5)). We wish to show that (2.27) implies

(2.30) I u (x, t) I ^ f(x, t) for all (x,t)E (j An.
n = l

Assume, to the contrary, that (2.27) holds but (2.30) does not. Since u is
continuous on R3 x [ - 1,0) (see first paragraph of §2) and the continuous
function /(x, t) tends to oo as (x, t) tends to

{(x, - 1): I x I ̂  1} U {(*, f): I * I = 1, - 1 ̂  * < 0},

there must exist (x, ί )G U : = 1 A n such that (2.31) and (2.32) hold:

(2.31) I ii(x, f)| = /(*,*)

(2.32) |w(y,s) |g/(y,5) if ( y , s ) E U A n and s^t.
n = \

Taking the limit as t tends to - 1 in (2.27) and using Fatou's lemma we
obtain (recall (2.4))

f | W (y,- l ) | 2 ( l + |y |)- 4dyg6,
JR3

(2.33)

ί \Du(y,-ί)\2dy^e.
JF

We define n by the condition (JC, t) G An+1 - An and use Lemma 2.1,
(2.33), (2.27), (2.32), the inequality ί + U 2~2(n+ι) (which follows from
(x, t)eAn+t), (2.29), (2.28), and n g 0 to write

+ C2 ( ξ 2"' sup (/2, Ap Π C,)) + Cί'2ί'2-'2

(2-34) 3

^ C 3 2 n + 3 e + C 3 2 n + 2 e + C 2 I Σ 2-"(C2-
12 f>-8)2)

\p=\ I
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However, (2.34) contradicts (2.31) since \u(x,t)\ = f(x,t) is
positive. Hence (2.27) implies (2.30).

We set A = 5(0,1/4) x [-3/16,0) (see (1.14)). From (2.30) and
(2.29) we conclude that | u | is bounded on A2. Hence the integrability of
Dφ and D 3 ψ o n Λ (see (1.5)), the boundedness of Dφ, D3ψ outside A,
(1.6) and (1.1) allow us to extend the domain of definition of u to include
the closure of A λ by substitution of / = 0 in (2.2). The above integrabil-
ity property allows us to construct infinite sequences of continuous
functions mfj and mgijk for m = 1,2,3, and i, /, k £ {1,2,3} such that the
restrictions of "f and mgijk to A converge as m -» °o to φ; and ψtiik,
respectively, in the L 1 norm; and such that mfh

 mgijk coincide with φh ψJjk

outside A. We use (1.1), (1.5), (1.6) to define

Λui(x,t)=f u. (y,-i)Φ'(y,-i)dy
JR3

jR3x[-l,t)

for - K / S O , where φ' is as in (2.3), mf'j(y,s) = mfί(y - x,s -1\
mg'ijk(y, s) = mgijk(y — JC, s — ί) The statements in this paragraph and (2.2)
imply that mu converges to u uniformly on the closure of Ax. The
conclusion of the lemma follows because each mu is continuous.

3. The basic estimate and Hausdorff measure. As
before, Jq is the interval in Theorem 1, and its right endpoint is t0. We
recall (1.14) and we define S(a, r) = {x G R3: \x - a | = r) for aE R3.
The integral of / over S(a,r) with respect to area measure will be

denoted f(x)dx for simplicity.
)s(a,r)

LEMMA 3.1. There exists an absolute constant δ > 0 such that the
following holds: If x0£ R3, 0 < d < (length (Jq))υ\ and condition

(3.1)

t0 ί \v(x,t)\2(l + \x-x0\/d)-*dxdt
to-d2 JR3

ί'° ί \Dv(x,t)\2dxdt^δd
Jto-d2 jB(xo,2d)

is satisfied then v can be extended continuously to (R3 x Jq) U (V x {ί0}),
where V is a neighborhood of x0 in R3.



SOLUTIONS TO THE NAVIER-STOKES EQUATIONS 549

Proof. We fix x0 G R3 and 0 < d < length {Jqf\ and define func-
tions ku k2: R -»{ί E R: t ^ 0} by (see first paragraph of §3)

fc,(0 = a'2 ί \υ(x, ί)Γ(l + Ix - xo\/dy4dx

+ ί |Dϋ(x,ί)l2^ if ίe( ί o -d 2 , ί o ) ,
J B(xo,2d)

(3.2)

fc2C-)=ί'° ί |2>ϋ(jc,O|2<ίxΛ if r£(0,2d),
Jto-d2 JS(JO,Γ)

fc,(ί) = 0 = Jk2(r) if t£(to-d\to) and rέ(0,2d).

We let Mfc, be the cubic Hardy-Littlewood maximal function of fc, [9, p.
53]. That is,

(3.3) M/c,(α) = sup{(26)-1 f Jk,(c)dc: 0 < b< »}.

We let || Id denote the L1 norm and | | denote Lebesgue measure. The
Hardy-Littlewood theorem for L1 [9, (3.5) on p. 55] implies that (3.4)
holds for some absolute constant C4:

\A\^d2/8 where A = {t: Mkι(t)> C^VδHIMiK
(3.4)

\B\£d/8 where B = {r: Mk2(r)> C^d/β)"1 ||fc2||i}.

W e h a v e \{e G [d/2, d]: t0- e2e A}\ ^ d~ι\A \ g d / 8 . T h i s a n d (3.4)
imply the existence of d0E[d/2, d] such that to-dl£A and
do £ B. Now (3.2), (3.3), and (3.4) yield

(3.5) (26)-1 fh~d°+b

d-2 Γ l o ^ i j ^ i + i x - j
Jta-dl JR3

(2by\ \Dv(x,t)\2dxdt
Jto-do JB(xo,2d)

C4d~2||/c1||1 for 0<b<d2

0,

(2brΓ ί \Dυ(x,t)\
Jto-d2 J do-b^\x-xo\^do+b

(3.6)

Defining M by means of (2.1), using ά/2 ̂ do^d, rewriting (3.5) and (3.6)
in terms of u, and recalling (2.4), we obtain (3.7) and (3.8):
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(3.7) (ί + i r ί \u(y,s)\2(l + \y\Γdyds
J C,

+ (ί + I)"1 \Du(y, s)\2dyds
J BxΠCt

^Cd~ι\\kx% for - K K O ,

(3.8) 2 p f \Du\2^Cd-ι\\k2% for p = l,2,3,
Jβp

From (3.2) we obtain

x -(3.9) = W ° ί I U(JC, ί)|2(

+ ί'° ί \Dυ{x,t)\2dxdt.
Jto-d2 JB(xo,2d)

Now (3.7), (3.8), and (3.9) imply the existence of an absolute constant
δ > 0 such that (3.1) yields (2.27). The conclusion of the lemma follows
from Lemma 2.2.

We fix the constant 8 in Lemma 3.1 and set

(3.10) Q ={(X(h2d)<ΞR3x (0,2(length(Jq))m): (3.1) does not hold}.

LEMMA 3.2. There exists a finite constant N that depends only on CΊ
(see (1.6)) such that the following holds: If

(3.11) 0<c/<(length(/ i?))1/2,fiCi?3,(fe,2i/)GO if b E B,
{B(b, 2d): b E B) is a family of disjointed sets

is satisfied then the number of points in B is at most N/d.

Proof Let (3.11) hold. The disjointedness hypothesis implies that
(3.12) holds for some absolute constant C5:

(3.12) Σ (l + \x-b\/d)-4^C5 for every x ER\
bEB

Now (3.11), (3.10), (3.12), and (1.6) yield

δd (cardinality of B)
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+

W ° ί \v(x,t)\2(l + \x-b\/dy4dxdt
B Jto-d2 J R3

Σ P \ ί \Dυ(x,t)\2dxdt
b<=B Jto-d2 JB(b,2d)

5d-2[° ί \v{x,t)\2dxdt

P f iDviXiOfdxdt^CsQ+Q.
Jto-d2 JR3

Hence we can set N = (C5CΊ + CΊ)/δ.

The following lemma is a consequence of the Besicovich covering
theorem [2, 2.8.14, 2.8.9].

LEMMA 3.3. There exists an integral absolute constant K with the
following property: If 0 < d < °° and A CR3 then there exist YkCA for
k = l,2,-;Ksuch that (I) and (II) hold:

(I) Λ C U {β(y,2d) :ye y

(II) For each k, {B(y,2d): y E Yk} is a family of disjointed sets.

We can now finish the proof of Theorem 1. Let A be the set of
points XQER3 such that (3.1) fails to hold for every d satisfying
0 < d < (length (Jq))m. Lemma 3.1 implies that there exists an open set
U CR3 such that A U U = R3 and υ can be extended to a continuous
function on

(R3xJq)U(Ux{t0}).

We set S = R3- U. Since S CA, all tht remains to show is that the 1
dimensional Hausdorff measure of A is at most 4KN.

It suffices to show [2, p. 171] that for every 0< d < (length {Jq))m

there exists YCR3 such that

A C U{B(y,2d): y E Y}
and

Σ diameter (B(y,2d))^4KN.

We apply Lemma 3.3 to find sets Yk CA satisfying (I) and (II). Lemma
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3.2, (3.10), and the definition of A yield ΣyeYk(4d)^4N for each
k. Hence, setting Y = Uf^ Yk, we obtain ΣyEY(4d) ^ 4KN. Theorem
1 is proved.
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