ON A CLASS OF UNBOUNDED OPERATOR ALGEBRAS II

Atsushi Inoue

In this paper we continue our study of unbounded operator algebras. On the basis of the space $L^{\infty}[0,1]$ introduced by R. Arens [1] we define and investigate unbounded Hilbert algebras. The primary purpose of this paper is to investigate the relation between unbounded Hilbert algebras and EW^* -algebras and the structure of some EW^* -algebras.

1. Introduction. In a previous paper [10] we began our study of EW^* -algebras. For the definitions and the basic properties concerning EW^* -algebras is referred to [10]. It is well known that semifinite von Neumann algebras are related to Hilbert algebras. That is, if \mathcal{D}_0 is a Hilbert algebra, then the left von Neumann algebra $\mathcal{U}_0(\mathcal{D}_0)$ is defined and $\mathcal{U}_0(\mathcal{D}_0)$ is a semifinite von Neumann algebra and conversely if \mathfrak{A} is a semifinite von Neumann algebra, then there exists a Hilbert algebra \mathcal{D}_0 such that \mathfrak{A} is isomorphic to the left von Neumann algebra $\mathcal{U}_0(\mathcal{D}_0)$. In this paper we study the above facts about EW^* -algebras. So, our starting point will be the extension of Hilbert algebras.

DEFINITION 1.1. Let \mathcal{D} be a pre-Hilbert space with inner product (|) and a * -algebra. If \mathcal{D} satisfies the following conditions (1) ~ (3);

(1) $(\xi \mid \eta) = (\eta^* \mid \xi^*), \quad \xi, \eta \in \mathcal{D};$

(2) $(\xi\eta \mid \zeta) = (\eta \mid \xi^*\zeta), \quad \xi, \eta, \zeta \in \mathcal{D};$

By (2) we define $\pi(\xi)$ and $\pi'(\eta)$ by;

$$\pi(\xi)\eta = \pi'(\eta)\xi = \xi\eta, \quad \xi,\eta \in \mathcal{D}.$$

Then $\pi(\xi)$ and $\pi'(\eta)$ are closable operators on \mathscr{D} and we have $\pi(\xi)^* \supset \pi(\xi^*)$ and $\pi'(\eta)^* \supset \pi'(\eta^*)$. We call π (resp. π') the left (resp. right) regular representation of \mathscr{D} .

(3) Putting

$$\mathcal{D}_0 = \{\xi \in \mathcal{D}; \pi(\xi) \text{ is continuous}\},\$$

 \mathscr{D}_0^2 is dense in \mathscr{D} , then \mathscr{D} is called an unbounded Hilbert algebra over \mathscr{D}_0 . In particular, if $\mathscr{D}_0 \neq \mathscr{D}$, then \mathscr{D} is called a pure unbounded Hilbert algebra over \mathscr{D}_0 .

In §2 we investigate the properties of unbounded Hilbert algebras and we introduce examples of such unbounded Hilbert algebras $(L^{\omega}[0, 1],$

 $L^{\omega}(-\infty,\infty), L_{1}^{\omega}(-\infty,\infty), L_{2}^{\omega}(-\infty,\infty), L_{1}^{\omega}(G), L_{2}^{\omega}(G)$ (G; unimodular locally compact group)).

In §3 we consider the noncommutative integration with respect to a von Neumann algebra as constructed by Segal in [14]. Let \mathscr{D} be a pure unbounded Hilbert algebra over \mathscr{D}_0 . Then $L^{\omega}(\mathscr{D}_0)$ and $L^{\omega}_2(\mathscr{D}_0)$ are defined and they are pure unbounded Hilbert algebras. In particular, $L^{\omega}_2(\mathscr{D}_0)$ is maximal in pure unbounded Hilbert algebras containing \mathscr{D}_0 . Furthermore \mathscr{D}^2 (resp. \mathscr{D}) is a *-subalgebra of pure unbounded Hilbert algebra \mathscr{D} on the second defined and they are pure unbounded Hilbert algebra \mathscr{D} of a pure unbounded Hilbert algebra \mathscr{D} over \mathscr{D}_0 , i.e., $\mathscr{U}(\mathscr{D})$ is a minimal EW^* -algebra on $L^{\omega}_2(\mathscr{D}_0)$ over $\mathscr{U}_0(\mathscr{D}_0)$ and $\mathscr{U}(\mathscr{D}) \supset \pi(\mathscr{D})$, where we denote by \overline{A} the smallest closed extension of a closable operator A and we put $\overline{\mathfrak{A}} = \{\overline{A}; A \in \mathfrak{A}\}$ (Theorem 3.10.).

In §4 we define traces on EW^* -algebras and we investigate the structure of some EW^* -algebras.

DEFINITION 1.2. Let \mathfrak{A} be an EW^* -algebra and let φ be a map of \mathfrak{A}^+ into $[0,\infty]$. If φ satisfies the following conditions (1) ~ (3), then φ is called a trace on \mathfrak{A}^+ ;

- (1) $\varphi(S+T) = \varphi(S) + \varphi(T), \quad S, T \in \mathfrak{A}^+;$
- (2) $\varphi(\lambda S) = \lambda \varphi(S), \qquad \lambda \ge 0, \ S \in \mathfrak{A}^+;$
- (3) $\varphi(S^*S) = \varphi(SS^*), \qquad S \in \mathfrak{A}.$

If the conditions $\varphi(S) = 0$, $S \in \mathfrak{A}^+$ implies S = 0, then φ is called faithful. If, for each increasing net $\{T_{\alpha}\}$ of \mathfrak{A}^+ that converges σ -weakly to $S \in \mathfrak{A}^+$ (hereafter we denote $T_{\alpha} \uparrow S$), we have $\varphi(T_{\alpha}) \uparrow \varphi(S)$, then φ is called normal. If $\varphi(S) < \infty$ for every $S \in \mathfrak{A}^+$, then φ is called finite. If, for each $S \in \mathfrak{A}^+$, there exists a net $\{T_{\alpha}\}$ such that $T_{\alpha} \uparrow S$ and $\varphi(T_{\alpha}) < \infty$, then φ is called semifinite.

Let $\mathcal{U}(\mathcal{D})$ be the left EW^* -algebra of a pure unbounded Hilbert algebra \mathcal{D} over \mathcal{D}_0 . Then there exists a faithful normal semifinite trace φ on $\mathcal{U}(\mathcal{D})^+$ such that $\varphi/\mathcal{U}(\mathcal{D})_b^+$ equals the natural trace on $\mathcal{U}_0(\mathcal{D}_0)^+$ and $\mathcal{U}(\mathcal{D})(\mathfrak{N}_{\varphi})_b \subset \mathfrak{N}_{\varphi}$ (we note $\mathfrak{N}_{\varphi} = \{T \in \mathcal{U}(\mathcal{D}); \varphi(T^*T) < \infty\}$ and $(\mathfrak{N}_{\varphi})_b =$ $\mathfrak{N}_{\varphi} \cap \mathcal{U}(\mathcal{D})_b$) (Theorem 4.2.). Conversely if \mathfrak{A} is an EW^* -algebra with a faithful normal semifinite trace φ satisfying $\mathfrak{A}(\mathfrak{N}_{\varphi})_b \subset \mathfrak{N}_{\varphi}$, then \mathfrak{N}_{φ} is a pure unbounded Hilbert algebra over $(\mathfrak{N}_{\varphi})_b$ and \mathfrak{N} is isomorphic to the left EW^* -algebra $\mathcal{U}(\mathfrak{N}_{\varphi})$ of \mathfrak{N}_{φ} (Theorem 4.11.).

2. Unbounded Hilbert algebras. In this section let \mathcal{D} be a pure unbounded Hilbert algebra over \mathcal{D}_0 and let \mathfrak{H} be the completion of \mathcal{D} . Clearly \mathcal{D}_0 is a Hilbert algebra and the completion of \mathcal{D}_0 is a Hilbert space \mathfrak{H} . For each $x \in \mathfrak{H}$ we define $\pi_0(x)$ and $\pi'_0(x)$ by;

$$\pi_0(x)\xi = \overline{\pi_0'(\xi)}x, \qquad \xi \in \mathscr{D}_0$$

 $\pi_0'(x)\xi = \overline{\pi_0(\xi)}x, \qquad \xi \in \mathscr{D}_0,$

where π_0 (resp. π'_0) is the left (resp. right) regular representation of the Hilbert algebra \mathfrak{D}_0 . Then $\pi_0(x)$ and $\pi'_0(x)$ are linear operators on \mathfrak{H} with domain \mathfrak{D}_0 . By ([12] Theorem 3) we have

$$\overline{\pi_0(Jx)} = \pi_0(x)^*, \qquad \overline{\pi_0'(Jx)} = \pi_0'(x)^*$$

for all $x \in \mathfrak{H}$, where J denotes the involution of \mathfrak{H} .

LEMMA 2.1. For each
$$\xi \in \mathcal{D}$$
 we have
(1) $\underline{\pi(\xi)} = \pi_0(\xi), \ \overline{\pi'(\xi)} = \pi'_0(\xi);$
(2) $\pi(\xi^*) = \pi(\xi)^*, \ \pi'(\xi^*) = \pi'(\xi)^*.$

Proof. (1); Clearly we get $\pi_0(\xi) \subset \pi(\xi)$. Hence $\pi_0(\xi)^* \supset \pi(\xi)^*$. Since $\pi_0(\xi)^* = \overline{\pi_0(\xi^*)}$ and $\pi(\xi)^* \supset \pi(\xi^*)$, we have

$$\overline{\pi_{\scriptscriptstyle 0}(\xi)} = \pi_{\scriptscriptstyle 0}(\xi^*)^* \supset \pi(\xi^*)^* \supset \overline{\pi(\xi)}.$$

Therefore we get $\overline{\pi_0(\xi)} = \overline{\pi(\xi)}$. (2); By (1) we have

$$\overline{\pi(\xi^*)}=\overline{\pi_{\scriptscriptstyle 0}(\xi^*)}=\pi_{\scriptscriptstyle 0}(\xi)^*=\pi(\xi)^*.$$

LEMMA 2.2. For each $\lambda, \mu \in \mathbb{S}$ (the field of complex numbers) and $\xi, \xi_i, \eta, \eta_i \in \mathcal{D}$ (i = 1, 2) we have

$$\pi(\lambda\xi_{1} + \mu\xi_{2}) = \lambda\pi(\xi_{1}) + \mu\pi(\xi_{2});$$

$$\pi(\xi_{1}\xi_{2}) = \pi(\xi_{1})\pi(\xi_{2});$$

$$\pi(\xi^{*}) \subset \pi(\xi)^{*};$$

$$\pi'(\lambda\eta_{1} + \mu\eta_{2}) = \lambda\pi'(\eta_{1}) + \mu\pi'(\eta_{2});$$

$$\pi'(\eta_{1}\eta_{2}) = \pi'(\eta_{2})\pi'(\eta_{1});$$

$$\pi'(\eta^{*}) \subset \pi'(\eta)^{*}.$$

Putting

$$\pi(\xi)^{*} = \pi(\xi^{*}), \qquad \pi'(\eta)^{*} = \pi'(\eta^{*}),$$

 $\pi(\mathcal{D})$ and $\pi'(\mathcal{D})$ are #-algebras on \mathcal{D} and we have the following properties;

(1)
$$\pi(\mathscr{D})_b = \pi(\mathscr{D}_0), \quad \pi'(\mathscr{D})_b = \pi'(\mathscr{D}_0);$$

ATSUSHI INOUE

(2)
$$J\pi(\xi)J = \pi'(\xi)^*$$
, $J\pi'(\xi)J = \pi(\xi)^*$, $\xi \in \mathcal{D}$;
(3) $\pi(\xi)\pi'(\eta) = \pi'(\eta)\pi(\xi)$, $\xi, \eta \in \mathcal{D}$;
(4) $\overline{\pi(\xi)^*} = \pi(\xi)^*$, $\overline{\pi'(\xi)^*} = \pi'(\xi)^*$, $\xi \in \mathcal{D}$.

Hence we get

$$\overline{\pi(\mathscr{D})_b''}=\mathscr{U}_0(\mathscr{D}_0), \quad \overline{\pi'(\mathscr{D})_b''}=\mathscr{V}_0(\mathscr{D}_0),$$

where $\mathcal{U}_0(\mathcal{D}_0)$ (resp. $\mathcal{V}_0(\mathcal{D}_0)$) is the left (resp. right) von Neumann algebra of \mathcal{D}_0 .

PROPOSITION 2.3. For each $\lambda \in \mathbb{S}$ and $\xi, \eta \in \mathcal{D}$ we have

$$\overline{\pi(\xi)} + \overline{\pi(\eta)} = \overline{\pi(\xi + \eta)}, \quad \overline{\pi(\xi)} \cdot \overline{\pi(\eta)} = \overline{\pi(\xi\eta)},$$
$$\lambda \cdot \overline{\pi(\xi)} = \overline{\pi(\lambda\xi)}, \quad \overline{\pi(\xi)}^* = \overline{\pi(\xi^*)}.$$

Therefore $\pi(\mathcal{D})$ is a *-algebra of closed operators on \mathfrak{H} under the operations of strong sum, strong product, adjoint and strong scalar multiplication. Similarly $\pi'(\mathcal{D})$ is a *-algebra of closed operators on \mathfrak{H} . Furthermore we have

$$\overline{J\pi(\xi)}J = \pi'(\xi)^*, \quad \overline{J\pi'(\xi)}J = \pi(\xi)^*, \quad \xi \in \mathcal{D}.$$

Proof. By Lemma 2.1. we have $\overline{\pi(\xi)} = \pi(\xi^*)^*$ for every $\xi \in \mathcal{D}$ and hence

$$\overline{\pi(\xi)} + \overline{\pi(\eta)} = \overline{\overline{\pi(\xi)} + \overline{\pi(\eta)}} = \overline{\pi(\xi^*)^* + \pi(\eta^*)^*}$$
$$\subset (\pi(\xi^*) + \pi(\eta^*))^* = \pi((\xi + \eta)^*)^*$$
$$= \overline{\pi(\xi + \eta)},$$

and so $\overline{\pi(\xi)} + \overline{\pi(\eta)} = \overline{\pi(\xi + \eta)}$. Similarly $\overline{\pi(\xi)} \cdot \overline{\pi(\eta)} = \overline{\pi(\xi)} \overline{\pi(\eta)} = \overline{\pi(\xi)} \overline{\pi(\eta)} = \overline{\pi(\xi)} \pi(\xi)$ and $\lambda \cdot \overline{\pi(\xi)} = \overline{\pi(\lambda\xi)}$ are showed. By Lemma 2.2 (2) we have $J\pi(\xi)J = \pi'(\xi)^*$, $\xi \in \mathcal{D}$ and hence $\overline{J\pi(\xi)J} = \overline{\pi'(\xi)^*} = \overline{\pi'(\xi)^*}$ by Lemma 2.1. On the other hand we can easily show $\overline{J\pi(\xi)J} = \overline{J\pi(\xi)J}$. Therefore we have $\overline{J\pi(\xi)J} = \pi'(\xi)^*$.

Problem. Does there exist an EW^* -algebra \mathfrak{A} such that $\overline{\mathfrak{A}}_b = \mathcal{U}_0(\mathcal{D}_0)$ and $\overline{\mathfrak{A}} \supset \overline{\pi(\mathcal{D})}$?

414

In §3 we show that there exist such EW^* -algebras. In particular, there exists an EW^* -algebra such that is minimal in such EW^* -algebras and we call it the left EW^* -algebra of \mathcal{D} .

We introduce examples of unbounded Hilbert algebras.

(1) $L^{\omega}[0,1]$. Let $L^{\omega}[0,1]$ be the set of all complex-valued measurable functions f on [0,1] such that $f \in L^{p}[0,1]$, $p = 1, 2, \cdots$. By the whole collection of L^{p} -norms

$$||f||_p = \left[\int_0^1 |f(t)|^p dt\right]^{1/p}, \qquad p = 1, 2, \cdots$$

and by pointwise multiplication and involution $(f^*(t) = f(t), t \in [0, 1])$ the space $L^{\omega}[0, 1]$ is a complete metrizable locally convex *-algebra with jointly continuous multiplication. R. Arens [1] showed $L^{\omega}[0, 1]$ is not a locally *m*-convex algebra. However, G. R. Allan [2] showed that $L^{\omega}[0, 1]$ is a *GB**-algebra with $(L^{\omega}[0, 1])_0 = L^{\infty}[0, 1]$. We introduce the inner product into $L^{\omega}[0, 1]$ by;

$$(f \mid g) = \int_0^1 f(t) \overline{g(t)} dt, \quad f, g \in L^{\omega}[0, 1].$$

Then $L^{\infty}[0,1]$ is regarded as a pure unbounded Hilbert algebra over $L^{\infty}[0,1]$.

(2) $L^{\omega}(-\infty,\infty)$. Let $L^{\omega}(-\infty,\infty)$ be the set of all complex-valued measurable functions f on $(-\infty,\infty)$ such that $f \in L^{p}(-\infty,\infty)$ for every real number $p \ge 1$. Under the following operations

$$(fg)(x) = f(x)g(x), \quad (\lambda f)(x) = \lambda f(x),$$

 $f^*(x) = \overline{f(x)}$

and inner product $(f \mid g) = \int_{-\infty}^{\infty} f(x)\overline{g(x)}dx$, we can show that $L^{\omega}(-\infty,\infty)$ is a pure unbounded Hilbert algebra.

(3) $L_1^{\omega}(G)$ and $L_2^{\omega}(G)$. Let G be a unimodular locally compact group and let dx be a Haar measure on G. Let $L^p(G)$ be the Banach space of measurable functions f on G for which the norm

$$\|f\|_{p} = \left[\int_{G} |f(x)|^{p} dx\right]^{1/p}, \quad 1 \leq p < \infty,$$
$$\|f\|_{\infty} = \operatorname{ess\,sup} |f(x)|$$

is finite. We note

L(G); the space of complex-valued continuous functions with compact supports,

$$L^{\omega}(G) = \bigcap_{1 \le p \le \infty} L^{p}(G), \quad L^{\omega}_{1}(G) = \bigcap_{1
$$L^{\omega}_{2}(G) = \bigcap_{1$$$$

Under the convolution f * g as multiplication, involution f^* ($f^*(x) = \overline{f(x^{-1})}$) and inner product (f | g) = $\int_G f(x)\overline{g(x)}dx$ on $L^2(G)$, $L^{\omega}(G)$ is a Hilbert algebra and $L^{\omega}(G)$ and $L^{\omega}(G)$ are unbounded Hilbert algebras. In fact, suppose $f \in L^p(G)$ and $g \in L^q(G)$ ($1/p + 1/q \ge 1$). Then by Young's inequality f * g exists and $||f * g||_r \le ||f||_p ||g||_q$ where 1/r = 1/p + 1/q - 1. Furthermore, for each $f \in L^p(G)$ ($1 \le p < \infty$) we have $||f^*||_p = ||f||_p$. Therefore we can easily show that $L^{\omega}(G)$, $L^{\omega}(G)$ and $L^{\omega}_2(G)$ are *-algebras. Since $L(G) \subset L^{\omega}(G) \subset L^1(G) \cap L^2(G)$ and L(G), $L^1(G) \cap L^2(G)$ are Hilbert algebras, $L^{\omega}(G)$ is clearly a Hilbert algebra. We can easily show that $(f | g) = (g^* | f^*)$ and $(f * g | h) = (g | f^* * h)$ for every $f, g, h \in L^{\omega}_1(G)$ (resp. $L^{\omega}_2(G)$). Furthermore we have

$$L^{\omega}(G) \subset (L_1^{\omega}(G))_0$$
 (resp. $L_2^{\omega}(G)_0) \subset L^2(G)$,

and so $(L_1^{\omega}(G)_0)^2$ (resp. $(L_2^{\omega}(G)_0)^2$) is dense in $L^2(G)$. Therefore $L_1^{\omega}(G)$ and $L_2^{\omega}(G)$ are unbounded Hilbert algebras.

Problem. Is an unbounded Hilbert algebra $L_1^{\omega}(G)$ (or $L_2^{\omega}(G)$) pure?

If G is a compact group, then $L^2(G)$ is an H^* -algebra, and so $L^{\omega}_1(G)$ and $L^{\omega}_2(G)$ are Hilbert algebras.

If $G = (-\infty, \infty)$, then

$$L^{\omega}_{1^{\star}}(-\infty,\infty) = \bigcap_{1$$

and

$$L_{2^{\bullet}}^{\omega}(-\infty,\infty) = \bigcap_{1$$

are pure unbounded Hilbert algebras under the following operations and inner product

416

$$(f * g)(x) = \int_{-\infty}^{\infty} f(y)g(x - y)dy,$$
$$(\lambda f)(x) = \lambda f(x), \quad f^*(x) = \overline{f(-x)},$$
$$(f \mid g) = \int_{-\infty}^{\infty} f(x)\overline{g(x)}dx.$$

In fact, we note

$$\pi(f)g = f * g, \quad f,g \in L^{\omega}_{1^*}(-\infty,\infty)$$

and

$$(L_{1}^{\omega}(-\infty,\infty))_{0} = \{f \in L_{1}^{\omega}(-\infty,\infty); \ \pi(f) \text{ is continuous}\}.$$

We have only to show $(L_{1}^{\omega}(-\infty,\infty))_{0} \neq L_{1}^{\omega}(-\infty,\infty)$. By the theory of Hilbert algebras we have

$$(L^{1}(-\infty,\infty)\cap L^{2}(-\infty,\infty))_{b} = \{f \in L^{2}(-\infty,\infty); \ \overline{\pi(f)} \text{ is a bounded} \\ \text{linear operator on } L^{2}(-\infty,\infty)\} \\ = \{f \in L^{2}(-\infty,\infty); \ \hat{f} \in L^{\infty}(-\infty,\infty)\},\$$

where \hat{f} denotes the Fourier transform of f. Clearly we have

$$(L^{\omega}_{1}(-\infty,\infty))_0 \subset \{f \in L^2(-\infty,\infty); \ \hat{f} \in L^{\infty}(-\infty,\infty)\}.$$

Putting

$$f(x) = \begin{cases} 0, & x < 1 \\ \\ 1/x, & x \ge 1 \end{cases}$$

we can show $f \in L^{\omega}(-\infty,\infty)$ and $\hat{f} \notin L^{\infty}(-\infty,\infty)$, and so $L^{\omega}_{1}(-\infty,\infty)_0 \neq L^{\omega}_{1}(-\infty,\infty)$. Consequently $L^{\omega}_{1}(-\infty,\infty)$ is pure.

3. L^{φ} -spaces with respect to noncommutative integration. Our starting point for the construction of L^{φ} -space will be the algebras of operators measurable with respect to a von Neumann algebra as constructed by Segal in [14]. Let \mathfrak{A} be a semifinite von Neumann algebra on a Hilbert space \mathfrak{H} and let φ be a faithful normal semifinite trace on \mathfrak{A}^+ . Let \mathfrak{A}_p and \mathfrak{A}_u , respectively, denote the set of all projections and that of unitary operators in \mathfrak{A} . DEFINITION 3.1. A linear set \mathfrak{D} in \mathfrak{H} is said to be strongly dense (resp. φ -restrictedly strongly dense) provided

(a) $U'\mathfrak{D}\subset\mathfrak{D}$ for every $U'\in\mathfrak{A}'_{u}$;

(b) there exists a sequence of projections $P_n \in \mathfrak{A}$ such that $P_n \mathfrak{H} \subset \mathfrak{D}$, $P_n^{\perp} \downarrow 0$ and P_n^{\perp} is a finite projection (resp. $\varphi(P_n^{\perp}) < \infty$). An operator $T\eta \mathfrak{A}$ is called essentially measurable (resp. φ -restrictedly essentially measurable) if T has a strongly dense (resp. φ -restrictedly strongly dense) domain and a closed extension. Moreover if T is closed, T is called measurable (resp. φ -restrictedly measurable).

LEMMA 3.2. ([11] Lemma 1.1.) Let T be a closed densely defined operator $\eta \mathfrak{A}$. Then;

(1) T is measurable (resp. φ -restrictedly measurable) if and only if so is |T|.

(2) Let $T \ge 0$ and let $T = \int_0^\infty \lambda dE(\lambda)$ be its spectral resolution. T is measurable (resp. φ -restrictedly measurable) if and only if $E(\lambda)^{\perp}$ (= I -

 $E(\lambda)$) is a finite projection (resp. $\varphi(E(\lambda)^{\perp}) < \infty$) for a positive λ .

We denote the set of all operators on \mathfrak{H} measurable (resp. φ -restrictedly measurable) with respect to \mathfrak{A} by $\mathfrak{M}(\mathfrak{A})$ (resp. $\mathfrak{M}(\varphi)$).

PROPOSITION 3.3. ([7] Prop. 4.3.) The sets $\mathfrak{M}(\mathfrak{A})$ and $\mathfrak{M}(\varphi)$ form EW^* -algebras over \mathfrak{A} under the operations of strong sum, strong product, adjoint and strong scalar multiplication.

Let \mathfrak{M}_{φ} be the maximal ideal associated with φ , that is, the set of $A \in \mathfrak{A}$ with $\varphi(|A|) < \infty$. For every $T \in \mathfrak{M}(\mathfrak{A})^+$ we put

$$\mu(T) = \sup_{A \in \mathfrak{M}_{\varphi}, A \leq T} \varphi(A).$$

DEFINITION 3.4. A measurable operator $T\eta \mathfrak{A}$ is said to be *p*th power integrable with respect to φ if $\mu(|T|^p) < \infty$. Let $L^p(\varphi)$ $(1 \le p < \infty)$ stand for the set of *p*th power integrable operators $\eta \mathfrak{A}$. The L^p -norm of $T \in L^p(\varphi)$ is defined as $\mu(|T|^p)^{1/p}$ and designated by $||T||_p$. If $p = \infty$, we shall identify \mathfrak{A} with $L^{\infty}(\varphi)$.

A measurable operator T belongs to $L^{p}(\varphi)$ $(1 \leq p < \infty)$ if and only if T is φ -restrictedly measurable and $-\int_{0}^{\infty} \lambda^{p} d\varphi (E(\lambda)^{\perp}) < \infty$, where $\int_{0}^{\infty} \lambda dE(\lambda)$ is the spectral resolution of |T|.

THEOREM 3.5. [11] (1) For $1 \le p < \infty$ $L^{p}(\varphi)$ is a Banach space with norm $||T||_{p}$ and the following properties are satisfied.

- (a) $||T||_p = ||T^*||_p = ||U \cdot T \cdot U^*||_p$ for $T \in L^p(\varphi)$ and $U \in \mathfrak{A}_u$.
- (b) For $S, T \in L^p(\varphi)$ such that $|T| \leq |S|$ we have $||T||_p \leq ||S||_p$.
- (c) For $A \in \mathfrak{A}$ and $T \in L^{p}(\varphi)$ we have $||A \cdot T||_{p} \leq ||A|| ||T||_{p}$.

(d) If $0 \le T_1 \le T_2 \le \cdots$ is a sequence of elements of $L^p(\varphi)$ such that $\{ \|T_n\|_p \}$ is bounded, then there exists $T := \sup T_n$ and $\lim_{n \to \infty} \|T - T_n\|_p = 0$.

(2) Let 1/p + 1/q = 1 where $1 \le p, q \le \infty$. Then

(a) $\mu(S \cdot T) = \mu(T \cdot S)$ for $S \in L^{p}(\varphi)$ and $T \in L^{q}(\varphi)$. If furthermore, $S, T \ge 0$, then $\mu(S \cdot T) \ge 0$; and conversely, if $\mu(S \cdot T) \ge 0$ for every $T \ge 0$, then $S \ge 0$.

(b) $|\mu(T_1 \cdot T_2 \cdot \cdots \cdot T_n)| \leq \mu(|T_1 \cdot T_2 \cdot \cdots \cdot T_n|) \leq ||T_1||_{p_1} ||T_2||_{p_2} \cdot \cdots ||T_n||_{p_n} \text{ for } T_i \in L^{p_i}(\varphi) \text{ with } \sum_{i=1}^n 1/p_i = 1, p_i \geq 1 \ (i = 1, 2, \cdots, n).$

(c)
$$||S||_{p} = \sup_{T \in L^{q}(\varphi), ||T||_{q} \leq 1} |\mu(S \cdot T)|$$

for $S \in L^{p}(\varphi)$ where the sup is attained by some T if $1 \leq p < \infty$.

(d)
$$|\mu(S \cdot T)|^2 \leq \mu(|S^*| \cdot |T|)\mu(|S| \cdot |T^*|) \leq \mu(|S \cdot T|)\mu(|T \cdot S|)$$

for $S \in L^{p}(\varphi)$ and $T \in L^{q}(\varphi)$.

(3) Let 1/p + 1/q = 1/r where $1 \le p, q, r \le \infty$.

(a) If $T \in L^{p}(\varphi)$ and $S \in L^{q}(\varphi)$, then $T \cdot S \in L'(\varphi)$ and we have $||T \cdot S||_{r} \leq ||T||_{p} ||S||_{q}$.

(b) Let T be a φ -restrictedly measurable operator $\eta \mathfrak{A}$. If $T \cdot S \in L'(\varphi)$ for every $S \in L^q(\varphi)^+$, then $T \in L^p(\varphi)$.

Let \mathscr{D}_0 be a Hilbert algebra. Let $\mathscr{U}_0(\mathscr{D}_0)$ be the left von Neumann algebra of \mathscr{D}_0 and let φ_0 be the natural trace on $\mathscr{U}_0(\mathscr{D}_0)^+$. The completion \mathfrak{H} of \mathscr{D}_0 is equivalent to an *H*-system [3]. Putting

$$(\mathcal{D}_0)_b = \{x \in \mathfrak{H}; \overline{\pi_0(x)} \text{ is bounded}\},\$$

 $(\mathcal{D}_0)_b$ is a maximal Hilbert algebra containing \mathcal{D}_0 and $\mathcal{U}_0(\mathcal{D}_0)(\mathcal{D}_0)_b \subset (\mathcal{D}_0)_b$. For every $x \in \mathfrak{H}$ $\pi_0(x)$ is φ_0 -restrictedly measurable ([11] Lemma 2.3.). We can easily show that $L^2(\varphi_0) = \{\pi_0(x); x \in \mathfrak{H}\}$ and $L^2(\varphi_0)$ is a Hilbert space isometric with \mathfrak{H} . Moreover we remark that $L^2(\varphi_0)$ is an *H*-system isomorphic with \mathfrak{H} by the map. $x \to \overline{\pi_0(x)}$. This follows from the facts that (1) if xy is defined and equals z, then $\pi_0(x) \cdot \overline{\pi_0(y)} = \overline{\pi_0(xy)}$ and (2) if $\overline{\pi_0(x)} \cdot \overline{\pi_0(y)}$ equals $\overline{\pi_0(z)}$, then xy is defined and equals z. We have

$$L^{1}(\varphi_{0}) = \{\sum_{i=1}^{m} \overline{\pi_{0}(x_{i})} \cdot \overline{\pi_{0}(y_{i})}; x_{i}, y_{i} \in \mathfrak{H}\}$$

and the integral $\mu(T)$ of $T = \sum_{i=1}^{m} \overline{\pi_0(x_i)} \cdot \overline{\pi_0(y_i)}$ equals $\sum_{i=1}^{m} (y_i \mid x_i^*)$.

DEFINITION 3.5. We define the L^{ω} -spaces with respect to the natural trace φ_0 as follows;

$$L^{\omega}(\varphi_0) = \bigcap_{1 \le p < \infty} L^p(\varphi_0),$$

 $L^{\omega}_2(\varphi_0) = \bigcap_{2 \le p < \infty} L^p(\varphi_0).$

Similarly we define the L^{ω} -spaces with respect to the Hilbert algebra \mathcal{D}_0 as follows;

$$L^{\omega}(\mathcal{D}_0) = \{ x \in \mathfrak{H}; \ \pi_0(x) \in L^{\omega}(\varphi_0) \},$$
$$L^{\omega}_2(\mathcal{D}_0) = \{ x \in \mathfrak{H}; \ \overline{\pi_0(x)} \in L^{\omega}_2(\varphi_0) \}.$$

PROPOSITION 3.6. The space $L^{\omega}(\mathcal{D}_0)$ (resp. $L^{\omega}(\mathcal{D}_0)$) is an unbounded Hilbert algebra containing $(\mathcal{D}_0)^2_b$ (resp. $(\mathcal{D}_0)_b$).

Proof. For
$$1 \le p < \infty$$
 and $S, T \in L^{\omega}(\varphi_0)$
$$\|S \cdot T\|_p \le \|S\|_{2p} \|T\|_{2p}$$

and hence $S \cdot T \in L^{\omega}(\varphi_0)$. Therefore, for each x and y in $L^{\omega}(\mathcal{D}_0)$ xy is defined and equals $\pi_0(x)y$. Furthermore for each $T \in L^p(\varphi_0)$ $(1 \leq p < \infty) ||T||_p = ||T^*||_p$ and hence $x^* \in L^{\omega}(\mathcal{D}_0)$ for every $x \in L^{\omega}(\mathcal{D}_0)$. Consequently $L^{\omega}(\mathcal{D}_0)$ is a *-algebra. We can easily show $L^{\omega}(\mathcal{D}_0) \supset (\mathcal{D}_0)^2_{b}$, and so $L^{\omega}(\mathcal{D}_0)$ is a pre-Hilbert space and its completion is $L^2(\mathcal{D}_0) = \mathfrak{H}$. For every x, y and z in $L^{\omega}(\mathcal{D}_0)$ we have

$$(x \mid y) = (y^* \mid x^*)$$

and

$$(xy \mid z) = (\overline{\pi_0(x)}y \mid z) = (y \mid \pi_0(x)^*z) = (y \mid \overline{\pi_0(x^*)}z) = (y \mid x^*z).$$

Consequently $L^{\omega}(\mathcal{D}_0)$ is an unbounded Hilbert algebra. Similarly we can show that $L_2^{\omega}(\mathcal{D}_0)$ is an unbounded Hilbert algebra containing $(\mathcal{D}_0)_b$.

PROPOSITION 3.7. The space $L^{\omega}(\varphi_0)$ (resp. $L^{\omega}_2(\varphi_0)$) is an unbounded Hilbert algebra containing $\pi_0((\mathcal{D}_0)_b)^2$ (resp. $\pi_0((\mathcal{D}_0)_b)$) under the strong sum, strong product, adjoint, strong scalar multiplication and inner product on $L^2(\varphi_0)$. *Proof.* We can easily show that the map $x \in \mathfrak{H} \to \overline{\pi_0(x)} \in L^2(\varphi_0)$ is an isometric isomorphism of $L^{\omega}(\mathcal{D}_0)$ onto $L^{\omega}(\varphi_0)$. By Proposition 3.6. $L^{\omega}(\varphi_0)$ is an unbounded Hilbert algebra.

Problem. Is $L^{\omega}(\mathcal{D}_0)$ a pure unbounded Hilbert algebra? Does there exist a pure unbounded Hilbert algebra containing \mathcal{D}_0 ?

PROPOSITION 3.8. The following conditions are equivalent.

(1) There exists a pure unbounded Hilbert algebra \mathcal{D} containing \mathcal{D}_0 .

(2) $L_2^{\omega}(\mathcal{D}_0)$ is a pure unbounded Hilbert algebra.

(3) $L^{\omega}(\mathcal{D}_0)$ is a pure unbounded Hilbert algebra.

(4) There exists a positive element x in \mathfrak{H} (i.e., $\pi_0(x) \ge 0$) such that $x \notin (\mathfrak{D}_0)_b$ and $x^n \in \mathfrak{H}$, $n = 1, 2, \cdots$.

Proof. (1) \Rightarrow (4); There exists an element $\xi \in \mathcal{D}$ such that $\overline{\pi(\xi)}$ is an unbounded operator on \mathfrak{H} . Clearly $\xi^* \xi \notin (\mathcal{D}_0)_b$ and $(\xi^* \xi)^n \in \mathcal{D} \subset \mathfrak{H}$, $n = 1, 2, \cdots$.

(4) \Rightarrow (3); Let $y = x^2$. Then we can easily show that $y \notin (\mathcal{D}_0)_b$ and for each positive integer $n \ \overline{\pi_0(y)} \in L^n(\varphi_0)$. Let $\overline{\pi_0(y)} = \int_0^\infty \lambda dE(\lambda)$ be the spectral resolution. For each p with $1 \le p < \infty$ there is a positive integer n such that $n \le p < n + 1$. Then we have

$$\begin{split} -\int_0^\infty \lambda^p d\varphi_0(E(\lambda)^{\perp}) &\leq -\int_0^1 \lambda^n d\varphi_0(E(\lambda)^{\perp}) - \int_1^\infty \lambda^{n+1} d\varphi_0(E(\lambda)^{\perp}) \\ &\leq -\int_0^\infty \lambda^n d\varphi_0(E(\lambda)^{\perp}) - \int_0^\infty \lambda^{n+1} d\varphi_0(E(\lambda)^{\perp}) \\ &< \infty. \end{split}$$

Therefore $\pi_0(y) \in L^p(\varphi_0)$, i.e., $y \in L^p(\mathcal{D}_0)$ for every $1 \leq p < \infty$, and so $y \in L^{\omega}(\mathcal{D}_0)$ and $\pi_0(y)$ is unbounded. Consequently $L^{\omega}(\mathcal{D}_0)$ is a pure unbounded Hilbert algebra.

(3) \Rightarrow (2); Since $L^{\omega}(\mathcal{D}_0) \subset L^{\omega}(\mathcal{D}_0)$, the assertion (3) \Rightarrow (2) is obvious.

(2) \Rightarrow (1); $L_2^{\omega}(\mathcal{D}_0)$ is a pure unbounded Hilbert algebra containing \mathcal{D}_0 .

THEOREM 3.9. Let \mathcal{D} be a pure unbounded Hilbert algebra over \mathcal{D}_0 . Then \mathcal{D}^2 (resp. \mathcal{D}) is a *-subalgebra of the pure unbounded Hilbert algebra $L^{\omega}(\mathcal{D}_0)$ (resp. $L^{\omega}(\mathcal{D}_0)$). In particular, $L^{\omega}(\mathcal{D}_0)$ is maximal in pure unbounded Hilbert algebras containing \mathcal{D}_0 .

Proof. By Proposition 3.8 $L^{\omega}(\mathcal{D}_0)$ and $L^{\omega}(\mathcal{D}_0)$ are pure unbounded Hilbert algebras. In the same way as the proof (4) \Rightarrow (3) of Proposition 3.8 we can easily show $L^{\omega}(\mathcal{D}_0) \supset \mathcal{D}^2$ and $L^{\omega}_2(\mathcal{D}_0) \supset \mathcal{D}$.

ATSUSHI INOUE

Problem. Let \mathscr{D} be a pure unbounded Hilbert algebra over \mathscr{D}_0 . Does there exist an EW^* -algebra \mathfrak{A} such that $\overline{\mathfrak{A}}_b = \mathscr{U}_0(\mathscr{D}_0)$ and $\overline{\mathfrak{A}} \supset \overline{\pi(\mathscr{D})}$?

Let \mathscr{D} be a pure unbounded Hilbert algebra over \mathscr{D}_0 . By Proposition 3.8 $L_2^{\omega}(\mathscr{D}_0)$ is a pure unbounded Hilbert algebra such that

 $\mathscr{D}_0 \subset \mathscr{D} \subset L^{\omega}(\mathscr{D}_0) \subset \mathfrak{H}, \text{ and } L^{\infty}(\varphi_0) L^{\omega}(\mathscr{D}_0) \subset L^{\omega}(\mathscr{D}_0).$

Let π (resp. π_2^{ω}) be the left regular representation of \mathscr{D} (resp. $L_2^{\omega}(\mathscr{D})$). By Lemma 2.1 we have $\overline{\pi_2^{\omega}(\mathscr{D})} = \overline{\pi(\mathscr{D})} = \overline{\pi_0(\mathscr{D})}$.

Then $\pi_{2}^{\omega}(\mathcal{D})$ is a #-algebra on $L_{2}^{\omega}(\mathcal{D}_{0})$ under $\pi_{2}^{\omega}(\xi)^{\#} = \pi_{2}^{\omega}(\xi^{*})$ and $L^{*}(\varphi_{0})/L_{2}^{\omega}(\mathcal{D}_{0}) := \{T/L_{2}^{\omega}(\mathcal{D}_{0}); T \in L^{*}(\varphi_{0})\}$ is a #-algebra on $L_{2}^{\omega}(\mathcal{D}_{0})$ under $(T/L_{2}^{\omega}(\mathcal{D}_{0}))^{\#} = T^{*}/L_{2}^{\omega}(\mathcal{D}_{0})$, where $T/L_{2}^{\omega}(\mathcal{D}_{0})$ is the restriction of T onto $L_{2}^{\omega}(\mathcal{D}_{0})$.

NOTATION. We denote by $\mathscr{U}(\mathscr{D})$ a # -algebra on $L_2^{\omega}(\mathscr{D}_0)$ generated by $\pi_2^{\omega}(\mathscr{D})$ and $L^{\infty}(\varphi_0)/L_2^{\omega}(\mathscr{D}_0)$.

THEOREM 3.10. Let \mathscr{D} be a pure unbounded Hilbert algebra over $\underline{\mathscr{D}}_{0}$. Then $\mathscr{U}(\underline{\mathscr{D}})$ and $\mathscr{U}(L_{2}^{\omega}(\mathfrak{D}_{0}))$ are EW^{*} -algebras on $L_{2}^{\omega}(\mathfrak{D}_{0})$ such that $\overline{\mathscr{U}}(\mathfrak{D})_{b} = \overline{\mathscr{U}(L_{2}^{\omega}(\mathfrak{D}_{0}))_{b}} = \mathscr{U}_{0}(\mathfrak{D}_{0})$ and $\overline{\mathscr{U}(L_{2}^{\omega}(\mathfrak{D}_{0}))} \supset \overline{\mathscr{U}(\mathfrak{D})} \supset \pi(\mathfrak{D})$.

DEFINITION 3.11. Let \mathscr{D} be a pure unbounded Hilbert algebra over \mathscr{D}_0 . $\mathscr{U}(\mathscr{D})$ is called the left $EW^{\#}$ -algebra of \mathscr{D} .

4. Traces on EW^* -algebras. Let \mathfrak{A} be an EW^* -algebra and let φ be a trace on \mathfrak{A}^+ . We note

$$\mathfrak{N}_{\varphi} = \{ T \in \mathfrak{A}; \varphi(T^{*}T) < \infty \}$$

and let \mathfrak{M}_{φ} be a linear combination of $\{ST^{\#}; S, T \in \mathfrak{N}_{\varphi}\}$. Then, clearly, \mathfrak{N}_{φ} (resp. \mathfrak{M}_{φ}) is a #-subspace of \mathfrak{A} satisfying $\mathfrak{A}_{b}\mathfrak{N}_{\varphi} \subset \mathfrak{N}_{\varphi}$ and $\mathfrak{N}_{\varphi}\mathfrak{A}_{b} \subset \mathfrak{N}_{\varphi}$ (resp. $\mathfrak{A}_{b}\mathfrak{M}_{\varphi} \subset \mathfrak{M}_{\varphi}$ and $\mathfrak{M}_{\varphi}\mathfrak{A}_{b} \subset \mathfrak{M}_{\varphi}$). We can easily show that the positive part $\mathfrak{M}_{\varphi}^{+}$ of \mathfrak{M}_{φ} equals $\{T \in \mathfrak{A}^{+}; \varphi(T) < \infty\}$ and \mathfrak{M}_{φ} is a linear combination of $\mathfrak{M}_{\varphi}^{+}$. We define $\dot{\varphi}$ by;

$$\dot{\varphi}(S) = \lambda_1 \varphi(S_1) + \cdots + \lambda_n \varphi(S_n), \quad S = \lambda_1 S_1 + \cdots + \lambda_n S_n,$$

 $\lambda_i \in \mathbb{G}, \qquad S_i \in \mathfrak{M}^+_{\varphi}.$

Then it is not difficult to show that $\dot{\varphi}$ is a well-defined linear form on \mathfrak{M}_{φ} and it satisfies

(1) $\dot{\varphi}(S) = \varphi(S), \qquad S \in \mathfrak{M}^+_{\alpha};$

(2) $\dot{\varphi}(S^*T) = \dot{\varphi}(TS^*), \quad S, T \in \mathfrak{N}_{\varphi};$

(3) $\dot{\varphi}(ST) = \dot{\varphi}(TS), \quad S \in \mathfrak{M}_{\omega}, \quad T \in \mathfrak{A}_{b}.$ We note

$$\bar{\varphi}(\bar{T}) = \varphi(T), \qquad T \in \mathfrak{A}_b^+.$$

Then $\bar{\varphi}$ is a trace on $\bar{\mathfrak{A}}_{b}^{+}$ and we have

$$\overline{(\mathfrak{M}_{\varphi})_{b}} = \mathfrak{M}_{\bar{\varphi}} \quad \text{and} \quad \overline{(\mathfrak{M}_{\varphi})_{b}} = \mathfrak{M}_{\bar{\varphi}}.$$

DEFINITION 4.1. Let \mathfrak{A} be an EW^{*} -algebra and let φ be a trace on \mathfrak{A}^+ . If every $\overline{A} \in \overline{\mathfrak{A}}$ is $\overline{\varphi}$ -restrictedly measurable, then \mathfrak{A} is called φ -measurable.

Let \mathcal{D} be a pure unbounded Hilbert algebra over \mathcal{D}_0 and let \mathfrak{H} be the completion of \mathcal{D} . Let \mathscr{E} be a pure unbounded Hilbert algebra over $(\mathcal{D}_0)_b$ containing \mathcal{D} . Let \mathfrak{A} be a φ_0 -measurable (merely measurable) EW^* algebra on \mathscr{E} such that $\overline{\mathfrak{A}}_b = \mathscr{U}_o(\mathscr{D}_0)$ and $\overline{\mathfrak{A}} \supset \overline{\pi(\mathscr{D})}$ ($\mathscr{U}(\mathscr{D})$ and $\mathcal{U}(L_2^{\omega}(\mathcal{D}_0))$ are examples of such $EW^{\#}$ -algebras), where φ_0 is the natural trace on $\mathcal{U}_0(\mathcal{D}_0)^+$.

NOTATION. For each $S \in \mathfrak{A}^+$ we define φ as follows;

$$\varphi(S) = \begin{cases} (x \mid x), & \text{if } \overline{S^{1/2}} = \overline{\pi_0(x)}, x \in L_2^{\omega}(\mathcal{D}_0); \\ \\ \infty, & \text{if otherwise.} \end{cases}$$

THEOREM 4.2. (1) φ is a faithful normal semifinite trace on \mathfrak{A}^+ . (2) We have

$$\bar{\mathfrak{N}}_{\varphi} = \bar{\mathfrak{A}} \cap L_{2}^{\omega}(\varphi_{0}) \text{ and } \bar{\mathfrak{M}}_{\varphi} = \bar{\mathfrak{A}} \cap L^{\omega}(\varphi_{0}).$$

(3) *Putting*

$$\mathfrak{N}(\mathfrak{D}_0) = \{ x \in \mathfrak{H}; \ \overline{\pi_0(x)} \in \overline{\mathfrak{M}_{\varphi}} \} \text{ and } \mathfrak{M}(\mathfrak{D}_0) = \{ x \in \mathfrak{H}; \ \overline{\pi_0(x)} \in \overline{\mathfrak{M}_{\varphi}} \},$$

 $\mathfrak{N}(\mathfrak{D}_0)$ (resp. $\mathfrak{M}(\mathfrak{D}_0)$) is a pure unbounded Hilbert algebra over $(\mathfrak{D}_0)_b$ (resp. $(\mathcal{D}_0)_b^2$) containing \mathcal{D} (resp. \mathcal{D}^2).

- (4) $\bar{\varphi}$ equals the natural trace φ_0 on $\mathcal{U}_0(\mathcal{D}_0)^+$.
- (5) Let μ be the integral on $L^1(\varphi_0)$. Then

$$\dot{\varphi}(T) = \mu(\overline{T}), \qquad T \in \mathfrak{M}_{\varphi}.$$

In particular, for every $x, y \in \mathfrak{N}(\mathcal{D}_0)$

$$\dot{\varphi}(\overline{\pi_0(y)}^*\cdot\overline{\pi_0(x)})=(x\mid y).$$

- (6) $\mathfrak{A}(\mathfrak{N}_{\varphi})_{b} \subset \mathfrak{N}_{\varphi} \text{ and } \mathfrak{A}(\mathfrak{M}_{\varphi})_{b} \subset \mathfrak{M}_{\varphi}.$
- (7) Every element T of \mathfrak{A} is represented by

 $T = T_0 + T_1, \qquad T_0 \in \mathfrak{A}_b, \qquad T_1 \in \mathfrak{M}_{\varphi}.$

(8) If $T \in \mathfrak{A}$, then we have $\overline{T} = \overline{(T/\mathfrak{D}_0)}$.

Proof. (2); Let $T \in \mathfrak{N}_{\varphi}$ and let $T = \underline{U} | T |$ be the polar decomposition of T. Since $\varphi(T^*T) = \varphi(|T|^2) < \infty$, $|T| = \pi_0(x)$, $x \in L_2^{\omega}(\mathfrak{D}_0)$, and so $|\overline{T}| \in L_2^{\omega}(\varphi_0)$ and hence $\overline{T} = \overline{U} \cdot |\overline{T}| \in L_2^{\omega}(\varphi_0) \cap \overline{\mathfrak{A}}$. The converse is obvious. Moreover we get

$$\overline{\mathfrak{M}_{\varphi}} = \overline{\mathfrak{N}_{\varphi}}^{2} = (\overline{\mathfrak{A}} \cap L_{2}^{\omega}(\varphi_{0}))^{2} = \overline{\mathfrak{A}} \cap L^{\omega}(\varphi_{0}).$$

(3); By (2) we can easily show (3).

(4); Let $T \in \mathfrak{A}_{b}^{+}$. Since $\overline{\mathfrak{A}_{b}} \cap L_{2}^{\omega}(\varphi_{0}) = \overline{\pi_{0}((\mathfrak{D}_{0})_{b})},$

 $\bar{\varphi}(\bar{T}) = \varphi(T) = \begin{cases} (x \mid x), & \text{if } \overline{T^{1/2}} = \overline{\pi_0(x)}, x \in L_2^{\omega}(\mathcal{D}_0); \\ \infty, & \text{if otherwise} \end{cases}$ $= \begin{cases} (x \mid x), & \text{if } \overline{T^{1/2}} = \overline{\pi_0(x)}, x \in (\mathcal{D}_0)_b; \\ \infty, & \text{if otherwise} \end{cases}$ $= \varphi_0(\bar{T}).$

(5); Let $T \in \mathfrak{M}_{\varphi}^{+}$. By (2) there exists an element x of $L_{2}^{\omega}(\mathcal{D}_{0})$ such that $\overline{T^{1/2}} = \overline{\pi_{0}(x)}$. Then we have $\varphi(T) = (x \mid x) = \mu(\overline{T})$, and so $\dot{\varphi}(T) = \mu(\overline{T})$, $T \in \mathfrak{M}_{\varphi}$.

(6); Let π be the left regular representation of \mathscr{C} . We can easily show that

$$T\pi(\xi) = \pi(T\xi), \quad T \in \mathfrak{A}, \quad \xi \in (\mathcal{D}_0)_b \subset \mathscr{E}.$$

Therefore $\pi(T\xi) = T\pi(\xi) \in \mathfrak{A}$ and $\overline{\pi(T\xi)} = \overline{\pi_0(T\xi)}$, $T\xi \in \mathscr{C} \subset L_2^{\omega}(\mathscr{D}_0)$, and so $T\pi(\xi) \in \mathfrak{N}_{\varphi}$.

(7); Let $T \in \mathfrak{A}$ and let T = U | T | be the polar decomposition of T. Let $\overline{|T|} = \int_0^\infty \lambda d\overline{E_T(\lambda)}$ be the spectral resolution of $\overline{|T|}$. Since $\overline{|T|}$ is a φ_0 -restrictedly measurable operator, $\overline{E_T(\lambda_0)}^{\perp} \in \overline{(\mathfrak{M}_{\varphi})_b}^+$ for some $\lambda_0 > 0$. By (6) $\mathfrak{A}(\mathfrak{M}_{\varphi})_b \subset \mathfrak{M}_{\varphi}$, and so putting

$$T_1 = TE_T(\lambda_0)^{\perp} = U | T | E_T(\lambda_0)^{\perp}$$
 and $T_0 = TE_T(\lambda_0)$,

 $T_0 \in \mathfrak{A}_b, \ T_1 \in \mathfrak{M}_{\varphi} \text{ and } T = T_0 + T_1.$ (8); Let $T \in \mathfrak{A}$. By (7) we have

$$\begin{split} \bar{T} &= \overline{T_0} + \overline{T_1}, \quad T_0 \in \mathfrak{A}_b, \quad T_1 \in \mathfrak{M}_{\varphi} \\ &= \overline{T_0} + \overline{\pi_0(x)}, \quad x \in L^{\omega}(\mathcal{D}_0) \\ &= \overline{(T_0/\mathcal{D}_0)} + \overline{\pi_0(x)} = \overline{T_0/\mathcal{D}_0 + \pi_0(x)} = \overline{T/\mathcal{D}_0} \end{split}$$

- (1); We shall show that φ is a trace on \mathfrak{A}^+ , i.e.,
- (a) $\varphi(S+T) = \varphi(S) + \varphi(T), S, T \in \mathfrak{A}^+;$
- (b) $\varphi(\lambda S) = \lambda \varphi(S), \ \lambda \ge 0, \ S \in \mathfrak{A}^+;$
- (c) $\varphi(S^*S) = \varphi(SS^*), S \in \mathfrak{A}$.

(a); Let $S, T \in \mathfrak{A}^+$. Suppose $\varphi(S + T) < \infty$. Since \overline{S} (or $\overline{T}) \le \overline{S} + \overline{T}$ and $\overline{S} + \overline{T} \in \mathfrak{M}_{\varphi}^+$, \overline{S} and \overline{T} in \mathfrak{M}_{φ}^+ , and so $\varphi(S) = \mu(\overline{S}) < \infty$ and $\varphi(T) = \mu(\overline{T}) < \infty$ by (5). Suppose $\varphi(S) < \infty$ and $\varphi(T) < \infty$. Since \overline{S} and \overline{T} in $L^1(\varphi_0)^+$, by Theorem 3.5. we have $\overline{S} + \overline{T} \in L^1(\varphi_0)^+$ and

$$\varphi(S) + \varphi(T) = \mu(\overline{S}) + \mu(\overline{T}) = \mu(\overline{S} + \overline{T}) = \mu(\overline{S} + \overline{T}) = \varphi(S + T).$$

(b); clear.

(c); Let $S \in \mathfrak{A}$. Suppose $\underline{\varphi}(S^*\underline{S}) < \infty$. Let S = U|S| be the polar decomposition of S. Then $|S| = \pi_0(x)$, $x \in L_2^{\omega}(\mathcal{D}_0)$ and $|S^*| = |S^*| = \pi_0(x^*)$, and so we get

$$\varphi(S^*S) = (x \mid x) = (x^* \mid x^*) = \varphi(SS^*).$$

Consequently φ is a trace on \mathfrak{A}^+ . Since $\bar{\varphi} = \varphi_0$ by (4), $\bar{\varphi}$ is a faithful normal semifinite trace on \mathfrak{A}_b^+ . We can easily show that φ is faithful. We shall show that φ is normal. Let $T_{\alpha} \uparrow T$, $T_{\alpha}, T \in \mathfrak{A}^+$. Suppose $\varphi(\underline{T}) < \infty$. Then there exist $\{x_{\alpha}\} \subset L_{\omega}^{\omega}(\mathfrak{D}_0)$ and $x \in L_{\omega}^{\omega}(\mathfrak{D}_0)$ such that $T_{\alpha}^{1/2} = \pi_0(x_{\alpha})$ and $\overline{T}^{1/2} = \overline{\pi_0}(x)$. We can easily show that $\varphi(T_{\alpha}) =$ $\|x_{\alpha}\|^2 \uparrow \varphi(T) = \|x\|^2$. Suppose $\varphi(\underline{T}) = \infty$ and $\sup_{\alpha} \varphi(T_{\alpha}) < \infty$. There exists a net $\{x_{\alpha}\}$ of $L_{\omega}^{\omega}(\mathfrak{D}_0)$ such that $\overline{T}_{\alpha}^{1/2} = \overline{\pi_0}(x_{\alpha})$. Let $\overline{T} = \int_0^{\infty} \lambda d\overline{E_T}(\lambda)$ be the spectral resolution of \overline{T} . Since \overline{T} is φ_0 -restrictedly measurable, $\overline{E_T}(\lambda_0)^{\perp} \in (\mathfrak{M}_{\varphi})_b^+$ for some $\lambda_0 > 0$, and so by (5) we get

$$TE_T(\lambda_0)^{\perp} \in \mathfrak{M}_{\varphi}^+$$
 and $\overline{T} = \int_0^{\lambda_0} \lambda d\overline{E_T(\lambda)} + \overline{T}\overline{E_T(\lambda_0)}^{\perp}.$

From $\varphi(T) = \infty$, we have $\overline{\varphi}\left(\int_{0}^{\lambda_{0}} \lambda d\overline{E_{T}(\lambda)}\right) = \infty$. Since $T_{\alpha} \uparrow T$, we get $E_{T}(\lambda_{0})T_{\alpha}E_{T}(\lambda_{0}) \in \mathfrak{A}_{b}$ and

$$E_{T}(\lambda_{0})T_{\alpha}E_{T}(\lambda_{0})\uparrow E_{T}(\lambda_{0})TE_{T}(\lambda_{0})=\int_{0}^{\lambda_{0}}\lambda dE_{T}(\lambda).$$

Then we can show that

$$\overline{E_{T}(\lambda_{0})T_{a}E_{T}(\lambda_{0})} \uparrow \int_{0}^{\lambda_{0}} \lambda d\overline{E_{T}(\lambda)},$$

and so by the normality of $\bar{\varphi}$

$$\bar{\varphi}\left(\overline{E_{T}(\lambda_{0})T_{\alpha}E_{T}(\lambda_{0})}\right) \uparrow \bar{\varphi}\left(\int_{0}^{\lambda_{0}}\lambda d\overline{E_{T}(\lambda)}\right) = \infty.$$

On the other hand we have

$$\bar{\varphi}\left(\int_{0}^{\lambda_{0}}\lambda d\overline{E_{T}(\lambda)}\right) = \sup_{\alpha} \bar{\varphi}\left(\overline{E_{T}(\lambda_{0})T_{\alpha}E_{T}(\lambda_{0})}\right)$$

$$= \sup_{\alpha} \bar{\varphi}\left(\overline{E_{T}(\lambda_{0})} \cdot \overline{\pi_{0}(x_{\alpha})^{2}} \cdot \overline{E_{T}(\lambda_{0})}\right)$$

$$= \sup_{\alpha} \bar{\varphi}\left(\overline{\pi_{0}(\overline{E_{T}(\lambda_{0})}x_{\alpha})} \cdot \pi_{0}(\overline{E_{T}(\lambda_{0})}x_{\alpha}^{*})^{*}\right)$$

$$= \sup_{\alpha}\left(\overline{E_{T}(\lambda_{0})}x_{\alpha} \mid \overline{E_{T}(\lambda_{0})}x_{\alpha}^{*}\right)$$

$$\leq \sup_{\alpha} ||x_{\alpha}||^{2} = \sup_{\alpha} \varphi(T_{\alpha}) < \infty.$$

This contradicts $\bar{\varphi}\left(\int_{0}^{\lambda_{0}} \lambda d\overline{E_{T}(\lambda)}\right) = \infty$. Consequently φ is normal. Finally we shall show that φ is semifinite. Since $\bar{\varphi}$ is semifinite, there exists a net $\{T_{\alpha}\}$ of $(\mathfrak{M}_{\varphi})_{b}^{+}$ such that $\overline{T}_{\alpha} \uparrow \overline{I}$. Let $T \in \mathfrak{A}^{+}$. By (6) we have

$$T^{\frac{1}{2}}T_{\alpha}T^{\frac{1}{2}} \in \mathfrak{M}_{\varphi}^{+}$$
 and $T^{\frac{1}{2}}T_{\alpha}T^{\frac{1}{2}}\uparrow T$,

and so φ is semifinite.

DEFINITION 4.3. The trace φ of Theorem 4.2. is called the natural trace on \mathfrak{A}^+ .

COROLLARY 4.4. For every $A \in \mathfrak{A}$ and $x \in L^{\omega}_{2}(\mathfrak{D}_{0})$ we have

$$\overline{\mathfrak{A}}L_{2}^{\omega}(\mathfrak{D}_{0})\subset L_{2}^{\omega}(\mathfrak{D}_{0}) \quad and \quad \overline{A}\cdot\overline{\pi_{0}(x)}=\overline{\pi_{0}(\overline{A}x)}.$$

In particular, we have

$$\mathfrak{A}\mathfrak{N}_{\varphi} \subset \mathfrak{N}_{\varphi} \quad and \quad \mathfrak{A}\mathfrak{M}_{\varphi} \subset \mathfrak{M}_{\varphi}.$$

Proof. By Theorem 4.2.(7) we get $A = A_0 + A_1$, $A_0 \in \mathfrak{A}_b$, $A_1 \in \mathfrak{M}_{\varphi}$, and so $\overline{A} = \overline{A_0} + \overline{\pi_0(y)}$, $y \in L^{\omega}(\mathcal{D}_0)$. Hence $\mathfrak{D}(\overline{A}) = \mathfrak{D}(\overline{\pi_0(y)}) \supset L^{\omega}(\mathcal{D}_0)$ and we have

$$\overline{A}L_{2}^{\omega}(\mathcal{D}_{0}) = \overline{A_{0}}L_{2}^{\omega}(\mathcal{D}_{0}) + \overline{A_{1}}L_{2}^{\omega}(\mathcal{D}_{0})$$
$$\subset L_{2}^{\omega}(\mathcal{D}_{0}),$$

and

$$\overline{A} \cdot \overline{\pi_0(x)} = (\overline{A_0} + \overline{\pi_0(y)}) \cdot \overline{\pi_0(x)}$$
$$= \overline{A_0} \overline{\pi_0(x)} + \overline{\pi_0(y)} \cdot \overline{\pi_0(x)}$$
$$= \overline{\pi_0(\overline{A_0}x)} + \overline{\pi_0(\overline{\pi_0(y)}x)}$$
$$= \overline{\pi_0(\overline{A_0}x + \overline{A_1}x)}$$
$$= \overline{\pi_0(\overline{A}x)}.$$

Moreover, since $\overline{\mathfrak{N}_{\varphi}} = \overline{\mathfrak{A}} \cap L_{2}^{\omega}(\varphi_{0})$ and $\overline{\mathfrak{M}_{\varphi}} = \overline{\mathfrak{A}} \cap L^{\omega}(\varphi_{0})$, we have $\mathfrak{M}_{\varphi} \subset \mathfrak{N}_{\varphi}$ and $\mathfrak{M}_{\mathfrak{N}_{\varphi}} \subset \mathfrak{M}_{\varphi}$.

For every $A \in \mathfrak{A}$ putting

$$\tilde{A}x = \bar{A}x, \qquad x \in L_2^{\omega}(\mathcal{D}_0),$$

 \tilde{A} is a linear operator on $L_2^{\omega}(\mathcal{D}_0)$ by Corollary 4.4.. Let $\tilde{\mathfrak{A}} = {\tilde{A}; A \in \mathfrak{A}}$. Then we have

$$\widetilde{AB} = \widetilde{AB}, \quad \lambda \widetilde{A} = \widetilde{\lambda A} \quad \text{and} \quad \widetilde{A}^{*} = A^{*}/L_{2}^{\omega}(\mathcal{D}_{0}) = \widetilde{A^{*}}$$

for every $A, B \in \mathfrak{A}$ and $\lambda \in \mathfrak{C}$. We can easily show that \mathfrak{A} equals the left $EW^{#}$ -algebra $\mathfrak{U}(\mathfrak{N}(\mathfrak{D}_{0}))$ of a pure unbounded Hilbert algebra $\mathfrak{N}(\mathfrak{D}_{0})$. So, we obtain the following theorem.

THEOREM 4.5. Let \mathcal{D} be a pure unbounded Hilbert algebra over \mathcal{D}_0

and let \mathscr{E} be a pure unbounded Hilbert algebra over $(\underline{\mathcal{D}}_0)_b$ containing \mathcal{D} . Let \mathfrak{A} be a measurable EW^* -algebra on \mathscr{E} such that $\overline{\mathfrak{A}}_b = \mathfrak{U}_0(\mathfrak{D}_0)$ and $\overline{\mathfrak{A}} \supset \overline{\pi(\mathfrak{D})}$. Then \mathfrak{A} is regarded as the left EW^* -algebra $\mathfrak{U}(\mathfrak{N}(\mathfrak{D}_0))$ of a pure unbounded Hilbert algebra $\mathfrak{N}(\mathfrak{D}_0)$ over $(\mathfrak{D}_0)_b$ containing \mathfrak{D} .

Finally we shall show that an EW^* -algebra with a faithful normal semifinite trace is isomorphic to a left EW^* -algebra of a pure unbounded Hilbert algebra (Theorem 4.11). Let \mathfrak{A} be an EW^* -algebra on \mathfrak{D} and let φ be a faithful trace on \mathfrak{A}^+ . For each $S, T \in \mathfrak{R}_{\varphi}$ putting

$$(\lambda(S) \mid \lambda(T)) = \dot{\varphi}(T^*S),$$

() is an inner product on $\lambda(\mathfrak{N}_{\varphi})$ and by, for each S, $T \in \mathfrak{N}_{\varphi}$ and $\alpha \in \mathfrak{C}$,

$$\lambda(S) + \lambda(T) = \lambda(S + T), \quad \alpha\lambda(S) = \lambda(\alpha S),$$

 $\lambda(\mathfrak{N}_{\varphi})$ is a pre-Hilbert space. Let \mathfrak{H}_{φ} be the completion of $\lambda(\mathfrak{N}_{\varphi})$. Let \mathfrak{A} be a φ -measurable $EW^{\#}$ -algebra on \mathfrak{D} and let φ be a faithful normal semifinite trace on \mathfrak{A}^+ satisfying $\mathfrak{A}(\mathfrak{N}_{\varphi})_b \subset \mathfrak{N}_{\varphi}$.

LEMMA 4.6. The property " $\mathfrak{A}(\mathfrak{N}_{\varphi})_b \subset \mathfrak{N}_{\varphi}$ " leads the property " $\mathfrak{A}\mathfrak{N}_{\varphi} \subset \mathfrak{N}_{\varphi}$ ".

Proof. Let $A \in \mathfrak{A}$ and $S \in \mathfrak{M}_{\varphi}$. Let S = U | S | be the polar decomposition of S and let $\overline{|S|} = \int_{0}^{\infty} \lambda d\overline{E_{S}(\lambda)}$ be the spectral resolution of $\overline{|S|}$. Since $\overline{|S|}$ is a $\overline{\varphi}$ -restrictedly measurable operator, $\overline{E_{S}(\lambda_{0})^{\perp}} \in \overline{(\mathfrak{M}_{\varphi})_{b}^{+}}$ for some $\lambda_{0} > 0$, and so we have

$$AS = AU | S | = AU \left(\int_{0}^{\lambda_{0}} \lambda dE_{s}(\lambda) + |S| E_{s}(\lambda_{0})^{\perp} \right)$$
$$= AU \int_{0}^{\lambda_{0}} \lambda dE_{s}(\lambda) + ASE_{s}(\lambda_{0})^{\perp}$$
$$\in \mathfrak{A}(\mathfrak{N}_{\varphi})_{b} \subset \mathfrak{N}_{\varphi}.$$

LEMMA 4.7. Let $A \in \mathfrak{A}$. Then there exist $A_0 \in \mathfrak{A}_b$ and $A_1 \in \mathfrak{M}_{\varphi}$ such that

$$A = A_0 + A_1.$$

Proof. Let A = U|A| be the polar decomposition of A and let $\overline{|A|} = \int_{0}^{\infty} \lambda d\overline{E_A(\lambda)}$ be the spectral resolution. Since $\overline{|A|}$ is $\overline{\varphi}$ -restrictedly measurable, $\overline{E_A(\lambda_0)^{\perp}} \in \overline{(\mathfrak{M}_{\varphi})_b^+}$ for some $\lambda_0 > 0$. Putting

$$A_0 = U\left(\int_0^{\lambda_0} \lambda dE_A(\lambda)\right)$$
 and $A_1 = AE_A(\lambda_0)^{\perp}$,

 $A_0 \in \mathfrak{A}_b, A_1 \in \mathfrak{A}(\mathfrak{M}_{\varphi})_b \subset \mathfrak{M}_{\varphi} \text{ and } A = A_0 + A_1.$

LEMMA 4.8. The pre-Hilbert space $\lambda(\mathfrak{N}_{\varphi})$ is a pure unbounded Hilbert algebra over $\lambda((\mathfrak{N}_{\varphi})_b)$.

Proof. We shall show that $\lambda((\mathfrak{N}_{\varphi})_b)$ is dense in $\lambda(\mathfrak{N}_{\varphi})$. For each $T \in \mathfrak{N}_{\varphi}$ let T = U|T| be the polar decomposition of T. Then $|T| = U^*T \in \mathfrak{N}_{\varphi}^+$. Let $|T| = \int_0^\infty \lambda dE_T(\lambda)$ be the spectral resolution of |T|. Putting

$$\overline{S_n} = \int_0^n \lambda d\overline{E_T(\lambda)},$$

 $S_n \in (\mathfrak{N}_{\varphi})_b^+$ and $\{S_n\}$ converges σ -strongly to |T|, and so $S_n^2 \uparrow |T|^2$ and since φ is normal, we get

$$\|\lambda(S_n)\|^2 = \varphi(S_n^2) \uparrow \varphi(|T|^2) = \|\lambda(|T|)\|^2$$

and

$$\begin{aligned} (\lambda(|T|) | \lambda(S_n)) &= \dot{\varphi}(|T|S_n) \\ &= \varphi(|T|^{\frac{1}{2}}S_n | T|^{\frac{1}{2}}) \uparrow \varphi(|T|^2) = \|\lambda(|T|)\|^2, \end{aligned}$$

and hence

$$\lim_{n\to\infty} \|\lambda(US_n) - \lambda(T)\| \leq \lim_{n\to\infty} \|\lambda(S_n) - \lambda(|T|)\| = 0.$$

Therefore $\lambda((\mathfrak{N}_{\varphi})_b)$ is dense in $\lambda(\mathfrak{N}_{\varphi})$. Since $\overline{\varphi}$ is a faithful normal semifinite trace on $\overline{\mathfrak{N}_b}^+$, $\lambda(\overline{(\mathfrak{N}_{\varphi})_b}) = \lambda(\mathfrak{N}_{\overline{\varphi}})$ is a maximal Hilbert algebra, and so we can easily show that $\lambda((\mathfrak{N}_{\varphi})_b)$ is a maximal Hilbert algebra. For every $S, T \in \mathfrak{N}_{\varphi}$ we define the operations on $\lambda(\mathfrak{N}_{\varphi})$ as follows;

$$\begin{split} \lambda(S)\lambda(T) &= \lambda(ST), \qquad \alpha\lambda(S) = \lambda(\alpha S), \\ \lambda(S)^* &= \lambda(S^*), \qquad (\lambda(S) \mid \lambda(T)) = \dot{\varphi}(T^*S). \end{split}$$

Then it is not difficult to show that $\lambda(\mathfrak{N}_{\varphi})$ is an unbounded Hilbert algebra over $\lambda((\mathfrak{N}_{\varphi})_b)$. Finally we shall show that $\lambda(\mathfrak{N}_{\varphi})$ is pure. By

Lemma 4.7. every element A of \mathfrak{A} is represented by $A = A_0 + A_1$, $A_0 \in \mathfrak{A}_b$, $A_1 \in \mathfrak{M}_{\varphi}$. If $A \in \mathfrak{A} - \mathfrak{A}_b$, then $A_1 \in \mathfrak{M}_{\varphi} - (\mathfrak{M}_{\varphi})_b$, and so $\lambda((\mathfrak{N}_{\varphi})_b) \neq \lambda(\mathfrak{N}_{\varphi})$ and $\lambda((\mathfrak{N}_{\varphi})_b)$ is a maximal Hilbert algebra. Therefore $\lambda(\mathfrak{N}_{\varphi})$ is pure.

LEMMA 4.9. For every $A \in \mathfrak{A}$ putting

$$\Psi(A)\lambda(T) = \lambda(AT), \quad T \in \mathfrak{N}_{\varphi},$$

 $\Psi(A)$ is a linear operator on $\lambda(\mathfrak{N}_{\varphi})$. $\Psi(\mathfrak{A})$ is a measurable EW^{*} -algebra on $\lambda(\mathfrak{N}_{\varphi})$ such that $\overline{\Psi(\mathfrak{A})_{b}} = \overline{\Psi(\mathfrak{A}_{b})} = \mathcal{U}_{0}(\lambda((\mathfrak{N}_{\varphi})_{b}))$ and $\overline{\Psi(\mathfrak{A})} \supset \overline{\pi(\lambda(\mathfrak{N}_{\varphi}))}$ and Ψ is an isomorphism of \mathfrak{A} onto $\Psi(\mathfrak{A})$.

Proof. By Lemma 4.6. $\mathfrak{MR}_{\varphi} \subset \mathfrak{R}_{\varphi}$, and so $\Psi(A)$ is a linear operator on $\lambda(\mathfrak{N}_{\varphi})$. For every $S \in \mathfrak{N}_{\varphi}$ we have $\Psi(S) = \pi(\lambda(S))$, where π is the left regular representation of the pure unbounded Hilbert algebra $\lambda(\mathfrak{N}_{\varphi})$. We shall show $\Psi(\mathfrak{A})_b = \Psi(\mathfrak{A}_b)$. Clearly we have $\Psi(\mathfrak{A}_b) \subset \Psi(\mathfrak{A})_b$. Conversely let $\Psi(A) \in \Psi(\mathfrak{A})_b$. By Lemma 4.7. $A = A_0 + A_1$, $A_0 \in \mathfrak{A}_b$, $A_1 \in \mathfrak{M}_{\varphi}$, and so $\Psi(A_1) = \pi(\lambda(A_1)) \in \Psi(\mathfrak{M}_{\varphi})_b$. Since $\lambda((\mathfrak{N}_{\varphi})_b)$ is a maximal Hilbert algebra, $\lambda(A_1) \in \lambda((\mathfrak{N}_{\varphi})_b)$, i.e., $A_1 \in (\mathfrak{N}_{\varphi})_b$. Therefore A = $A_0 + A_1 \in \mathfrak{A}_b$, and so $\Psi(A) \in \Psi(\mathfrak{A}_b)$. By the theory of von Neumann algebras, $\overline{\Psi(\mathfrak{A}_b)} = \mathfrak{U}_0(\lambda((\mathfrak{N}_{\varphi})_b))$. Moreover it is easy to show that $\Psi(\mathfrak{A}) \supset \Psi(\mathfrak{N}_{\varphi}) = \pi(\lambda(\mathfrak{N}_{\varphi}))$ and Ψ is an isomorphism of \mathfrak{A} onto $\Psi(\mathfrak{A})$. Since \mathfrak{A} is φ -measurable, we can easily show that $\Psi(\mathfrak{A})$ is measurable.

LEMMA 4.10. Let ψ be the natural trace on $\Psi(\mathfrak{A})^+$. Then we have

$$\varphi(A) = \psi(\Psi(A)), \quad A \in \mathfrak{A}^+.$$

Proof. By the definition of the natural trace ψ we get

$$\mathfrak{M}_{\psi}^{+} = \pi(\lambda(\mathfrak{M}_{\varphi}^{+})) = \Psi(\mathfrak{M}_{\varphi}^{+})$$

and moreover for every $A \in \mathfrak{M}^+_{\varphi}$

$$\varphi(A) = \|\lambda(A^{\frac{1}{2}})\|^2 = \psi(\pi(\lambda(A))) = \psi(\Psi(A)).$$

By Lemma 4.6. \sim 4.10. and Theorem 4.5. we obtain the following theorem.

THEOREM 4.11. Let \mathfrak{A} be an EW^{*} -algebra and let φ be a faithful normal semifinite trace on \mathfrak{A}^{+} . Suppose that \mathfrak{A} is a φ -measurable

 EW^* -algebra and $\mathfrak{A}(\mathfrak{N}_{\varphi})_b \subset \mathfrak{N}_{\varphi}$. Then $\lambda(\mathfrak{N}_{\varphi})$ is a pure unbounded Hilbert algebra over $\lambda((\mathfrak{N}_{\varphi})_b)$ and putting

$$\Psi(A)\lambda(S) = \lambda(AS), \quad S \in \mathfrak{N}_{\varphi}$$

for every $A \in \mathfrak{A}$, $\Psi(A)$ is a linear operator on $\lambda(\mathfrak{N}_{\varphi})$. The isomorphism Ψ is extended to an isomorphism Φ of \mathfrak{A} onto the left EW^* -algebra $\mathcal{U}(\lambda(\mathfrak{N}_{\varphi}))$ of $\lambda(\mathfrak{N}_{\varphi})$. Let ψ be the natural trace on $\Phi(\mathfrak{A})^+$. Then $\varphi = \psi \circ \Phi$.

References

1. R. Arens, The space L^w and convex topological rings, Bull. Amer. Math. Soc., 52 (1946), 931–935.

2. G. R. Allan, On a class of locally convex algebras, Proc. London Math. Soc., (3) 17 (1967), 91-114.

3. W. Ambrose, The L²-system of a unimodular group, Trans. Amer. Math. Soc., 65 (1949), 27-48.

4. J. Dixmier, Algèbres quasi-unitaire, Comment. Math. Helv., 26 (1952), 275-322.

5. ____, Les Algèbres D'operateurs dans L'espace Hilbertien, Gausthier-Villars, Paris, 2é edition (1969).

6. P. G. Dixon, Generalized B*-algebras, Proc. London Math. Soc., (3) 21 (1970), 693-715.

7. ———, Unbounded operator algebras, Proc. London Math. Soc., (3) 23 (1971), 53-69.

8. N. Dunford and J. Schwartz, Linear operators vol II, New York; Interscience Pub. (1963).

9. R. Godement, Théorie des caractères. I. Algèbres unitaires, Ann. Math., 59 (1954), 47-69.

10. A. Inoue, On a class of unbounded operator algebras, Pacific J. Math., 65 (1976), 77-95.

11. T. Ogasawara and K. Yoshinaga, A noncommutative theory of integration for operators, J. Sci. Hiroshima Univ., 18 (3) (1955), 311-347.

12. R. Pallu de La Barrière, Algèbres unitaires et espaces d'Ambrose, Ann. Éc. Norm. Sup., 70 (1953), 381-401.

13. R. T. Powers, Self-adjoint algebras of unbounded operators, Commun. Math. Phys., 21 (1971), 85-124.

14. I. E. Segal, A noncommutative extension of abstract integration, Ann. Math., 57 (1953), 401-457.

15. A. Weil, L'Intégration dans les Groupes Topologiques et Ses Applications, 2e éd. Act. Sc. Ind., no 1145. Hermann, Paris, 1953.

Received February 10, 1976.

FUKUOKA UNIVERSITY