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ON A CLASS OF UNBOUNDED OPERATOR
ALGEBRAS II

ATSUSHI INOUE

In this paper we continue our study of unbounded operator
algebras. On the basis of the space Lω[0,1] introduced by R.
Arens [1] we define and investigate unbounded Hubert
algebras. The primary purpose of this paper is to investigate
the relation between unbounded Hubert algebras and
EU^-algebras and the structure of some EW*-algebras.

1. Introduction. In a previous paper [10] we began our study
of £W#-algebras. For the definitions and the basic properties concern-
ing EW#-algebras is referred to [10]. It is well known that semifinite
von Neumann algebras are related to Hubert algebras. That is, if 30 is a
Hubert algebra, then the left von Neumann algebra %,(®0) is defined and
UUO(3O) is a semifinite von Neumann algebra and conversely if 21 is a
semifinite von Neumann algebra, then there exists a Hubert algebra 30

such that 21 is isomorphic to the left von Neumann algebra %o(®o) In
this paper we study the above facts about EVK#-algebras. So, our
starting point will be the extension of Hubert algebras.

DEFINITION 1.1. Let 3 be a pre-Hilbert space with inner product
( I ) and a * -algebra. If 3 satisfies the following conditions (1) ~ (3);

(1) (ξ\η) = (η*\ξ*), ^ £ 9 ;
(2) (ξη\ζ) = (η \ξ*ζ), ξ,η,ζ£3;

By (2) we define π(ξ) and π'(τj) by;

ξV, £ 7, G 2>.

Then ττ(ξ) and π'(η) are closable operators on 3) and we have
π(ξ)* D π(ξ*) and τr'(τj)* D ττ'(η *). We call π (resp. π') the left (resp.
right) regular representation of 3.

(3) Putting

30 = {ξ E 3 τr(ξ) is continuous},

3\ is dense in % then 3 is called an unbounded Hubert algebra over
30. In particular, if 30 ¥" 3, then 3 is called a pure unbounded Hubert
algebra over 30.

In §2 we investigate the properties of unbounded Hubert algebras
and we introduce examples of such unbounded Hubert algebras (Lω[0,1],
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Lω(-^oo), Lr.(-o°,°°), L2

ω.(-oo,oo), Lr(G), L?(G) (G; unimodular
locally compact group)).

In §3 we consider the noncommutative integration with respect to a
von Neumann algebra as constructed by Segal in [14]. Let § b e a pure
unbounded Hubert algebra over 3)0. Then Lω(20) and L"(2)o) are
defined and they are pure unbounded Hubert algebras. In particular,
L "(So) ίs maximal in pure unbounded Hubert algebras containing
2V Furthermore 3)2 (resp. 3)) is a *-subalgebra of pure unbounded
Hubert algebra Lω(3)0) (resp. L"(®0)) (Theorem 3.9.). We can define a
left JEW*-algebra °ίί(2) of a pure unbounded Hubert algebra 2 over ©0,
i.e., °U(Q)) is a minimal £W#-alge_bra on L2

ω(S0) over %o(®o) and
°lί(3)) D ττ(®), where we denote by Λ the smallest closed extension of a
closable operator A and we put 3 = {A A E SI} (Theorem 3.10.).

In §4 we define traces on £Ή/#-algebras and we investigate the
structure of some fW'-algebras.

DEFINITION 1.2. Let 91 be an fW-algebra and let φ be a map of
?Γ into [0,°°]. If φ satisfies the following conditions (1)~ (3), then φ is
called a trace on 3Γ;

(1)
(2)
(3) φ(S*S)=φ(SS*), StΞK.
If the conditions φ(S) = 0, 5 E Sί+ implies S = 0, then φ is called

faithful. If, for each increasing net {Ta} of 3Γ that converges σ-weakly
to S E ?Γ (hereafter we denote Ta | S), we have φ(Ta) f <ρ(S), then φ is
called normal. If φ (S) < oo for every S1 E ?ϊ+, then φ is called finite. If,
for each 5 E ?Γ, there exists a net {Ta} such that 7α | S and φ(Ta) < oo,
then φ is called semifinite.

Let °U{β) be the left EW#-algebra of a pure unbounded Hubert
algebra 2) over S)o Then there exists a faithful normal semifinite trace
φ on °ll(3)y such that φl°U(3)γb equals the natural trace on %o(®o)+ and
%(S)(5βφ)fcc9?φ (we note 9ίφ = {TE %(S); φ ( T # T ) < ^ } and (%φ)6 =
9?φ Π °lί{3))b) (Theorem 4.2.). Conversely if 21 is an JBW-algebra with
a faithful normal semifinite trace φ satisfying 21(9^)b C$lφ, then 9?̂  is a
pure unbounded Hubert algebra over (3lφ)b and sJί is isomorphic to the
left EW#-algebra °ll(Wφ) of Wφ (Theorem 4.11.).

2. Unbounded Hubert algebras. In this section let 2 be a
pure unbounded Hubert algebra over 2)0 and let φ be the completion of
3). Clearly 3)0 is a Hubert algebra and the completion of 3)0 is a Hubert
space Q. For each JC E^) we define πo(x) and πό(jc) by;
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where π 0 (resp. πό) is the left (resp. right) regular representation of the
Hubert algebra 55O Then πo(x) and ττό(Jt) are linear operators on φ
with domain %. By ([12] Theorem 3) we have

7Γ0(/JO=7ΓO(JC)*, πΌ(Jx)=irΌ(xy

for all x E φ, where / denotes the involution of ξ>.

LEMMA 2.1. For each ξ E 3) we have
(1) πφ_= ^o(ί), 7r '(^)=τr^);
(2) W ( n = * ( £ ) * , τr'(^*)=77'(O*

JfVoo/. (1); Clearly we get πo(ξ)Cπ(ξ). Hence τro(£)* D
π(ξ)*. Since πo(^)* = τro(£*) and ττ(^)* D π(ξ*), we have

Therefore we get ττo(^) = π(ξ).
(2); By (1) we have

LEMMA 2.2. For each λ, μ E © (the field of complex numbers) and
ξ, ξ,, η,η, E.3) (i = 1,2) we have

iτ(ξlξ2)=ir(ξι)ir(ξ2);

τr'(ληι + μr}2) = λπ '(77,) + μπ'(η2);

τr'(i7ii?2)= -π-'(η2)τr'(i7,);

7r'(τ,*)C7r'(η)*.

Pwίίing

ΊT{3)) and πf(3)) are # -algebras on 3) and we have the following
properties

(1) π
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(2) Jττ(ξ)J=<π'(ξr, Jπ'(ξ)J=ir(ξY,

(3) π(ξ)i

(4) τr(ξ)* = 7τ(ξ)*, ir'{ξγ=τr'{ξ)*, ξ

Hence we get

where %0(2Ό) (resp. Vo(3)o)) is the left (resp. right) von Neumann algebra
of %.

PROPOSITION 2.3. For each λ E © and ξ, η G 2 we have

), π(ξ) π(η)=

λ-π(ξ)=τr(λξ), ir(ξ)* = rτ(ξ*).

Therefore π(3>) is a * -algebra of closed operators on & under the
operations of strong sum, strong product, adjoint and strong scalar
multiplication. Similarly ττ'(3)) is a *-algebra of closed operators on
!Q. Furthermore we have

*, ξ

Proof. By Lemma 2.1. we have π(ξ) = π(ξ*)* for every ξ E 3) and
hence

τr(ξ)+ ττ(η)= π(ξ)+ π(V)= π(ξ*)

and so π(ξ)+ ΊT{Ύ])- π(ξ + η). Similarly ττ(ξ) τr(η) ~ ττ(ξ) π(η) =
π(ξη) and λ π(£)= Tr(A )̂ are showed. By Lemma 2.2 (2) we
have Jπ(ξ)J= 7τf(ξ)φ, ξ <Ξ 3) and hence Jττ(ξ)J= πf(ξ)* = π'(ξ)* by
Lemma 2.1. On the other hand we can easily show Jτr(ξ)J =
Jτr{ξ)J. Therefore we have Jπ(ξ)J = ττf(ξ)\

Problem. Does there exist an fW'-algebra Si such that %b =
%(%) and S D
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In §3 we show that there exist such £W#-algebras. In particular,
there exists an £W#-algebra such that is minimal in such EW#-algebras
and we call it the left £W#-algebra of 3).

We introduce examples of unbounded Hubert algebras.
(1) Lω[0,1]. Let Lω[0,1] be the set of all complex-valued measur-

able functions / on [0,1] such that / E L p [ 0 , 1 ] , p = 1,2, . By the
whole collection of If -norms

and by pointwise multiplication and involution (f*(t) = f(t), t E [0,1])
the space Lω[0,1] is a complete metrizable locally convex * -algebra with
jointly continuous multiplication. R. Arens [1] showed Lω[0,1] is not a
locally m-convex algebra. However, G. R. Allan [2] showed that
Lω[0,1] is a GB*-algebra with (Lω[0, l])0 = L"[0,1]. We introduce the
inner product into Lω[0,1] by;

= [ f(t)W)dt,

Then Lω[0,1] is regarded as a pure unbounded Hubert algebra over
L-[0,l].

(2) Lω(-°o?oo). Let Lω(-oo?oo) be the set of all complex-valued
measurable functions / on ( - oo, oo) such that / E Lp( - °c? oo) for every real
number p ^ 1. Under the following operations

) = f(*)g(x), (λf)(x) =

and inner product (/ | g)= I °° f(x)g(x)dx, we can show that Lω(-°o?oo)

is a pure unbounded Hubert algebra.
(3) Lι(G) and L^G). Let G be a unimodular locally compact

group and let dx be a Haar measure on G. Let LP(G) be the Banach
space of measurable functions f on G for which the norm

, = ess sup I/(x) I

is finite. We note
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L(G); the space of complex-valued continuous functions with
compact supports,

L"(G)= Π Lp(Gl Lr(G)=

L?(G)= (Ί I
2

Under the convolution f*g as multiplication, involution /* (/*(*) =

f(x~1)) and inner product (f\g)= ί f{x)g{x)dx on L2(G), L ω (G) is a
JG

Hubert algebra and L"{G) and L"(G) are unbounded Hubert
algebras. In fact, suppose / G LP(G) and g G L«(G) (1/p + 1/q ^ 1).
Then by Young's inequality f*g exists and ||/*g||Γ = ||/IUIg||, where
1/r = 1/p + 1/^-1. Furthermore, for each / G ί/(G) (1 g p < oo) we
have ||/*Up = ||/||p. Therefore we can easily show that Lω(G), L°(G) and
LΊ{G) are * -algebras. Since L(G)CLω(G)CL\G) Π L\G) and L(G),
L1(G)ΠL2(G) are Hubert algebras, Lω{G) is clearly a Hubert
algebra. We can easily show that (/ | g) = (g* | /*) and (/*g | Λ) =
(g | / * * ft) for every f,g,hEL?(G) (resp. L2

ω(G)). Furthermore we
have

Lω(G)C(Lr(G))0 (resp. L2

ω(G)0)CL2(G),

and so (Lr(G)0)
2 (resp. (L2

ω(G)0)
2) is dense in L\G). Therefore L?(G)

and L^iG) are unbounded Hubert algebras.

Problem. Is an unbounded Hubert algebra Lΐ(G) (or L"(G)) pure?

If G is a compact group, then L2(G) is an //*-algebra, and so L"{G)
and LϊiG) are Hubert algebras.

If G = ( - oo, oo)? then

Kp^oc

and

are pure unbounded Hubert algebras under the following operations and
inner product
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(f*g)(χ)= Γ f(y)g(χ-y)dy,
J — 00

(λ/)(x)=λ/(x), f*{x) = f{-x),

(f\g)=(
J —00

In fact, we note

and

(Lr (-»,»))o = {/eLr (- 0 0 , 0 0 ) ; π(/) is continuous}.

We have only to show (L? (-oo,oo))0^ LΓ.(-00,00). By the theory of
Hubert algebras we have

{L\ - oo, oo) n L2( - oo? oo))6 = {/ G L2( - oo, oo); 7τ(/) is a bounded

linear operator on L2( - oo, oo)}

= {/eL2(-oo,oo);/eL-(-oo,oo)},

where / denotes the Fourier transform of /. Clearly we have

Putting

r 0, x<ί

/ ( * ) =
I 1/jc, x ^ 1

we can show / E LΓ*(~ °°, °°) and / £ L°°( - oo? oo), and so
L p( - oo? oo)0 ̂  L Γ*( - oo? oo). Consequently L ?.(- oo? oo) is pure.

3. JLω-spaces with respect to noncommutative inte-
gration. Our starting point for the construction of Lω -space will be
the algebras of operators measurable with respect to a von Neumann
algebra as constructed by Segal in [14]. Let SI be a semifinite von
Neumann algebra on a Hubert space ξ> and let φ be a faithful normal
semifinite trace on 2ί+. Let Sίp and Slu, respectively, denote the set of all
projections and that of unitary operators in 21.
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DEFINITION 3.1. A linear set ® in ξ) is said to be strongly dense
(resp. φ-restrictedly strongly dense) provided

(a) t/'® C © for every Uf E SIL;
(b) there exists a sequence of projections Pn ESI such that Pnξ) C ®,

Pi i 0 and Pi is a finite projection (resp. φ(Pi)<™). An operator
Tr/Sί is called essentially measurable (resp. φ -restrictedly essentially
measurable) if T has a strongly dense (resp. φ-restrictedly strongly
dense) domain and a closed extension. Moreover if T is closed, T is
called measurable (resp. φ -restrictedly measurable).

LEMMA 3.2. ([11] Lemma 1.1.) Let T be a closed densely defined
operator ηSί. Then;

(1) T is measurable (resp. φ -restrictedly measurable) if and only if
so is \T\.

(2) LetT^O and let T = λdE (λ) be its spectral resolution. T is
Jo

measurable (resp. φ -restrictedly measurable) if and only if E(λ)1 ( = I -
E(λ)) is a finite projection (resp. φ(E(λy)< oo) for a positive λ.

We denote the set of all operators on § measurable (resp. φ-
restrictedly measurable) with respect to SI by S)ϊ(Sί) (resp.

PROPOSITION 3.3. ([7] Prop. 4.3.) The sets 2ft(Sί) and 9K(φ) form
EW*-algebras over Sί under the operations of strong sum, strong product,
adjoint and strong scalar multiplication.

Let yRψ be the maximal ideal associated with φ, that is, the set of
A ESI with <p(|A|)<oo. For every TE2)ΐ(SI)+ we put

μ(T)= Slip φ(A).
Ae9KA^T

DEFINITION 3.4. A measurable operator Γτ/Sl is said to be pth
power integrable with respect to φ if μ ( | Γ | p ) < oo. Let Lp(φ)
(1 ^ p < oo) stand for the set of pth power integrable operators η SI. The
ί/-norm of Γ E L p ( φ ) is defined as μ ( | T | p ) 1 / p and designated by
||Γ| |P. If p = oo, we shall identify SI with U{φ).

A measurable operator T belongs to Lp(φ) (1 ^ p < oo) if and only if

T is φ -restrictedly measurable and - λprfφ(£(λ)±)<oo ? where
Jo

/ ;
λdE(λ) is the spectral resolution of \T\.

THEOREM 3.5. [11] (1) For l ^ p < o o Lp(φ) is a Banach space
with norm | |T | | P and the following properties are satisfied.
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(a) || Γ||, = \\T*\\P = \\U T U*\\p for TEU(φ) and U G %„.
(b) For S, TEL"(φ) such that | T | = i | S | we have \\T\\P S | |S | |P .
(c) For A e l and TElf(φ)we have \\A • T\\p ^ \\A || || Γ||p.
(d) // 0 ^ T, ̂  T2 ^ is a sequence of elements of Lp(φ) such that

{|| Tjp} is bounded, then there exists T: = sup Tn and limπ_|| T - Tn\\p = 0.
(2) Let Up + ί/q = 1 where 1 ̂  p, q ^ t». T/ien
(a) μ(S Γ ) = μ ( Γ S ) / o r 5 £ L ' ( φ ) α n d Γ ε L ' ( φ ) . If further-

more, S,T^0, then μ (S Γ) § 0; and conversely, ifμ(S T)^0 for every
T ^ 0, Λen S ^ 0.

(b) |μ(Γ, Γ2 Γ n ) | g μ ( | T , Γ2 Γ B | ) ^ || Γ,|U| Γ ^ U -
II Γn|U for T,EL> (φ) with ΣΓ-, 1/p, = 1, p, ^ 1 (i = 1,2, , n).

(c) | | 5 | | p = sup | μ ( 5 Γ) |
T(ΞLq(φ),\\T\\q^\

for S E Lp(φ) where the sup is attained by some T if 1 ̂  p < oo.

(d)

forSEL"(φ) and TGLq(φ).
(3) Lei 1/p + l/<7 = 1/r iv/iere l^p,q, r ^ oo.
(a) If T E L " ( φ ) a n d S E L " ( φ ) , t h e n T S G L ' { ψ ) a n d we h a v e

\\τ-s\\,^\\τl\\sl.
(b) Let T be a φ-restrictedly measurable operator η 21. If T - S EL

U{ψ) for every S G Lq(φ)\ then TGLp(φ).

Let 3)0 be a Hubert algebra. Let %o(®o) be the left von Neumann
algebra of ®0 and let φ0 be the natural trace on %o(®o)+ The comple-
tion !Q of @0 is equivalent to an //-system [3]. Putting

(βo)h = {x E !Q\ 770(X) is bounded},

(2}0)b is a maximal Hubert algebra containing 3)0 and %o(So)(So)fc
For every x E φ TΓO(JC) is φo-restrictedly measurable ([11] Lemma
2.3.). We can easily show that L2(φ0) = {τro(x); x E φ} and L2(φ0) is a
Hubert space isometric with £>. Moreover we remark that L2(φ0) is an
//-system isomorphic with ξ) by the map. x -^ 7ΓO(JCĴ  This follows from
the facts that (1) if xy is defined and equals z, then 7ΓO(JC) τro(y) = 7ro(xy)
and (2) if πo{x) τro(y) equals πo(z), then xy is defined and equals z. We
have

y,); xn y, E ίp}

and the integral μ ( T ) of T = ΣΓ-, iro(x.) -My,) equals ΣΓ=,(y,
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DEFINITION 3.5. We define the Lω-spaces with respect to the
natural trace φ0 as follows;

Lω(φ0)= Γ\ Lp(φ0),

Lϊ(φo)= Π Lp(φ0).
2^P<oo

Similarly we define the Lω -spaces with respect to the Hilbert algebra 2ΰ0

as follows;

L?(2>0) = {x £ £ ; τro(x) e L2

ω(φ0)}.

PROPOSITION 3.6. The space Lω(3)0) (resp. L"(2Ό)) is α« unbounded
Hilbert algebra containing (3>n)l (resp. (®0)*)

Plroo/. For 1 ^ p < » and S, Γ E L" (φ0)

and hence S T E Lω (φ0). Therefore, for each x and y in Lω(3)0) xy
is defined and equals ττo(x)y. Furthermore for each TELp(φ0)
( l g p < o o ) | |Γ | | P = | | Γ * | | P and hence JC* GL ω (® 0 ) for every x E
Lω(S0) Consequently L ω (S 0 ) is a *-algebra. We can easily show
Lω(3)0) D (®o)i and so Lω(®0) is a pre-Hilbert space and its completion is
L2(3)Q) = $. For every x, y and z in L ω (S 0 ) we have

(x \y) = (y*\x*)

and

(xy I z) = (τ70(x)y | z) = (y | ττo(x)*z) = (y τ70(x*)z) = (y x*z).

Consequently Lω(3)0) is an unbounded Hilbert algebra. Similarly we
can show that L^(S0) is an unbounded Hilbert algebra containing (3)0)b.

PROPOSITION 3.7. The space Lω(φ0) (resp. L"(<p0)) is an unbounded
Hilbert algebra containing πo((SDo)b)

2 (resp. πo((%)b)) under the strong
sum, strong product, adjoint, strong scalar multiplication and inner product
on L2(φ0).
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Proof. We can easily show that the map x G § - ^ TTO(JC) E L2(φ0) is
an isometric isomorphism of Lω(3)0) onto Lω(φ0). By Proposition 3.6.
Lω(φ0) is an unbounded Hubert algebra.

Problem. Is Lω(3)0) a pure unbounded Hubert algebra? Does there
exist a pure unbounded Hubert algebra containing 30?

PROPOSITION 3.8. The following conditions are equivalent.
(1) There exists a pure unbounded Hubert algebra 3 containing 30.
(2) L%(3)o) is a pure unbounded Hilbert algebra.
(3) Lω(30) is a pure unbounded Hilbert algebra.
(4) There exists a positive element x in ξ) (i.e., TΓO(JC)^ 0) such that

x£(%)b and xn E £>, n = 1,2, •• .

Proof (1) => (4); There exists an element ξ E 3 such that π(ξ) is
an unbounded operator on ξ>. Clearly ξ*ξ £ (30)b and (ξ*ξ)n G 3 Cφ,
n = l,2, .

(4) φ (3); Let y = x2. Then we can easily show that y £• (3)0)b and
Λoo

for each positive integer n πo(y) G LΠ (<po) Let τro(y)= AdJB(A) be
Jo

the spectral resolution. For each p with l = p < °° there is a positive
integer n such that n ^ p < n + 1. Then we have

- Γ λpdφ0(E(λY)^ - P λndφ0(E(λy)- Γ λn+'dφ0
Jo Jo Ji

g - Γ λ"dφo(E(\y)- Γ λ"+Idφ0
Jo Jo

Therefore τ70(y)E Lp(φ0), i.e., yEL p (@ 0 ) for every l ^ p < o o ? and so
y E L ω ( 9 0 ) and τro(y) is unbounded. Consequently Lω(30) is a pure
unbounded Hilbert algebra.

(3) φ (2); Since L ω (S 0 ) CL2

ω(S0), the assertion (3) φ (2) is obvious.
(2) φ (1); L^(®0) is a pure unbounded Hilbert algebra containing

THEOREM 3.9. Let 3) be a pure unbounded Hilbert algebra over
3)0. Then 3)2 (resp. 3) is a * -subalgebra of the pure unbounded Hilbert
algebra Lω(30) (resp. L^(2?o)) In particular, L2

W(3O) is maximal in pure
unbounded Hilbert algebras containing 30.

Proof By Proposition 3.8 Lω(3)0) and L"(2>0) are pure unbounded
Hilbert algebras. In the same way as the proof (4) φ (3) of Proposition
3.8 we can easily show Lω(30)D 32 and L?(3)0)D 3.
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Problem. Let 9 be a pure unbounded Hubert algebra over
®0. Does there exist an EW#-algebra SI such that 2ίfc=%o(®o) and

t

Let 3 be a pure unbounded Hubert algebra over 30. By Proposi-
tion 3.8 L?(®0) is a pure unbounded Hubert algebra such that

and

Let 77 (resp. π") be the left regular representation of 3 (resp.
L2

ω(®0)) By Lemma 2.1 we have irω

2{3) = τr(®) = τro(S).
Then τr2

ω(2>) is a # -algebra on L2

ω(S0) under τr?(?)# = τr?(f*) and
L*(φo)/L?(2o): = {T/L?(2}oy, Γ G Γ W } is a #-algebra on L2

ω(2>0)
under (T/L ?(%))* = T*/L?(30), where T/L?(%) is the restriction of Γ
onto L2

ω(S0)

NOTATION. We denote by °ίί (3) a # -algebra on L"(S0) generated
by τr2

ω(2)) and L°(φ0)/Lϊ(2>0).

THEOREM 3.10. Let 3) be a pure unbounded Hubert algebra over
. Then °U{3)) and ̂ (L?(@())) are EW#-algebras on L?(%) such that

) and

DEFINITION 3.11. Let © be a pure unbounded Hubert algebra over
%. °U{3) is called the left EM/#-algebra of 3).

4. Traces on £W#-algebras. Let ?ί be an £W#-algebra
and let φ be a trace on Sί+. We note

and let Ttφ be a linear combination of {5T#; S,TE 9ϊφ}. Then, clearly,
$R, (resp. SKJ is a # -subspace of Si satisfying %b% C3lφ and WφWb C
Wφ (resp. %hWlφ cSKφ and 3K^Sί6 cTtφ). We can easily show that the
positive part Wφ of Ttψ equals {ΓGSl+; φ(Γ)<oo} and Ttφ is a linear
combination of Wl*. We define φ by;

Then it is not difficult to show that φ is a well-defined linear form on
and it satisfies
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(l) φ(S) = φ(S), sem ,
(2) φ(S*T)=φ(TS*), S,TE%;
(3) φ(ST) = φ(τs), semφ, re21,,.

We note

Then φ is a trace on 9ί£ and we have

φiφ)b=Wφ and (Tlφ )b = 2TCφ-.

DEFINITION 4.1. Let 91 be an £W#-algebra and let φ be a trace on
9Γ. If every A E 9Ϊ is <p-restrictedly measurable, then 91 is called
φ-measurable.

Let 3) be a pure unbounded Hilbert algebra over 2>0 and let φ be the
completion of S). Let ^ be a pure unbounded Hilbert algebra over (@0)b
containing 2). Let §1 be a φo-measurable (merely measurable) EWΦ-
algebra on Έ such that Sfe = %(%) and 9ΪD7r(S) (^(®) and
^ ( L ? ( 2 Ό ) ) are examples of such HW#-algebras), where φo is the natural
trace on °U{){3}^+.

NOTATION. For each S E 91+ we define ψ as follows;

r (JC |JC), if S1 / 2=TΓO(JC), xEL 2

ω (® 0 );

[ 30, if otherwise.

THEOREM 4.2. (1) ψ is a faithful normal semifinite trace on 2l+.

(2) We have

sJfφ = 91 Π L2

ω(φ0) and Wlφ = S Π Lω(<p0).

(3) Putting

£;^ΰ)Ed

(resp. 93?(®o)) w α pwrβ unbounded Hilbert algebra over (%)b (resp.
?) containing 3) (resp. S 2 ).
(4) φ equals the natural trace ψQ on ΰUo(3}oy.
(5) Let μ be the integral on Lι(φ0). Then

φ(T)=μ(f), TESJζ.
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In particular, for every x , y £

φ{iro(y)* πo(x)) = (x y).

(6)
(7) £Ί>ery element T of 91 is represented by

τ=τo+τt, ToeKb, T.

(8) // Γ e 91, rfcen we ftαυe T = (Γ/®0)

Proo/. (2); Let TE^RΨ and let Γ = t / | T | be the polar decomposi-
tion of T. Since φ{T*T) =_φ(\ T\2}<_™, \T\ = πo(x), x e L2

ω(S>0), and so

| T | e L ? ( ( p 0 ) and hence T = U • \ T\ E L?(φ0) Π %. The converse is
obvious. Moreover we get

Wφ = Wφ

2 = (S n L?(<p0))
2 = i n Lω(<p0).

(3); By (2) we can easily show (3).

(4); Let T £ ? i ; . Since « t Π L?(<po)= πo((2>o)6),

(x I JC), if Γ1'2 = τro(x), x

oo if otherwise

), if r / 2 =τro(χ), χ ε ( 3 0 ) 5 ;

if otherwise

(5); Let Γ E Wφ. By (2) there exists an element jc of Lt(%) such
t h a t _ T l / 2 = πn(x). T h e n w e h a v e φ ( T ) = (x\x)= μ ( T ) , a n d so φ ( T ) =

μ(T), τemφ.
(6); Let π be the left regular representation of %. We can easily

show that

Tττ(ξ)=τr(Tξ\

Therefore ττ(Tξ) = Tτr(ξ) E % and π(Tξ) = iro(Tξ), Γ^G
and so Tπ(ξ)E9lφ.

(7); Let T E 2 ί and let T= U\T\ be the polar decomposition of

T. Let]τ]= λdEτ(λ) be the spectral resolution of \Ψ\. Since \T\ is
Jo
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a <po-restrictedly measurable operator, Eτ(λoy E (Ttφ)b

+ for some Λo>
0. By (6) %βlφ)b CWΨ, and so putting

Γ,= TEτ(λoy= U\T\Eτ(λoy and To= T£Γ(λ0),

TQE%b, Tλemφ and Γ = TQ+Tx.
(8); Let T G SI. By (7) we have

= (To/So) + TΓO(JC) = To/2o+7To(x) = 77 2V

(1); We shall show that φ is a trace on ?l+, i.e.,

(a) f(S+Γ)=P(S) + P(Γ),SJea+;
(b) φ(λS) = λφ(S), λ ̂  0, S G 2Γ;
(c) φ(S*S)=φ(SS*), S G 2ί.

(a); Let S,_T6j + . Suppose <p_(S 4- T)< oo. Since 5 (or f ) g
S + f and S + Γ G 2 V , S and Γ in Wlφ\ and so φ(S) = μ(S)<oo and
φ(T) = μ(T)<oo by (5). Suppose <p(5)< oo__and <p(T)<oc. Since S
and T in L^φoΓ, by Theorem 3.5. we have S + Γ E L\φo)

+ and

(b); clear.
(c); Let S E Sί. Suppose φ ( 5 # 5 ) <QQ. Let 5 = £/151 be the polar

decomposition of 5. Then | S | = TΓO(JC), J c G L 2

ω ( S 0 ) and | S # | = | 5 * | =

τro(x*), and so we get

= (x*\x*)=φ(SS*).

Consequently φ is a trace on ST. Since φ = φ0 by (4), φ is a faithful
normal semifinite trace on ?ίfe

+. We can easily show that φ is
faithful. We shall show that φ is normal. Let Ta f Γ, Tα, ΓG2ί+.
Suppose φ(Γ)<oo. Then there exist (xa}CL2

M(@0) and x G L2

ω(S0) such
that ΓL/2= πo(xα) and Tm = πo(x). We can easily show that ψ(Ta) =
\\xa\\2 f φ(T) = \\x\\2. Suppose φ(T) = ™ and supαφ(Γα) < oo. There

exists a net {xa} of L2

ω(2>0) such that ~fψ = πo(αcβ). Let f = Γ λdE Γ (λ)
Jo

be the spectral resolution of T. Since T is <ρo-restrictedly measurable,

Eτ(λoy E (Wlφ)b

+ for some A 0 >0, and so by (5) we get
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TEτ(λ0)
Le Wl; and f = ί ° λdEτ(λ) + TEτ(λoy.

Jo

From φ(T) = <*>, we have φ( λdEτ(λ)) = °°. Since Tα f T, we get

Eτ(λ0)TaEΊ(λ0)e^b and

t £r(λo)TJBΓ(λo)= Γ° λd£ r(λ).
Jo

Then we can show that

£Γ(Λo)Tα£7<Λo) t λdEτ{λ\
Jo

and so by the normality of φ

φ (ET(Xo)TaET(Xo)) ΐ ( |

On the other hand we have

= sup
a

= sup

= sup Φ

(Eτ(λ

(ME

O)J

o) πo(xα)2

)

• BΓ(λo))

r^(A,)

= sup(£Γ(λ 0)xα I Eτ(X0)x*a)
a

^sup| |x 0 | | 2 = sup<p(Γα)<oo.
α α

AdEΓ(λ) ) = oo. Consequently φ is normal. Fi-
0 /

nally we shall show that φ is semifinite. Since φ is semifinite, there
exists a net {Ta} of (Wlφ)t such that Ta | L Let T E ?I+. By (6) we have

T" Ta T"2 E WΨ and T{ Ta T*2 f Γ,

and so φ is semifinite.

DEFINITION 4.3. The trace φ of Theorem 4.2. is called the natural
trace on ST.
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COROLLARY 4.4. For every A E SI and x E L"(S 0) we have

o) and A π o ( x ) = TΓO(AJC).

/n particular, we have

mφ and

Proof. By Theorem 4.2.(7) we get A = A o + A l 5 A 0 _EjU, A , E 3Kφ,
and so A = A ( ) + τro(y), y E L ω ( S 0 ) . Hence ® ( A ) = ®(τr o (y))D L 2

ω(S 0)
and we have

and

A L 2

ω(

A τro(x) = (A o + τro(y)) πo(x)

πo(x)

= 7Γo(Aox) + 7Γ0(i

= 7Γ0(A0X + AjX)

= 7r()(Ax).

Moreover, since sJ?φ = ?IΠ L"(φ0) and Wlφ = Sϊ Π Lω(φQ), we have
219^ C9ίφ and Sί3Wφ C9?ϊφ.

For every A E Sί putting

A Y — AY v p f ω/β) \
i\. Λ- /x Λ,, Λ v__ JL^I 2 V c a ^ 0 / 5

A is a linear operator on L%(3)0) by Corollary 4.4.. Let S =
{ i A G 21}. Then we have

AS = AB, ΛA = ΛA and A* = A*/L2{3)o) = A*

for every A, B E 21 and Λ E (ί. We can easily show that $ equals the
left £W#-algebra °ίί(3l(%)) of a pure unbounded Hubert algebra

). So, we obtain the following theorem.

THEOREM 4.5. Let 3) be a pure unbounded Hubert algebra over 3)0
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and let % be a pure unbounded Hilbert algebra over (20)b containing
2. Let % be a measurable EWΦ-algebra on Έ such that Si*, = ^o(®o) and
S D τr(2)). Then Sί is regarded as the left EW*-algebra °U (9l(%)) of a
pure unbounded Hilbert algebra 3l(3}0) over (3)0)b containing 2.

Finally we shall show that an £W#-algebra with a faithful normal
semifinite trace is isomorphlc to a left £W#-algebra of a pure unbounded
Hilbert algebra (Theorem 4.11). Let SI be an £W#-algebra on ® and let
<p b e a faithful trace on ST. For each 5, Γ G $lφ putting

(λ(S)\λ(T))=φ(T*S),

( I ) is an inner product on λ (31 ψ) and by, for each S,TE^lφ and a E (£,

λ ( T ) = λ ( S + T), a

λ($lφ) is a pre-Hilbert space. Let ξ)ψ be the completion of λ(3lφ). Let
?ί be a φ -measurable HW#-algebra on ® and let φ be a faithful normal
semifinite trace on 2Γ satisfying 91

LEMMA 4.6. The property "51(9^)* C 9?/' feαds ίfie property

Proo/. Let Λ G 31 and 5 G ^ . Let S = 1/1 S | be the polar decom-

position of S and let | S | = Ad£s(A) be the spectral resolution of
Jo

\S\. Since | 5 | is a <p-restrictedly measurable operator, Es(λoy E 0Dlφ)b

+

for some Λo > 0, and so we have

AS = AU\S\ = AU[

" λdEs(λ) + ASEs(λoy
o

LEMMA 4.7. Let A G SI. Then there exist A0B%b and A1E^Rφ

such that

A = Ao + A l β

Proof Let A = U \ A \ be the polar decomposition of A and let

| A | = I λdEA(λ) be the spectral resolution. Since \A\ is φ-
Jo

restrictedly measurable, EA(λoyE(3R9)b

+ for some A 0 >0. Putting
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o= l/( Γ° λdEA(λή and A, = AEA(λ0)\

and A =A0 + Aι.

LEMMA 4.8. The pre-Hilbert space λ(9?φ) is a pure unbounded
Hilbert algebra over λ((3lφ)b).

Proof. We shall show that λ((%)b) is dense in λ(3lφ). For each
T G 9lφ let T = U\ T\ be the polar decomposition of T. Then | Γ| =
U*T<Ξ%. Let | T | = I λdJBΓ(λ) be the spectral resolution of

Jo

Γ|. Putting

= ί
Jo

Sn E (SRφ)ί and {Sn} converges σ-strongly to | Γ|, and so S2

n f | T\2 and
since φ is normal, we get

and

(λ(\T\)\λ(Sn)) = φ

and hence

Therefore λ((9ίί<p)f,)j_s dense in λ(9iφ). Since φ is a faithful normal
semifinite trace on Sίft

+, λ((9lφ)b) = λ(UΦ) is a maximal Hilbert algebra,
and so we can easily show that λ((!flφ)b) is a maximal Hilbert
algebra. For every S j 6 3ίf we define the operations on λ($lφ) as
follows;

λ(S)λ(T)=λ(ST), αλ(S)=λ(αS),

Then it is not difficult to show that λ(9lφ) is an unbounded Hilbert
algebra over λ((3lφ)b). Finally we shall show that λ(3lφ) is pure. By
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Lemma 4.7. every element A of 31 is represented by A = Ao +Au

A0E?lb, A,^mφ. If A E 21-91,, then A x E mφ - (M φ)b, and so
) 6 ) ^ λ(9?φ) and λ((9?φ)6) is a maximal Hubert algebra. Therefore
is pure.

LEMMA 4.9. For every A E 21 putting

Ψ(A)λ(Γ)=λ(AΓ), Te9?φ,

Ψ(A) w α /meαr operator on A (9?φ). Ψ(2l) /s α measurable EW*-algebra
onλ(Wφ) such thatΨ(%)b = Ψ(»>) = <%0(λ((9?φ)fc)) αnrfΨ(Sl)D TΓ(λ(9lφ))

Ψ is an isomorphism of 2ί onίo

Proo/. By Lemma 4.6. 819?,, C9?φ, and so Ψ(Λ) is a linear operator
on λ(%). For every S E $lψ we have Ψ(S) = π(λ(S)), where π is the
left regular representation of the pure unbounded Hubert algebra λ(9ΐφ).
We shall show ψ(9l)6 = Ψ(8l6). Clearly we have Ψ(Slfc)CΨ(8l)b. Con-
versely let Ψ(A)EΨ(8Ϊ)*. By Lemma 4.7. A = A 0 + A i , A0E2I6,
A2 E 2R,, and so Ψ(A2) = π(λ(A0) E Ψ(3Kφ V Since λ ((9?Λ) i s a maxi-
mal Hubert algebra, AfA^E λ((9ϊφ)6), i.e., A,E(9^) 6 . Therefore A =
Ap + A t E 81 b, and so Ψ(A)EΨ(8ίb). By the theory of von Neumann
algebras, Ψ(Άb) = °tto(λ((ϊRφ)b)). Moreover it is easy to show that
Ψ(8l)DΨ(9?J= π(λ(9?J) and Ψ is an isomorphism of 81 onto
Ψ(8ί). Since 8ί is φ-measurable, we can easily show that Ψ(8ί) is
measurable.

LEMMA 4.10. Let ψ be the natural trace on Ψ(9I)+. Then we have

φ(A)=ψ(Ψ(A)% AESί+ .

Proof. By the definition of the natural trace ψ we get

and moreover for every A E Wl^

= \\λ(A1ή\\2= φ(π(λ(A)))= φ(Ψ(A)).

By Lemma 4.6. ~ 4.10. and Theorem 4.5. we obtain the following
theorem.

THEOREM 4.11. Let 81 be an EWφ-algebra and let φ be a
faithful normal semifinite trace on 8l+. Suppose that 81 is a φ-measurable
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EW*-algebra and W(3lφ)b C$lφ. Then λ(9lφ) is a pure unbounded
Hilbert algebra over Λ((9rίφ)b) and putting

for every A E ?ί, Ψ(A) is a linear operator on A(9^). The isomorphism
Ψ is extended to an isomorphism Φ of 5ί onto the left EWφ-algebra
<%(λ(9?J) of λ(9lφ). Let φ be the natural trace on Φ(2l)+. Then
φ = φ °Φ.
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