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SOME REMARKS ON CONVOLUTION EQUATIONS
FOR VECTOR-VALUED DISTRIBUTIONS

H. O. FATTORINI

Let E, X be two complex Banach spaces, (E; X) the space
of all linear bounded operators from E into X endowed with its
usual norm. We denote by &'(E) the space of distributions
with values in E defined in —< <t <® and by Z{E) the
subspace of 9'(E) consisting of all T € 9'(E) with support in
t=0.

Given P € 9(((X; E)) we examine the following problems.

(I). Does P have a convolution inverse with support in
t =0, that is, is there S € Z((E; X)) satisfying

(1.1) P+S=0QLS*P=56Q7

where I (resp. J) denotes the identity operator in E (resp. X)
and § is the Dirac delta?

(II). 1In case the answer to (I) is affirmative, what proper-
ties of S can be deduced from properties of P and vice versa?

These problems have been exhaustively studied in the case where
P=6'Q®I-06QA, A a closed, densely defined operator in E and
X = D(A) with its graph norm. When S is strongly continuous in t =0
then S is a strongly continuous semigroup and A its generator, character-
ized by the Hille-Yosida—Phillips theorem ([6], Ch. VIII); in the general
case (S € Z\((E; X))) S is a distribution semigroup in the sense of Lions
[15] and its generator A is characterized by a result of Chazarain ([2], [3];
see also [19]). Several subcases and variants have been studied by Pazy
[20], Barbu [1], Da Prato-Mosco [4], [5], Foias [12], Fujiwara [13],
Yosida [25] and others (see [15] for the semigroup case). Similar
problems for more general differential operators have also been con-
sidered; see for instance [8], [9], [10], [11], [24].

Our aim is to show here that many of the results just mentioned
extend to the general case (with no restrictions on P, except perhaps on
the support of P or on its growth at infinity) although some interesting
new phenomena appear. Motivation for this extension is provided by
the fact that many state equations arising in applications are not purely
differential; for instance equations describing the behavior of materials
with memory (which appear in magnetic hysteresis, viscoelasticity,
etc). We examine in detail in §8 a heat equation proposed by Gurtin
and Pipkin [14] where the temperature at a given time depends on the
temperature history of the system.
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We shall assume throughout that the distribution P in (1.1) belongs
to the space Sy((X; E)) of tempered, (X; E)-valued distributions with
support in t = 0 (in fact, it is enough that exp (— wt)P € F((X; E)), since
exp(—wt)Pxexp(—wt)S =exp(—wt)(6QRI)=6QQI and a similar
equation holds interchanging P and S). This can be dispensed with in
some cases which are indicated later. Some of the results (for instance,
Theorem 6.1) require that P should have compact support; we write in
this case P € €((X; E)).

Existence of a solution to (1.1) is related to the possibility of solving
the “Cauchy problem”

1.2) P+xU=T

Here T € 9'(E) is given with supp (T') bounded below and U € 9'(X) is
required to satisfy

1.3) supp (U) C [supp (T)]

where [ -] indicates convex hull. This formulation is due to Lions [18];
note that if P=86"@®I -6 @ A (1.2) reduces to

d _
Ga)v=r

and if U coincides, say, with a piecewise continuous function, then (1.3)
simply states that U has ‘“‘zero initial value”, i.e. U=0 for t=
infsupp (T). The relation mentioned above is established in §2 where
we also characterize those P € ¥((X; E)) for which (1.1) has a solution
SEDW(E; X)) (we write then that P € @(((E; X)) or simply P €
2y"). We look in §3 at conditions on S = P~ that imply exponential
growth of § at infinity and in §4 and §5 we establish a perturbation result
and collect same observations on smoothness of solutions.

The case where S is infinitely- differentiable is examined in §6 and,
finally, we set up in the last two sections a version of the Cauchy problem
that applies to hereditary equations and study in this light some differ-
ence — differential equations and the Gurtin-Pipkin equation.

We note that, in most applications X is a dense subspace of E and
the injection i: X—FE is continuous (we denote this by
X — E). However, this is unnecessary for most of the results and will
only be assumed when explicity .stated.

2. Existence of S. All the necessary information on vector-
valued distributions used in what follows can be found in Schwartz [22]
and [23]. See also [21].
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We start with two “local uniqueness” and ‘“local existence”
results. In them, we denote by Di((—x, a);(E; X)) the space of all
(E; X)-valued distributions defined in —o <t <a and vanishing for
t <0.

LemMMA 2.1. Let Si,S,€ D\((—=,a);(E; X)) be two solutions of
(1.1) int<a. Then S,=S, int<a.

LEMMA 2.2. Assume that, for each a>0 we can find
S. EDY((—>,a);(E; X)) satisfying (1.1) in t <a. Then there exists
S € D(E; X)) satisfying (1.1) in —oo <t <o,

The proof is immediate; in fact, S,=S,*8=S8,*(P*S§))=
(S;*P)*xS,=86+S,=S8,int<a. Toprove Lemma 2.2 define § =S, in
t <a and apply Lemma 2.1 to show that this definition makes sense.

Following Lions [18] and Chazarain [3] we say that the Cauchy
problem for

2.1) P+xU=T

is well set (in the sense of distributions) if

(i) For every T € @'(E) with support in t = a there exists a unique
U € @'(X) with support in t Z a satisfying (2.1).

(i) The map T— U = MT from D'(E) into D'(X) defined by (2.1)
is continuous if supp (T) is contained in a fixed interval t Z a.

The relation between (i), (ii) and the existence of a solution to (1.1) is
given by

LEmmA 2.3.  Conditions (i) and (ii) hold for (2.1) if and only if (1.1)
has a solution in 9.

The proof runs exactly like that of Corollaire 4.1 and Théoreme 5.1
in [18], thus we only sketch it. If (1.1) has a solution then U =S8 *T is a
solution of (2.1) satisfying the requirements in (i). If U,, U, are two such
solutions, P* U, = P = U, and the second equation (1.1) implies U, =
U,. Then (ii) follows from known results on continuity of the convolu-
tion product [22]. Conversely, if (i) and (ii) hold the map U = MT
defined by (2.1) must be given by MT =S *T, S € D((E; X)) ([18],
Théoreme 5.1) and is easy to see that S must be a solution of (1.1).

We return now to (1.1). As in Schwartz [22] we shall indicate by
f(t) the function t—> f(t) (or the distribution it defines) while f(t)
indicates the value of f at . Distributions will be sometimes written in
“functional” notation: for instance, 8(f — 1) indicates the Dirac measure
at t=1. We denote by B(A) or £P(A) the Laplace transform of P
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defined by B(A) = P(exp(— Ar)). B(A)is defined in Re A >0, is analyt-
ic and has polynomial growth at infinity. It follows from analiticity of
B(A) that B(A)™": E — X exists and is bounded in an open (perhaps
empty) subset p(P) of the half-plane Re A >0.

Denote by ¥;.(E) the space of all distributions T € Z(E) with
exp(— ot )T € Fi(E).

LEMMA 2.4. Let P€ ¥;. Then (1.1) has a solution S € ¥;, for
some o if and only if {\;ReA > w}C p(P) and

(2:2) IBA) e =CA+[A]" (Re A > w)
for some C >0 and some integer m = 0.

The proof is immediate (see [18], Théoreme 6.1). In fact, if
S € &, ., we obtain from (1.1) that

(2.3) FPA)ZLS(A)=1, FSMN)FP(A)=1T

so that P(A)™' = LS(A) and (2.2) follows from the fact that the Laplace
transform of a distribution in &, , exists in Re A > w and grows (at most)
like a power of | A | at infinity (see [17]). On the other hand, any analytic
function defined in ReA > w and growing polynomially must be the
Laplace transform of a distribution in &;,, ([17]), so that, by virtue of (2.2)
LA)'=ZLS(N), S € P, and (2.3) is satisfied which, by uniqueness of
Laplace transforms implies (1.1).

THEOREM 2.5. Let PE€ ¥,. Then P € @i if and only if p(P)
contains a logarithmic region

(2.4) Ala, B, w)={A; Re A = max (a log|A |+ B, w)}
where a, 3,20 and

(2.5) BA) 0= CA+[A])" (A € Aa, B, »))
where C >0 and m is an integer = 0.

Proof. Let ¥, be the set of all test functions in % which equal 1 in
t=a,0in t=2a If ¢ €%, we have

(2.6) ProS=8RI-P, ¢S*P=8QJ-V¥

where clearly ®€ %' ((E;E)), YeEL((X;X) and (since



CONVOLUTION EQUATIONS FOR VECTOR-VALUED DISTRIBUTIONS 351

bd=Px(1-¢)S), d=0 for t = a and likewise ¥ = 0 for ¢t = a. Accord-
ingly,

(2.7) b= f®

where f is a (E; E)-valued continuous function that vanishes for t = a
and grows (at most) like a power of ¢ at infinity. This is easily seen to
imply that

(2.8) | LPN)| e 5y =C|A]P'exp(—aRel) (ReA>0,/A[=1)

If we now choose a positive y with y <1 and take A in a logarithmic
region (2.4) with B=a'logCy™", a =a'(p — 1), o =1 we have

(2.9) |°(£(D(A)’(E.E) =v A € A(a, B, w))
On the other hand, since ¢S € F((E; X)),
(2.10) [L(@S)(M) . s =CA+ A" (Re A >0)

We take now the Laplace transform of the first equation (2.6) and avail
ourselves of (2.8) which implies that (I — £®P(A))" exists in A(a, B, w)
and

(2.11) (I =ZLPW) " een=(1-7)"
there. We obtain
(2.12) LPMN)L(eS)YAN)T - ZPA))'=1 (A € Ala, B, w))

Operating now exactly in the same way with ¥ we obtain (modifying if
necessary the parameters «, 3, w) that

2.13)  (I-LYN)'L(eS)FPA) =1 (A €EA(e, B, w))

which, together with (2.12) implies that BA)' =
F(eS)AN) (I — ZLP(A))! exists in A(e, B, ), and in view of (2.10) and
(2.11), (2.5) holds. Conversely, assume the conditions in Theorem 2.5
are satisfied. Let I' be the boundary of the logarithmic region
A(a, B+ 1,w + 1) oriented from —i® to +iw and let p > m a positive
integer. Define

(2.14) s‘p(z):i.f A7e“B(A) ' dA
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Since the integrand in (2.14) is O(|A [*"**") as | A |— =, S, is a continuous
(E; X)-valued function in —o <t <(p —m — 1)/a and a standard defor-
mation of contour argument shows that S,(t) =0 for t =0. Now, since
P € %i((X; E)) we can write

P = f(q)

for some integer g, f a continuous (X; E)-valued function that vanishes
for t=0 and is O(|t|*) as t >». We have

(F*S,)(1)= ﬁ fr AP {eﬁ e’*”f(n)dn} BA)dA

(2.15)
(—o<t<(p—m-1]a)

where we have made the change of variables t —s =7 in the inner
integral (the change of order of integration is easily justified from
observing that the integrand is O(|A [**"*™) as | A |—®). Now, if

o

v = e [T e fmdn
it is plain that |[v(A)|= O(A[") as [A|—>=, ReA >0. Then it follows
from another deformation of contour argument that the upper limit of

integration in the inner integral in (2.15) can be changed to + . Doing
this and using the fact that (1) = A ZLf(A) we see that

(2.16) (f*S,)(t)=tP*"h(t)] t<(p-m-1)a)

where h is the Heaviside function. Differentiating p + q times (2.16) we
have

PxS,=86Q1 (t<(p-m-1la)
where we have set S, = §». Operating in the same way we obtain
S, *P=6QJ (t<(p-m-1a

and then, in view of the arbitrariness of P the result follows from Lemma
2.2.

Lemma 2.4 was proved by Lions [18] for the case P =
8'QRXI-6RA, X=D(A), X equipped with the graph norm; note that
in these conditions we have B(A)'=R(A;A) and p(P)=p(A).
Theorem 2.5 was proved by Foias [12] in the same case under the
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assumption that E is a Hilbert space and A is normal and in all generality
by Chazarain [2], [3] where P is allowed to be a linear combination of
derivatives (possibly of fractional order) of 6. Note that in these results
estimates of the type of (2.5) are given in the (E; E)-norm rather than the
(E; X)-norm as here; however, since

IR(A; A)|epiay=|R(A;A)|ee+ AR A)les
§1+(1+')\ ()R(MA)‘(E:E)

and |R(A;A)| e 5n=|R(A;A)|Epn) the two norms can be
interchanged. The same comment applies to all results involving P =
' QI—-56QRA like Theorem 6.1.

REMARK 2.6. Theorem 2.5 can be extended — if in a somewhat
awkward form — to the case P € &;. In fact, let # = U, ,#,. Then
we have

THEOREM 2.7. Let PE€ %;. Then P € 2" if and only if ¢P €
o' forall ¢ € K.

Proof. Let ¢ € ¥, If oP € @' then there exists S, € P, with
eP*S, =61 S,*¢oP=86®J But ¢P=P in t=aqa, so P*S, =
ORI S,*P=6®J in t<a and Lemma 2.2 applies. Conversely, if
Pe %' let S=P'. Then, if ¢ €%, we have pP xS =8 R — D,
¢S *®P =8 Q[ —V¥ where

P=¢PxeS—-0RXxI=(1—-¢)Px(1-¢)S—(1—¢@)P*S—Px(1—¢)S

belongs to ¥o((E; E)) and vanishes in ¢t =a and the same holds for
W¥. We can then proceed just as in the proof of the first half of Theorem
2.5 to show that ¢P satisfies the assumptions in the theorem and hence
belongs to 9,7

3. Exponential growth at infinity. We consider here the
following problem.
III. Let PE 2,"'. What conditions on P (or S) will imply that

(3.1) Sev.,

for some w?

We examine first the case dim E < « (note that if there is in this case
a PeEZ,((E; X)), B(A): X— E is invertible for some A and then
dim X =dim E; we may then assume that X = E). Even in the case
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dimE =1 there are PEA@{,“ where P~' does not satisfy (3.1); for
instance, if P =8(t)—8'(t — 1),

S=P'=8(t)+8'(t—1)+8"(t—2)+"--

which does not satisfy (3.1) for any w. On the other hand, if P =
8'RI—-6RA, then PE D, S(t)=h(t)exp(tA) and

(3.2) IS(1)|= Ce™  (120)

for some C, w=0. This holds also for a more general class of
distributions P; in fact, we have

LEmMMA 3.1. Let

3.3) P=6'QI-pu

w a measure with values in (E; E) such that |u |[0,°]=w <. Then
PE 2y and S satisfies (3.2).

Proof. Define, for a >0
Y.(t)=t""/T'(a) (z>0), Y.(t)=0 (¢<0).

Then Y, defines a distribution in &, that can be continued anallytically to
all complex «a (see Schwartz [21]) and satisfies Y, * Yy = Y., Y. =Y, ;
moreover, Y_,, = 8™ for m = 0.

We consider now the series

@9 505 Voo
n=0

where the exponent *n indicates convolution power. Note first that,
since Y,.;, n>0 is continuous in —oo <t <o each term in (3.4) is
continuous. Since |u*"[[0,2]<w@", (Y,u*u*")(t)<t"w"/n! This
shows that the series (3.4) is uniformly convergent on compacts and direct
term-by-term computation shows that S = P™'. Clearly S satisfies (3.2)
with C = 1.

We note that, as a byproduct of Lemma 3.1 we obtain that P is
continuous whenever P is of the form (3.3) (the condition | u | [0, %] <o is
actually unnecessary, as we shall see later). Note that the result can be
easily extendedto P =86 @I — Y_,.,*u. When dim E = = the situa-
tion is considerably more complex. In fact, even in the case P =
8'QRI—-8QA, S may not satisfy even (3.1) (see a general class of
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examples in Foias [12]). However, it is true in general that “if P € @5
and S is smooth enough, then (3.1) holds”. To explain what we mean by
this, consider again the case P =8 QI — 8 ® A € D' but assume that S
is strongly continuous in ¢ = 0, that is, assume that A is the infinitesimal
generator of the semigroup S. Then it is known that (3.2) holds. This
result can be generalizedto P =87 QR I—-86 ® A ([8], [10]). Assuming
onlythat P=8"QI—8 QA € P47 but requiring S to be uniformly C*
in ¢t >0 Barbu [1] has shown that (3.1) holds. All these results are
particular cases of the following.

THEOREM 3.2. Let PE€ P, '. Assume that, for some ¢ € ¥,
PxpS—-6QI=P=*(1—¢)S = Q is strongly continuous in t >0 and

(3.5) fo e | Q)| dt <

for some w >0. Then (3.1) holds.

(Note that the integral in (3.5) makes sense, as |Q(¢)|=
sup{|Q(t)ul;|u] =1} is lower semicontinuous, hence measurable).

Proof. Since Q has support in t = a, Q*" has support in ¢t > na and
the series

(36) M=0_0*2+O*3__,,

converges in P'((E: E)) (we don’t use here any of the hypotheses in
Theorem 3.2). Now, it is easy to see by direct term-by-term computa-
tion that, if S= @S *(6 QI — M) then P*S =88R L S*P=8RJ so
that

(3.7) S=0S*(6QI— M)

It is not difficult to see (as in [6], Theorem VIII. 1.19) that Q * Q,
Q*Q=Q,- - etc. are all strongly continuous if Q is. Taking » large
enough in (3.5) we may assume the integral equals y <1 and, since

e—w:‘o *n _ (e—wfo)*n

we obtain from Young’s inequality, inductively, that

f: e | Q* ()| dt <y" (nz1)
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which implies that #, which is also a (E; E)-valued function (recall that
the sum (3.6) is locally finite) satisfies

| e luwiar=sa-yy

and thus belongs to ¥;,. Then, as ¢S € & it follows from (3.7) that S
belongs to & as well, which ends the proof of Theorem 3.5.

ReEMARK 3.3. Let P € 9" have compact support and assume that
S is a C*(E; X)-valued function for ¢t >b. Then it is clear that, if
o E€EHX, witha>b, Q=Px*(1—¢)S is a C*(E; X) valued function for
all ¢+ and has compact support so that (3.5) is satisfied. It follows then
from Theorem 3.2 that S € &, for some w. If P € ¥, which falls short
of (3.5), we don’t know whether (3.1) must necessarily hold.

The requirement that S be C~ can be relaxed; in fact, if P = u™
where u is a (X; E)-valued measure it is enough to require that S should
be C™ for t large enough. In some cases this requirement can be
further relaxed; for instance, if P=86"QI -6 QA with A densely
defined and closed, X = D(A) with the graph norm and S is merely
strongly continuous (as an (E;E)-valued function) for ¢t>b then
Theorem 3.2 applies; in fact, P* oS -8 &= ¢’S.

REMARK 3.4. We note that the result of Theorem 3.2 holds if we
replace Q by R = ¢S *P—-8®J=(1—¢)S *P. In thiscase we define

N=R-R**+R**—...

and (3.7) is replaced by
S=(0QRI—-N)*¢S.

4. Smooth solutions. If P=8'QRI-6RAED;" it is
known (see [18]) that if u = S(¢)v, ¢ a test function with supportin ¢ >0
or, more generally, if u € D(A*)= ., D(A"), then Su coincides in
t >0 with a function with values in X, infinitely differentiable in t =0
(See also [10]). We may state loosely this result as “smooth initial data
produce smooth solutions”. The situation becomes considerably more
complicated in the general case, as the one-dimensional example P =
8'(f)— 8'(f — 1) shows; for in this case

12k <t=2k +1)

S(t)={
02k +1<t =2k +2)
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(by modification of this example one may construct a P € @7/, this time
in infinite dimensional space, where Su is everywhere discontinuous for
all u€ E). Even in the less artificial difference-differential case
P =8'(t)— 8(f — 1) we have

SH=Y )+ Y.t - D)+ Y5(t—2)+---

which is merely continuous (although, it becomes smoother as
t — ). This kind of situation arises in more generality; in fact,

LEMMA 4.1. Let dimE <o,
4.1 P=8QI—uep;!

w a measure with values in (E; E). Then, if S = P!, S is continuous in
t=0.

Proof. As in Lemma 3.1, X=E. We have S'=u*S+6Q1L
Hence

4.2) S=p*Y,*S+Y,.

Replacing S in the right-hand side of (4.2) by its left-hand side and
iterating, we obtain

4.3) S=p* Y, +S+ D urtDxy,
k=1

But S is, locally, the derivative of a continuous function, thus Y, * S will
be continuous on any given compact if n is large enough. This proves
Lemma 4.1 (note that the proof can be generalized to the case
P=8"QI-Y (y*p)

When dim E = « the situation becomes more complicated. Assume
(in the case X — E) we call an element u € X ‘“smooth” if Pu €
Do(X;X), PxPue€ Dy(X,X), PxP+*Pu€ DyX; X),--- which would
be a generalization of the condition u € D(A”) in the case P=
8'QI—-8®A. Then it is possible to show that Su is continuous for
t = 0 by using the same argument as in Lemma 4.1 if P is of the form
(4.1). However, even in the purely differential case, there may be no
other smooth elements that u = 0, as the following example shows. Let
P=86"QI-6'QA-86QB with A, B closed, X =D(A)ND(B)
with |u|x =|u|+|Au|+|Bul|. Then it is not difficult to see that u is
smooth if and only if u € D(AA,--- A,)foralln =1, where A, = A or
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A; =B. Letnow E = H be a Hilbert space, A an unbounded infinitesi-
mal generator, Bu = (u, uo)u, where u, & D(A). Since

B =1 2

HR(A;A)B] RO A)

n=0

exists for Re A large enough and is bounded there, P € ;' by Lemma

2.4. But D(AB)={0}, so there cannot be nonzero smooth elements.
It would be interesting to know conditions on P (for instance,

P(¢)P(¢)= P(y)P(¢)) that imply denseness of smooth elements.

5. A perturbation result. The following theorem is based
on a classical result on perturbation of strongly continuous semigroups
([6], Theorem VIII. 1.19) and thus the proof will only be sketched.

THEOREM 5.1. Let PE DN D" and let P, € D'((X; E)) be such
that (a) if S = P™', P,* Sis an (E; E)-valued function strongly continuous
for t >0 and (b)

(5.1) [Te=texs)@ran <o

for some w >0. Then P+ P, € @7

The proof is carried out much in the same way as that of
Theorem 3.2. As in [6], Lemma VIII. 1.21 we prove first that (P, * S)*?,
(P,*8)*,-- - are strongly continuous for t >0. There we choose w so
large that the integral (5.1) equals y <1 and prove by means of Young’s
inequality that

(5.2) fo e (P S ()|dt=y  (n=1)
Now, it is easy to show that (5.2) implies that the partial sums of the series
(5.3) U=P*S—(P*S)>+ -

are a Cauchy sequence in %;,(E;E)) so that the series is
convergent. Again, direct term-by-term computation shows that

(P+P)*x(S+*(BRQI-U)=8R1
(5.4)
S*BRI-UN*(P+P)=6QJ

which ends the proof the Theorem 5.1.
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REMARK 5.2. A similar result holds if we replace P,* S by S * P;;
the requirements are that S * P, should coincide for t>0 with an
(X; X)-valued continuous function and (5.1) — where the norm is now
the (X;X) — norm should be satisfied. In this case we obtain
(P+P)'=(6&QI—7)*S, where

(5.5) YV =S#P,—(S*P)+---,

REMARK 5.3. Generally speaking, Theorem 5.1 yields better re-
sults when S is not too singular, for otherwise the conditions on P,
become excessively stringent. A particularly important case is that
where § itself is strongly continuous and

(5.6) IS(t)|= Ce”  (120)

for some C, w >0; evidently, we may assume that this w is the same as
the one in (5.2) and obtain that

|S*(PixS)* (1)
(5.7) = e“"ﬁ e St —s) e [(P*S)*" (¢)|dt
=Cy"e” (r=0).
Then, since S * (P, *S)*" is strongly continuous in ¢t = 0 (see again [6],

Lemma VIII. 1.21) and (5.7) guarantees strong uniform convergence on
compactsof t 20, S, = (P + P,)"" is itself strongly continuous in ¢ = 0 and

(5.8) 1S,(1)|=CA—y)'le®  (1=0).

6. The abstract parabolic case. We say that P € 97 is
abstract parabolic if S = P~' coincides in t >0 with C*(E; X)-valued
function (in symbols, P € (C*)™'). Abstract parabolic distributions of
the form P =6'® I — 6 ® A were characterized by Pazy [20] in the case
where A is a semigroup generator and by Barbu [1] when P€E

o"'. Our proof of Theorem 5.1 is close to that of Barbu.

THEOREM 6.1. Let P € &'. Then P is abstract parabolic if and only
if for every a >0 there exist B = B(a), v = w(a)>0 such that p(P)
contains the region

(6.1) Yo, B, w)={A; ReA Zmin (B — alog|A|, )}

and
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BA) e n=CA+A)" (A €N B, w))
where C — but not m — may depend on a.

Proof. By virtue of Lemma 2.4, PE ¥;'. We use now the
expression (2.14) for Y, *S, the pth antiderivative of S with, say,
p >m +1. Then the contour of integration in (2.14) can be deformed to
2(a), boundary of (e, B(a)+1,w + 1) for « arbitrary. Now, in the
last integral the integrand is O (| A [™7?*™) so that, if t > (m + 1)/a we can
differentiate p times under the integral sign and finally obtain

(6.2) S(t)=i L(a) eMB(A)dA.

2

Now, it is obvious that (6.2) holds for t > (m + 1)/a where «a is arbitrary,
so that P € (C”)™" as claimed.

We prove now the converse. Assume that S = P~'is C~ for t >0,
where P € €'. Let supp(P)C|[0,b] and, given a >0 choose 0 <a <
1/2 and an integer p in such a way that

(6.3) pl+b)'=aq, pa(l1+b)'=1/2

Let now ¢ € ¥#,. As in Theorem 2.5 we have

(6.4) PxeS=86RXI1—-, eS*P=86QXI—-V¥

but now ®=Px*x(1—¢)S=8RXQI—P*¢S is a C*(E; E)-valued func-
tion with support in a =t=2a+b whereas ¥ is an (X;X)-valued

function with the same properties. After repeated integration by parts
we have

LDO) = A7 f T e MO0 (1)dr
0

hence
[(LP)YAN)|=C|A|™ (ReA 20)
(6.5)
[(ZLDP)(A)|= C|r[Pe CarbiRer (Re A <0).
Let now y <1. A short computation shows that

(6.6) | 2P|z y=y for A EQa,B w)

if B=QRa+b)'logCy”', w=(Cy™")””. Operating in the same way
with ¥ and modifying if necessary 3, @ we obtain
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(6.7) 'glp(A)hx;x)é Y for A€ Q(a, B, w).
Observe next that, for some integer g

|.§£((pS)()\)|(E;x)§C|/\|" (Rer =0)
(6.8)
| Z(eS) (M) = C|A |72 (Re A <0)

(here and in the following inequalities C is not necessarily the same
constant). According to (6.3) we have 2aa =2ap(1+ b)™' =1 so that we
obtain from (6.8)

| L(@S) (M) ;= C A ]
6.9)
=C|AI" (A ENe, B, w).

Combining now (6.6) and (6.7) as in Theorem 2.5 we see that ()=
FL(eS)I + £P(1))" in Q(a, B, w) and the result follows from (6.9).

REMARK 6.2. Note that we obtain as a by-product of Theorem 6.1
(see Barbu [1]) that if P € (C”)™' then S grows exponentially at infinity;
more precisely, (6.2) implies

|S(t)| = Ce” (tze)
for any € >0.

REMARK 6.3. We don’t know of a characterization of P € (C*)™!
for P € &' not having compact support. The conditions in Theorem 6.1
are certainly sufficient even if PZ &; but they are no longer necessary; if
P € &, and these conditions are verified for ¢P for any ¢ € # then it is
easy to see (using Lemma 2.2 in the style of Theorem 2.7) that
P € (C*)"'. We do not know whether this is a necessary condition.

It seems natural to ask whether the condition that P € €' N (C~)™
implies any smoothness properties of P itself. Somewhat surprisingly,
the answer to this question turns out to be affirmative when dim E <
but negative in general.

The following result is an adaptation of a theorem in Ehrenpreis
[7]1. We follow closely the proof of Hormander [16]

THEOREM 6.4. Let dim E < . Assume that P € €' N (C~)"". Then
P coincides with a C* function with values in (X; E) for t >0.

Proof. Note (see the remarks following (3.11)) that dim X = dim E,
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so we may take X = E; we assume coordinates have been introduced in
E and work with matrices instead of operators. Let P =0 for ¢t = a and
choose ¢ € #,. We take the Laplace transform of the first equation
(6.4), pre-multiply both sides by B(A)"' and take determinants. We
obtain, for every a >0

f(A) = det L(@S) (1) = det (I + L(®)(A))det B(A)"!
(6.10)

(A € Yo, B(a), w(a))

so that, in view of (6.6), f(A) does not have zeros in any of the regions
Q(a, B(a), w(a)). This is easily seen to imply that, if {A,} are the zeros
of f (say, arranged in order of increasing modulus),

(6.11) ReA,/log|A,|—>—» as n—ox.
We take now inverses in (6.10),
(6.12) 1/f(A) = detB(A)det (I + L(P) (1))

Since |B(A)|< CA+]|A|)™ for ReAr >0, a similar inequality must be
satisfied by each of the entries of PT(A); therefore |detP(in)|=
C(1+|n|)™ (n=dimE) and then it follows from (6.12) that

(6.13) Ifm)[zCA+[n)™ (—e<n <o)

Finally, note that f(A) is the Laplace transform of a distribution with
singular support equal to {0} (the “convolution determinant” of ¢S). It
has been proved by Hormander [16] that this, (6.11) and (6.13) imply that
1/f satisfies the conditions set up for " in the proof of Theorem 5.1, that
is, for all @ >0 |[1/fAN)|=CA+|A)" (A € Qa, B(a), w(a)). Observe
next that, since sing supp (¢S) = {0}, | £(¢S) (A)|, thus each of the entries
of the matrix ¢S, must obey a family of inequalities of the same type of
(6.11). It follows then that the entries of £(¢S)(A)'—thus
| £(¢S)(A)'|—must satisfy the assumptions of Theorem 5.1; accord-
ingly, (¢S)' € C=. But, by virtue of Lemma (¢S)'= P in t = a, which
proves the result.

REMARK 6.5. Theorem 6.4 becomes false when dim E = «. Exam-
ples showing this can be given by “interchanging a semigroup with its
generator” as follows. Let S be a semigroup with no tendency towards
smoothness — say, a group with unbounded generator A. Set E =
D(A) with the graph norm, X = E. Then, if P =S,
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P'=80QI-5®A

which is clearly C”—in fact, zero—in t >0. We can obtain an even
worse P by replacing S by a regular group distribution with unbounded
generator or by using P=(d/ds)"S, in which case P7'=
Y. RI-Y,QA.

7. The strong Cauchy problem. We assume in this sec-
tion that X — E, that is, X is a dense subspace of E and the injection
map i: X — E is continuous. Let P € F,((X; E)) and write

(7.1) P=pu™

where u is a measure with values in (X; E') and m is the least integer for
which a representation of the type of (7.1) is possible. Denote by 4, the
space of all X-valued functions u.(¢) defined in t =0, m times continu-
ously differentiable and with compact support.

We study the following version of the Cauchy problem: given
u, € U,, to find an E-valued continuous function u(t) defined in t =0
such that u(-) (extended to be zero in ¢ <0) defines a distribution in
BH(X; E)) and

(7.2) Pr(u+u)=0 (t=0).

The definition of solution can be made more stringent in several ways (for
instance, we may require u to be an m times continuously differentiable
function with values in X, so that u is a “‘true’’ solution of (7.2)). The
Cauchy problem in this sense appears in connection with systems whose
behavior is described by “‘hereditary’ equations, for instance difference-
differential or integro-differential equations, integration being performed
with respect to time. The “‘initial function” u, is the history of the
system up to t=0; at that time, the equation (7.2) takes over and
determines the future evolution of the system. We can also consider the
inhomogeneous equation

(7.3) Px(up+u)=f (t=0)

where f is, say, an E-valued continuous function in ¢t = 0 and vanishes in
t <0 and is interpreted as an external influence acting upon the
system. An important particular case of (7.3) is that where u,=0 for
t =0; here the system is dormant until ¢t = 0, at which time begins to be
excited by f. In this case, (7.3) reduces to

(7.4) Pxu=f
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If P€ 2(7, the formal solution of (7.3) is
(7.5) u=3Sx*(f —{P*u)

where S = P! and {-}, indicates truncation at zero; more precisely
{P * up}o= P * tiy— w,

where w(t) = (P * u,)(t) for t <0, w(t) =0 for t =0 (note that P * uyis a
continuous X-valued function for ¢t =0). Clearly, 7.5 is the only dis-
tribution satisfying (7.3).

Let ||-|| be a semi-norm in %,. It seems natural to say that the
Cauchy problem for (7.3) is well posed (with respect to | - ||) if the solution
u of (7.3) (given by (7.5)) is E-strongly continuous in ¢ =0 for any
u, € U, and f strongly continuous and

(7:6) @I = 2@ w1+ [ Ife)ds)  @=0)

where n is a continuous function independent of u,, f. This definition
can clearly be modified in many ways. We present now four examples
to illustrate the form of (7.5), (7.6) in several particular cases and to
deduce conditions that assure that (7.6) will hold.

ExampLE 1. Let P=6"®I—-86® A with A closed and densely
defined, X = D(A) with the graph norm |u [, =|u|+|Au]|. If u,€ U,
we define || uo|| = | uo(0)]. Since {P * uoly = — & @ uo(0), (7.5) reduces to

1.7) u(t) = S(t)uq(0)+ f S(t - s)f(s)ds

if § 1s a strongly continuous (E; E)-valued functionin t Z0. Butthen S
must be a strongly continuous semigroup, thus |S(¢)| = Ce and (7.6) is
satisfied with n(¢) = Ce.

ExampLE 2. Let P=86"®I-6'"RQB -6 XA, where A and B
are closed operators such that D(A) N D(B)= X is dense in E; we use
in X the norm |u |+ |Au|+|Bu|. Define || us(0)|| = | uo(0)| + | u4(0)|. Since
{P*ugjo= — 8" R us(0)— & ® (1u{(0) — Buy(0)), we have

u(t)=(S'(t)— S()B)uo0)+ S(t)us(0)
(7.8)

+j' S(t - 5)f(s)ds
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and (7.6) will be satisfied if S(¢), S'(¢) and S(¢)B are strongly continuous
(E; E)-valued functions in t=0. In this case, however, it is not
necessarily true that n(t)= Ce“ for some C, w (see [11]).

_ExampLE 3. We consider the difference-differential operator P =
S'()RI-6(t)RQA —6(t—1)Q® B where A and B satisfy the same
conditions as in Example 2. Now we define || uo|| = sup-,=.=o | uo(t)| for

u, € Uy We have {P*upfy= — 8@ us(0)— Buy(t —1) and, assuming
that S is strongly continuous in ¢t = 0.

w(t) = S(t)us(0) + f S(t = 5)Buo(s — 1)ds
(7.9)
+f‘ S(t - s)f(s)ds.

We obtain an inequality of the type of (7.6) if, in addition to strong
continuity of S we assume

(7.10) fM‘S(s)BulEdsév(t)]uIE (t=0,u € X)

for some locally bounded function v(¢)>0.

ExamprLE 4. Let P=8"QRI-86QRA-yXA where y is a
bounded scalar function in t 2 0, A is a closed, densely defined operator
and X = D(A) with the graph norm. Let u, € %, and define

(7.11) ol = 100) + 6]+ [ [ua(s)] s

Now

(P % ugly = —a®u5(0)—5'®u0(0)—f_' (£ — )uo(s)ds

so that

u(t) = S(t)ul0)+ S'(t)us(0)
(7.12)

+ J;‘ S(t—s) {f; v(s — r)uy(r)dr +f(s)} ds.

Assuming that S, S’ are strongly continuous (E; E)-valued functions in
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t = 0 we obtain easily (7.6). Under the same hypotheses, but this time
assuming vy summable, we obtain (7.6) for the semi-norm

(7.13) [| o]l = [ uo(0)| + | u5(0) | + _iggo [u(2)].

We note that if we only require (7.6) for the case u, =0 (systems which
are at rest until r = 0), it suffices in all cases to require that S be a strongly
continuous (E; E)-valued function for ¢ = 0.

8. Two applications. (i) We examine the difference-
differential equation

(8.1) u'(t)= Au(t)+ Bu(t— 1)+ f(¢) (t=0)

in the spirit of §7, especially Example 3. Here A is the infinitesimal
generator of a strongly continuous semigroup S(¢); t=0 and B is a
closed operator with D(B)D D(A). We assume that B is “subordi-
nated” to A in the following sense: there exist two continuous functions
a(t), B(t) defined in ¢ >0 such that

(8.2) (@) [BS(u|=a(t)|u] (t>0,ueD(A))
(8.3) (b) [S(t)Bu|=B(t)|u| (t>0,ue D(B))
(8.4) (c) r a(t)dt <o« fl B(t)dt <oo.

We begin by showing that (a) implies that

P=6'1)RQI-6(1HHRQRA - 8(1—-1)QB

belongs to 2, '((X; E)), where X = D(A) endowed with the graph
norm. We do this by pertubation of P,=8'(f)®QI-8(f)QA by
P,=8(f — 1) B. Observe first that (8.2) implies that for every t >0 the
operator BS(t) admits a bounded extension BS(t) € (E; E) such that

(8.5) IBS(H]=a(t)  (t>0).

Moreover, BS(-) is strongly continuous in ¢ >0; to see this, in view of
(8.5) it is enough to show that BS(-)u is continuous for u in a dense
subset of E. But,if u € D(A), BS(t)u = BR(A; A)S(t)(AI - A)u and
BR(A; A) is bounded by virtue of the closed graph theorem.

Observing now that (P, * Su)(t)= BS(t — 1)u (we set S(t)=0 for
t<0) for u € D(A) it is not difficult to deduce that
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(8.6) (P, S)(f)= BS(f - 1).

We look now at the perturbation series

S\(t)=S(t)+ S()*BS(f — 1)
(8.7)

+S(t)*BS(t—1)*BS(f — 1)+ -.

Convergence of (8.7) is clear, as the n” term vanishes for t =n -1,
according to Theorem 5.1,

S, =P

We note that, again by virtue of Lemma VIII. 1.21 in [6] all the terms in
(8.7) are (E; E))-valued strongly continuous functions in ¢ = 0 so that the
same is true of S;. We estimate now (8.7) using Remark 5.3. Clearly,
an estimate of the form (5.8) will hold if we can prove that

(8.8) f " e (t)dt <o

for some w >0; in view of the first condition (c), we only have to prove
that a(t) grows exponentially at infinity. But this follows easily from
the inequality |[BS(H)u|=a(t)|S(t—t)u| (u €B, 0=t'=1). Accord-
ingly, (8.8) holds and

[Si(t)]| = Ce* (t=0)
for some C, w.
We rewrite now (8.7) using (8.6) and the associativity of the
convolution product,
S;=S+(S*P)*S+(S*P)**S+---.
Now, it is immediate that, if u € X (S*P,u)(t)=S(t —1)Bu. Using
arguments similar to the ones preceding and following (8.5) we see that

S(¢)B can be extended to an (E; E)-valued strongly continuous function
satisfying

|S(1)B|=B(1).

An approximation argument then shows
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S\(1)=S(f)+ S({)B*S(f — 1)

+S(H)B*S(t—1)B*S(t —1)+ -+~
accordingly, if u € D(B),
S.(f)Bu = S(f)Bu+ S(f)B* S(f — 1)Bu

+S(f)B*S(t—1)B*S(t —1)Bu
so that | S,(£)Bu | can be estimated by
(B +BE)*BE—1)+B(O)*BE— 1)+ u|=Bi(1)|u].

Now, it is easy to show, as for a, that B satisfies (8.8) and then, on the
basis of Young’s inequality, that

[e=ipwrar<e
for some w >0. This is easily seen to imply
(8.9) f |S(s)Bu|ds = Ce* |u|;  (120)
so that (see again Example 4, §7) we have, in view of (7.10) and (8.9)

8100 Ju@)<Ce ( sup [u)l+ [ 1fs)ds)  (1=20)

for suitable constants C, w.

We consider now a concrete partial difference-differential operator
where the preceding considerations apply. Let E be the space of all
continuous functions u defined and continuous in — o < x < and such
that lim, . u(x) =0 endowed with its usual supremum norm. The
operator A 1is defined by

(8.11) (Au)(x) = u"(x),

D(A) the set of all twice continuously differentiable u for which
wu',u"€ E. As for B,

(8.12) (Bu)(x)=b(x)u'(x)

D(B) the set of all continuously differentiable u for which u, bu’'€
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E. We assume b continuous and bounded, so that clearly D(A)C
D(B). 1If moreover, b is continuously differentiable B is closed. As
for A, it is well known that it generates a strongly continuous semigroup
S(-) in E given by the formula

SOWE = [ Kx=yu()dy

where K is the Weierstrass kernel (4mt)?exp (x?/4t). Some routine
computations show that (a) holds with a(t)= M(=t)"* where M =
sup|b(x)|. Assume in addition that |b'(x)| = O(|x|) as |x|— ; then
(b) holds with B similar to a. Thus the results apply to the partial
difference-differential equation

u 3*u du
-a—t(x,t)=W(x,t)+b(x)~a;(x,t—1) (t=z=0)

(i) Gurtin and Pipkin [14] propose a generalized heat equation
that, in the case of one space variable can be written, after linearization,

c%—i?(x, t)+3(0)g—’t‘(x, :)+f: g'(s)%(x,z—s)ds
(8.13)
= a(0) % (x, t)+ J: a'(s) 3711 (x,t —s)ds + f(x,1).

When B =0 this equation also arises in the theory of viscoelasticity (see
[14]). For the sake of simplicity we shall only consider this case here,
although our methods apply equally well to the complete equation
(8.13). We shall also suppose, to simplify some formulas, that ¢ =
a(0)=1. We consider then (see §7, Example 4)

P=8"QRI-6QA-a R A.
The space E and the operator A are defined in the same way as in
(i). Again we write P = P+ P, with P,=8"QI-86 XA, PL=a'®A
and we assume a to be twice continuously differentiable and a” €

L'(0,©). It is well known (D’Alembert’s formula) that P,E
P ((E; X)) and that S = P’ is given by

(8.14) S(tu(x) =%[ u(y)dy.

Note that S is a continuously differentiable (E ; E)-valued function and
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(8.15) S'WOu(x)=112)(u(x+t)+u(x—1t))

which is itself (E;E)-valued and strongly continuous. To apply
Theorem 5.1 we compute P,*S; if u € E is continuously differentiable
we have

82 x+s

(@50 = [ at=9) [ L5 [ umdr} ds

=-21~JO[ a'(t—s)(u'(x+s)—u'(x —s))ds
(8.16)

a'O)y(ux+t)y+tu(x—1t)—a'(t)u(x)

N | —

+% Ll a"(t—s)(u(x +s)+ u(x —s))ds.

Taking now into account that a” € L' and that, accordingly, a'(t)—0 as
t — o we see that (P, * S) is a strongly continuous function with values in
(E;E) and

(8.17) (P,*S)()|=C  (t=0)

so that we deduce from Theorem 5.1 and from Remark 5.3 that
PE€ P, '((E; X)) and that §,= P7' is a strongly continuous function
given by

(8.18) S, =S+ S*(P,*S)+S*(P,*S)?+---.

Now, S is continuously differentiable (see (8.14) and following com-
ments) and it is easy to see that (8.18) can be differentiated term by
term. Hence S, itself is continuously differentiable and S|, which is
itself an (E; E)-valued strongly continuous function, is given by

(8.19) Si=8"+8"%(P,*S)+ S % (P, *S)*+---.

Estimating the series (8.18) and (8.19) in the style of §5 we see that, given
w >0 there exists C = C, with

(8.20) 1S)(1)| = Ce”,  |Si(t)|= Ce™

so that, if u () is the solution of (8.13) corresponding to a u, € U, (see §7,
Example 4) we have

0

()| = Ce= ()| + w1+ [ [uos) ds + [ 171 )
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If we assume a’ summable, then there is an inequality of the same type
but using the semi-norm (7.13) for the initial function u,.
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