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A GENERALIZATION OF THE UNIT INTERVAL

WILLIAM M. CORNETTE

Convex sets are discussed here in linear spaces over scalars
other than the reals. To facilitate this development, the interval
[0,1] is generalized to a unit interval in an arbitrary division
ring. The interval [0,1] is shown to be the maximum general-
ized unit interval in the real number field, the complex number
field, and the quaternion division ring. Several elementary
theorems on convexity are proved for linear spaces over scalars
having generalized unit intervals of certain types.

For a real vector space 7, a set A C T is convex iff VJC, y E A,
Vλ E [0,1] (1 - A)JC + Ay E A. As might be expected, some of the
vector space axioms are not needed when study is restricted to the convex
subset itself. In fact, instead of the two maps:

(α, x)—> ax

(x,y)-*x + y

satisfying the usual vector space axioms, all that is required is a map:

T: [0,l]xΛ X Λ ^ A

such that Vλ, μ e [0,1] and Vx, y,zEA

(1) ( l -λ) jc + λy = λy + (l-λ)x

(2) (l-λ)x + λ[(l-μ)y+μz]

(3) ( l - λ ) x + λJt =JC
(4) (1 - λ)x + λy = (1 - A)JC + λz implies y = z.

These axioms have been studied in some depth [1,6] and have been
applied to axiomatic quantum theory [1,2,6]. Such a development of
convex structures lacks much of the generality that is possible. For
example, the cardinality of points on a line segment is restricted to the
cardinality of the continuum. Also, the scalars used in axiomatic
quantum theory should be the complex numbers [3], or possibly the
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quaternions [4]; in these cases, it would be more convenient to treat these
scalars without involving any real vector space.

2. Unit intervals. Using the axioms for the map T as motiva-
tion, a definition is presented of a unit interval for an arbitrary division
ring. First a quasi-unit interval 3 is a subset of the division ring 9 such
that

(1) A, - λ G 3 implies λ = 0
(2) O,1E^
(3) (1 - λ )μ + λv E 3, if λ, μ, v E 3.

LEMMA 2.1. If 3 is a quasi-unit interval, then
(a) l-λG37if\<Ξ3
(b) λμ G 3, if λ,μ G3
(c) A, λ~ιG3 implies λ = 1.

Proof Parts (a) and (b) are trivial. For part (c), assume λ, λ~*E
3. Then 1 - λ E 3 and 1 - λ"1 E ^, so that

therefore 1 - A = 0 and A = 1.
In this light it seems natural to define an interval [α, b]s to be

{c E &: (1 - λ)α + λb = c, for some A E J?}.

The subscript 3 may be omitted if it is understood in the context of the
material.

The development to this point closely parallels the approach of
Green and Gustin to quasi-convex sets in linear spaces
[5]. Unfortunately, to properly develop a convex structure, this is not
quite enough. It is necessary to define the natural ordering of the
quasi-unit interval as A ̂  μ iff3σ"E^ such that σμ = A. The following
lemma is immediate.

LEMMA 2.2.

(a) A ̂  μ and μ ̂  A iff A = μ.
(b) A ̂  μ and μ ̂  v implies A ̂  v.
(c) Vλ£i,0^Ail.
(d) λ^μ iff λμ-ι<Ξ3.

From part (d) above, it immediately follows that:

THEOREM 2.3. 3 is totally ordered iff either λμ'1 E 3 or μλ~ι E 3
whenever A, μ E 3.
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This theorem motivates the definition of a unit interval as a
quasi-unit interval such that λμ~* E $ or μλ"1 E 3 whenever λ , μ 6 i .
Henceforth, when [μ, v\3 is written, it will be understood that μ ^ v.

LEMMA 2.4. For a unit interval 3,
(a) [0,μ] = {vG3:v^μ}
(b) [μ,l] = {v€EJ:μ^v]
(c) [μ,v] = {λef:μ^λ^v}.

Proof. Part (a) is immediate.
(b) If v E [μ, 1], then 3 λ G i such that (1 - λ)μ + λ = v.

μ [1 - (1 - λ)(l - μ ) Γ = μ [(1 - λ)μ + A]'1 E J

implies v ̂  μ. But ^ ̂  μ implies μ^"1 E ̂  and v - μ EL $, as v - μ =
(1 - μ^"1)^, so that v ^ 1 and v - μ^\- μ imply

Thus

(c) If λ E [μ, i/], then 3 σ £ i such that A = (1 - σ)μ + σ*Λ
Therefore it is sufficient to show

(i) [ ( l - σ ) μ +σv]v~ιEJ>
and

(ii) μ[(l-cr)μ + σv\~λ E ̂ .
Part (i) is clear, since (1 - σ)μv~x + σ E [μ^"1,1]. Part (ii) follows from
(i) and (b), which show that μv~ι ̂  (1 - σ)μv~λ + σ.

COROLLARY 2.5. / / A S μ0 and μ E [μ0, μ j /or any μx ^ μ0,

COROLLARY 2.6. A ^ μ iff (1 - μ) g (1 - A).

Proof. By Lemma 2.4, if A ̂  μ, then 3p, τ 6 i such that μ = pλ
and A = (1 - τ)μ + T. Solving for T, one obtains

therefore (1 - λ)(l - μ)" 1 E 3. The converse follows similarly.
In light of Lemma 2.4, it seems reasonable to define (μ,λ) =

[μ, λ]-{μ, A}, [μ, A) and (μ, A] are defined analogously.
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There are two topologies to be considered on $. The first is the
natural order topology, generated by the closed sets [λ, μ]0 = {v. A ̂  v S
μ) for λ, μ E $ and A ^ μ . The second topology is the closed interval
topology, generated by the closed sets

[A, μ]^ = {v E $\ v = (1 - σ-)λ + σμ, for some σ E 3}

for A , f t £ i . By the use of the above theorems, one immediately
obtains the following:

COROLLARY 2.7. The closed interval topology is finer than the
natural order topology for a quasi-unit interval.

COROLLARY 2.8. The closed interval topology coincides with the
natural order topology for a unit interval.

Now consider a unit interval 3 of an infinite division ring SF and the
sequence {A"}, where A E i . Trivially, λ" ^ A "-1, Vn<ΞJΐ {Jΐ is the set
of positive integers). If A" converges in the natural order topology,
which is clearly Hausdorff, to a value μ G i , then μ ^ A \ Vfc E Jf, so that
μ A " ^ λ m , Vm,n<ΞN. But μ ^ μλm ^ λn Vm,n<=Jΐ implies μ =
μλ~m. Indeed, if μ < μλ~m, then ΞpEJΐ such that μ^λp ^μλ~m.
Contradiction. Thus μ(l - λm) = 0, so A = 1 or μ = 0. If A = 1,
clearly μ = 1. Moreover, where O ^ λ ^ l , {̂ "} is a strictly decreasing
sequence with a lower bound, so it does converge. Therefore, the
following has been proved:

LEMMA 2.9. For an element A/ 1 of a unit interval in an infinite
division ring, A" —» 0 as n —» oo /n ί/ie natural order topology.

The major scalars of interest in physical theory are the rationals, the
reals, the complex numbers, and the quaternions, denoted by %, ί%, %,
and 2,, respectively. The unit intervals as they are normally defined in
the rational and the real fields obviously form maximal generalized unit
intervals under set inclusion in their respective fields. The same is also
true of the complex numbers, as shown below.

Consider 9 = <β and let [0,1] C Λ Then rel7Γ/2, rel7Γ, and re'37Γ/2 (r/ 0)
are not in 3, and rei0, r > 1, is not in 3. Also, as $ is connected in the
sense of ^ = Sk2, the second and third quadrants do not contain
elements in $. Then by the fact that Aπ E 3 if A E £, [0,1] = 3. By an
analogous argument, the same is true of the quaternion division ring Ά.

For any division ring there exists a quasi-unit interval, namely the set
{0,1}. This unit interval is the trivial unit interval 30. Some other
examples of unit intervals are given as follows:
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(1) Λ = [0,l]
(2) Λ = [0,1]mar

(3) $z = [0,1] Π 2 for any subfield SB of &t containing %.

LEMMA 2.10. If S* is a finite division ring, then $ = {0,1}.

Proof. For Λ EJ>-{0,1}, there exists a prime p such that λp =
1. Then λp~ι = λ'1 G A Thus A = 1. Contradiction.

From Lemma 2.10, it immediately follows that Lemma 2.9 is trivial
for a finite division ring.

THEOREM 2.11. If 3 is a nontrivial unit interval, then (1 + I)"1 G Λ

Proof. First note that (1 + I)"1 exists, since Φ is nontrivial, and & is
therefore infinite. Next assume A £ i - Λ Then

(1 - λ)λ + A(l - A) = (1 + l)λ(l - A) G 3

and

λ0 = λ ( l - λ ) G Λ

Total ordering implies either λμ~ι G Jf> or μ λ ^ G ^ , Vλ, μ G
f. Therefore (1 + 1) G ̂  or (1 + I)"1 G 3 but if (1 + 1) G 3, then 1 -
(1 + 1) = - 1 G Λ Contradiction. Therefore, (1 + I)"1 G 3.

LEMMA 2.12. If 3 is nontrivial, then 3% CJ>.

Proof Vλ, μ G 3 λμ ^ A, so

Thus

implies (l + λ ^ G Λ If m~ι E J> for a natural number m, then
(w + l j - ' ε λ Since 2"1 G ̂  by Theorem 2.11, m~ι <Ξ 3, VmE
N. Thus nm~ι €Ξ J> for all natural numbers n ^ m, by total ordering.

By an argument similar to the above showing that JΛ is a maximal
unit interval in % it is easy to show that ^ - 3 is dense in 9? - $& and
J> Cλ 3® is dense in ^ for any nontrivial unit interval 3. By an
analogous argument, the same is true of the quaternions.

Now if the completion 3 of $ in the reals, the complex numbers, or
the quaternions is also a unit interval, then £& is the maximum unit
interval for these fields. Obviously 0,1 G 3 and if the sequences {λn},
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{μn}, and {σn} in $ converge to λ, μ, and σ, respectively, in 3, then
obviously

(1 - An )μn + λnσn -> (1 - λ )μ + λσ E 3.

Assume all elements of the sequences {λn} and {μn} are nonzero. If the
sequence {λnμ^} is partitioned into the subsequences {λnμ^: λ^; 1 E $>}
and {λnμ~n

ι\ knμ~n

ι g- 3), then one of these subsequences will
converge. Both will converge if and only if A = μ. If the first subse-
quence converges then λμ~1E:3. If not, then μλ~ιE:3. Finally, as-
sume μ = - λ. Then choose the subsequence which
converges. Assume that it is the first subsequence. Then

λnμ-ι-*λ(-λyι = -1EΪ.

Contradiction. Therefore, the following theorem has been proven:

THEOREM 2.13. If $ is a unit interval in a division ring ̂  with a
norm and 3 is the completion of $ in the norm-induced topology, then 3 is
also a unit interval.

From the denseness arguments given above, it follows that:

COROLLARY 2.14. $& is the maximum unit interval in the reals, the
complexes, and the quaternions.

3. Convex sets. Using the concept of a unit interval 3 de-
veloped above, a set A in a linear space V over a division ring 3* is
convex (with respect to $) iff (1 - λ)x + Λy E A Vx, y E A and Vλ E
$. It is readily apparent that if & is finite, any subset of V is
convex. Similarly if $ is trivial for an infinite division ring, any subset of
V is convex. If the scalars are the rationals and 3 is nontrivial, then the
convex sets are the usual ones; subsets of 3?, ^, and Ά that are convex
with respect to any nontrivial unit interval have closures that are convex
in the usual sense.

To demonstrate the generality of this approach to convexity, a few
standard terms are defined and a few basic theorems are stated below.

THEOREM 3.1. If A and B are nondisjoint sets convex with respect to
the unit interval 3, then A Π B is also convex with respect to 3.

The proof of this is trivial. It is assumed that the empty set is not
convex.
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THEOREM 3.2. Let xu x2, , xn E A, where A is convex with respect
to the nontrivial unit interval 3. Then for λu λ2, * * , λn E 3 such that

Σ A, = i,
; = i

n

Σ λ^ E A.
1=1

Before this proof is given, it is necessary to show that for any
1 ^ / ^ n

)λf) E i and ( g λ.) \ i

provided the sum in parentheses is nonzero. Assume that λ, E $ - $0

(i = 1, , n - 1). Recall from the proof of Lemma 2.12 that A G i
implies (1 + λ)" ! E Λ Similarly, λ (1 + λ )"1 = (1 + A - 1 )" 1 G ^ Now pro-
ceeding by induction, for n = 3,

by the total ordering of Λ and similarly for λ2(λ! + λ2)~\ Assuming that
the above holds for m, it suffices to show that

m \ -1

l( m \

l ί A 7
This follows since

( m \ -1 / m-1 \ -1

The remainder follows similarly. The proof of Theorem 3.2 now
follows:

Proof. If n = 2, one simply obtains (1 - λ2)xi + λ2x2 since λ2

1 - λ2. For arbitrary n, if

n-ί

i = \
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then

Σ λΛ = (1 - λn)Σ ΓλΛ fΣ λ.) Ί
ι = l i = l L \ι = l / J

Σ ) Ί + λHxn.

The theorem is then proved by induction.
Let the set A be convex with respect to a nontrivial unit interval

</. A point x0 is a boundary point of A if there exist two other points JCi
and y1 such that

{z = (1 - λ )xλ + λx0: A G ̂  - Λ}CA

and

{z = (1 - λ )yi + AJC0: A 6 i - Λ } Π A = 0 .

If $ is trivial, boundary points are not defined. A boundary point may
or may not be an element of A. The set of all boundary points of A is
the boundary of A and is denoted dA.

LEMMA 3.3. If A is a convex set then A + x is also convex. If the
unit interval is nontrivial, then d{A + x) = dA + x.

This lemma follows immediately from the fact that (1 - λ)x + Ay +
z = ( l-λ)( j t + z)+λ(y + z).

Extending the concept of a natural order to all the scalars, an
element a of the scalars is defined to be greater than zero if either a or
a~ι is in β. This is equivalent to requiring the existence of some
A E i - Λ such that λα G 3. Also define a > β iff (a - β) > 0.

A sublinear functional is a function p from V into & such that

(2) p(ax)= ap(x) Vα > 0 and Vx G Ύ.

THEOREM 3.4. Let 3 be a unit interval that defines the convex sets of
the linear space and an ordering on the scalars. (a) // p is a sublinear
functional, then for arbitrary c G & and a G V,

A = {x: p(x — a)^kc}

is convex with respect to $. (b) If c > 0, the range of p is totally ordered,
and 3 is nontrivial, then
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dA ={x: p(x - a) = c).

Proof. By Lemma 3.3 it is sufficient to prove the theorem for
a = 0. (a) follows from the fact that

p{{\ - λ)x + λy) ̂  (1 - λ)p(x) + λp(y)

To prove (b), assume p(x0) = c and let a G ̂  - ^ 0 and β > 1. For
λ ε i , l - ( l - α ) λ ε ί and [1 + (j3 - ljλ]"1 G J?, so

and

Let αx0

 = ^i and βx0 = yi in the definition of a boundary point. x0 is a
boundary point.

Conversely, let x0 be a boundary point of Λ. For JCI and yi
satisfying the conditions in the definition of a boundary point

(1 - λ)p(xo)+λp(x1) ^ c ^ (1 - λ)p(xo)+ λp(yθ.

By letting λ approach zero, p(xo) = c.
A topology is convex compatible if the convergence of a sequence

{λn} in $ to λ G 3 implies

(1 - λn)x + λny -> (1 - λ)x + λy Vx, y G r .

THEOREM 3.5. Let Ύ be a linear space with a convex compatible
topology. If A is a closed convex set with respect to a nontrivial unit
interval, then dA CΛ.

Proof. By Lemma 2.9 l - λ n — » 1 . Let x0 be a boundary point of
A and xγ G A such that

{z = ( l - A ) x o + λJC1}CΛ.

Then the points zn = (1 - λn)jc 0+ λnxί approach x0. Since A is closed,
x0GA.

It should be noted that the natural order topology on JΛ is
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metrizable. Let A be a subset of T that is convex with respect to a
complete unit interval #. If there exists a topology on V such that T is
a Hausdorff topological linear space and A is bounded, then there exists
a map

p: A x A -*$

such that

p(x,y) = 0 iff x = y [1,2,6].

Furthermore, p(jc, z) = p(x, y) + ρ(y, z) iff there exists μ E$ such that
y = (1 - μ)x + μz. If A is not bounded, then the "only if" portion of
the third condition doesn't necessarily hold. Any map satisfying these
three conditions is called a generalized metric, and for any complete unit
interval, the natural order topology is metrizable.

4. Conclusions. The concept of convexity is quite
general. With this generalization of the unit interval, the assumption
that the set of scalars is 91 can be dropped from many major theorems on
convexity. In fact, it would be quite interesting to see how the theory of
convexity can be developed using a generalized unit interval. Use of
this generalization would tend to emphasize the actual requirements
(completeness, total ordering, existence of a norm or metric, etc.) on the
scalars and the unit interval needed for each theorem and would lead to
better comprehension of the theory of convexity.
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