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E-UNITARY COVERS FOR INVERSE SEMIGROUPS
D. B. McALISTER AND N. R. REILLY

An inverse semigroup is called E -unitary if the equations
ea = e = ¢’ together imply a’ = a. In a previous paper, the first
author showed that every inverse semigroup has an E. unitary
cover. That is, if S is an inverse semigroup, there is an E- unitary
inverse semigroup P and an idempotent separating homomor-
phism of P onto S. The purpose of this paper is to consider the
problem of constructing E-unitary covers for S.

Let S be an inverse semigroup and let F be an inverse
semigroup, with group of units G, containing S as an inverse
subsemigroup and suppose that, for each s € S, there exists
g€ G such that s=g  Then {(5,8)ESXG:s=g} is an
E- unitary cover of S. The main result of §1 shows that every
E- unitary cover of S can be obtained in this way. It follows from
this that the problem of finding E-unitary covers for S can be
reduced to an embedding problem. A further corollary to this
result is the fact that, if P is an E- unitary cover of S and P has
maximal group homomorphic image G, then P is a subdirect
product of S and G and so can be described in terms of S and G
alone. The remainder of this paper is concerned with giving such
a description.

1. E-unitary covers. An inverse semigroup is called E-
unitary if the equations ea = e = e’ together imply a’ = a. It was shown
in [4] that every inverse semigroup S has an E-unitary cover in the sense
that there is an E-unitary inverse semigroup P together with an
idempotent separating homomorphism 6 of P onto S. It was further
shown in [5] that every E-unitary inverse semigroup is isomorphic to a
P(G, %, %) where £ is a down directed partially ordered set with % an
ideal and subsemilattice of & and where G acts on & by order
automorphisms in such a way that £ = G%; see [5] for details. The
group G in P=P(G, % %) is isomorphic to the maximum group
homomorphic image P/o of P where

o={(a,b)EPXP:ea=eb forsome e’=e€E P}

DerFiNiTION 1.1. Let S be an inverse semigroup and let G be a
group. Then an E-unitary inverse semigroup P is an E-unitary cover of
S through G if

1) Plo=G

(i) there is an idempotent separating homomorphism 6 of P
onto S.

161



162 D B McALISTER AND N R REILLY

Thus, if P=P(G,%,%) is an E-unitary cover of S then P is an
E-unitary cover of § through G. As stated, the problem of finding
E-unitary covers of an inverse semigroup S consists of finding
homomorphisms onto S. The main result of this section shows that this
problem can be replaced by an embedding problem.

DEeFINITION 1.2, [2] Let S =S' be an inverse semigroup, with
group of units G. Then § is a factorizable inverse semigroup if and only
if, for each a € § there exists g € G such that a = g.

Chen and Hsieh showed in [1] that every inverse semigroup S can be
embedded in a factorizable inverse semigroup. Indeed, let 6 be a
homomorphism of S into the symmetric inverse semigroup $x on a set
X Let Y=X if X is finite and Y=XUX', with XNX' =[],
| X|=|X'|, otherwise. Then F ={a € $,: a =y for some permutation
y of Y} is a factorizable inverse semigroup which contains S6.

PrOPOSITION 1.3. Let F be a factorizable inverse semigroup with
group of units G and let 6 be a one-to-one homomorphism of an inverse
semigroup S into F. Suppose that for each g € G there exists s € S such
that s =g. Then

P={(s8)ESXG:s0 =g}

is an E-unitary cover of S through G.

Proof. It is clear that P is an inverse subsemigroup of S§ X G and,
because F is factorizable, that the first projection m;: P— S is an
idempotent separating homomorphism of P onto S. Likewise, because
of the condition on the homomorphism 6: $ — F, the second projection
m,: P— G is a homomorphism of P onto G.

Now (s,g), (t, h)E P with (s,g)m = (t, h)m, implies g = h thus
(st™)0 =s0(t0)"'=gh'=1. It follows from this that st™" is idempotent
so that es = et, for some idempotent e in S. But then (e,1)€ P and
(e,1)(s,g)=(e.1)(t,h) so that (s,g)o(t,h). This shows that
mem;'Co. On the other hand, since 7, is a homomorphism onto a
group, o C meom;'. Hence P has maximum group homomorphic im-
age G.

Finally, since (s,1) € P implies s6 =1, and so s*=s, if (s, g)m, =1
then (s, g) is idempotent. Hence P is E-unitary.

It follows from the remarks before Proposition 1.3 that every inverse
semigroup has an E-unitary cover. The main result of this section
shows that every E-unitary cover of S through G is constructed as in
Proposition 1.3 for some factorizable inverse semigroup F, with group of
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units G, containing S as an inverse subsemigroup. In order to prove
this, we need some lemmas.

LEMMA 1.4. Let 0: P(G,Z,¥Y)— S be an idempotent separating
homomorphism of an E-unitary inverse semigroup P(G,%,%) onto
S. ForeachA€ YsetN,={gE€G:g'AE ¥and (A, g)0 =(A,1)8};
if X=gA with g€G, A€ Y, set Nx=gN,g™'. Then Ny is well
defined. Further, the relation w on & X G defined by

(A,g)m(B,h) ifandonlyif A=B and gh'E€N,
is an equivalence on & X G inducing 8°07"' on P(G, %, ¥).

Proof. It was shown in [5] that the subgroups N,, A € ¥ satisfy the
following three conditions

(i) N.<C,={geG:gB=B forall B=A}for AE¥,

(i) A, gA €% implies N,, = gN.g™";

(ii) A =B € % implies N3 C N,.
We use (ii), to show that Ny is well defined. Suppose gA = hB, A,
B € ¥. Then B =h""gA sothat, Ny = (h7'g)Na(h~'g) "' by (ii). Thus
hNgh™' = gN,g™'. When the Ny, X €Z are defined in this way, it is
easy to see that they obey the analogs of (i), (ii), (iii) and the remainder of
the lemma follows easily.

For each CEZ, g € G, we shall denote by [C, g] the m-class
containing (C, g). Further, we shall denote by & the set (¥ X G)/m U
G.

LemmA 1.5. For each s € S such that s = (A, g)6, set
Ap, ={[C,h]: h'C=A}
and [C h]p, =[C hg] foreach [C h]E Ap.

Then p: s— p, is a faithful representation of S by one-to-one_partial
transformations of %.

Proof. This follows straightforwardly, using the fact that {Nx: X €
Z} obeys (i), (ii), (iii) of Lemma 1.4.
For each g € G, define a,: ¥ —> % by

ha, = hg and [C hla, =[C, hg]
foreach h € G, [C,h] € (¥ X G)/m. Then, as in Lemma 1.5, it follows

that a: h — a, is a faithful representation of G by permutations of
Z Let F={y €E%y: vy =a, for some g € G}.
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ProrosITiION 1.6. F is a factorizable inverse semigroup which con-
tains Sp.  Further, F has group of units {«,: g € G} and for each a, there
exists p, = a,; also

P(G,Z,Y)={(5,8)ES X G:sp =}

Proof. The only part requiring verification is that P(G, %, ¥ )~ P
where P ={(5,g)ES X G: sp = a,}.

Define ¢: P(G, %, ¥)— P by (A, g)¢ = ((A, g)6,a,). Then, since
0 is idempotent separating and « is faithful, ¢ is one-to-one. Further

(A, 8)¢ (B, h)d = ((A, g)8, ) (B, h)8, a)
=((A A gB,gh)b, a,a)
= (A, 8)(B, h))¢

so ¢ is a homomorphism.

Finally, if (s,a,)€ P, where s =(B,h)6, then p, =a, implies
[C1]p, =[C 1]a, for each C=B; that is, [C,h]=[C,g] for each
C=B. In particular, [B,h]=[B,g] so that s=(B,h)0 =(B,g)6.
Hence (s, a,) = (B, g)¢ so that ¢ is onto.

Summing up, we have the following theorem.

THEOREM 1.7. Let G be a group and let S be an inverse
semigroup. Let F be a factorizable inverse semigroup with group of units
G which contains S as an inverse subsemigroup. Suppose that, for each
g € G, there exists s € S such that s =g. Then

{(s;,8)ESXG:s=g}

is an E -unitary cover of S through G.  Conversely, each E-unitary cover is
isomorphic to a cover obtained in this way.

CoroLLARY 1.8. Let P be an E-unitary cover of S through
G. Then P is a subdirect product of S and G.

Theorem 1.7 shows that the problem of finding E-unitary covers of S
through G is equivalent to finding an embedding of S into a factorizable
inverse semigroup. Such embeddings are hard to classify as they may be
much larger than S and G. On the other hand, Corollary 1.8 shows that
every E-unitary cover of S through G is a subdirect-product of S and G
and therefore depends only on S and G. In the next section, we turn to
the problem of constructing those subdirect products of S§ and G which
are E-unitary covers of S through G.
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2. Subdirect products of inverse semigroups.

DeriNITION 2.1. Let § and T be inverse semigroups. Then a
mapping ¢: S — 27 is a subhomomorphism of S into T if

(1)  o¢(s)#0 for each sE€ S;

(i) d(s)p(r)C p(st) for all 5, t € S;

(iii) &(s™")= ¢(s)"' for each s € S,
where, forany ACT, A'={a™":a € A}.

Theset ¢(S)={t € T:t € ¢(s)forsome s € S} is, from (ii) and (iii),
an inverse subsemigroup of T. We say that ¢ is surjective if T = ¢(S).

ProrosiTION 2.2. Let S and T be inverse semigroups and let ¢ be a
surjective subhomomorphism of S into T. Then

IS, T, ¢)={(ss 1) ESXT: t € B(s)}
is an inverse semigroup which is a subdirect product of S and T.

Conversely, suppose that V is an inverse semigroup which is a
subdirect product of S and T and let s be the induced homomorphism of V
into S X T. Then ¢ defined by

d(s)={teT:(s,t)E Vi}

is a surjective subhomomorphism of S into T. Further

Vi =11(S, T, ¢).
Proof. This is straightforward.

Proposition 2.2 shows that every E-unitary cover of S through G is
determined by a subhomomorphism of S into G; and, dually, by a
subhomomorphism of G into S. We shall consider these two ap-
proaches and the relationships between them in the later sections of the

paper.

3. Subhomomorphisms into a group. In this section we
shall describe the subhomomorphisms of an inverse semigroup S into a
group G. Note, however, that not every subhomomorphism ¢ of S into
G gives an E-unitary cover of S through G.

DerFINITION 3.1, Let S be an inverse semigroup and let G be a
group. Then a subhomomorphism ¢: S — G is unitary if

1€ ¢(s) implies s°=s.
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Note that, if s is an idempotent then

(s)p(s)" = d(s)b(s™)C P(ss™) = b(s)
so that 1€ ¢(s).

ProproOSITION 3.2. Let S be an inverse semigroup and let G be a
group. Suppose that ¢ is a surjective unitary subhomomorphism of S into
G. Then II(S, G, ¢) is an E-unitary cover of S through G. Conversely,
let P be an E -unitary cover of S through G with s the induced homomorph -
ism P— S X G. Then ¢ defined by

¢(s)={g €G:(s8)EPY}

is a surjective unitary subhomomorphism of S into G.

Proof. Suppose that ¢ is unitary. Then, since the idempotents of
P =1I(S, G, ¢) are the elements (e, 1) with e’ = ¢ in S, the projection
of P onto S is idempotent separating.

The projection wg: P— G is onto, so, to prove that G = P/o, we
need only show that 7 e 75 = 0. In fact, since m is a homomorphism
onto a group, so that o C 75 o 7', we need only show that wg o7 C 0.

Suppose that (s,g)ms =(t,h)ms so that g=h. Then (s, g),
(t,g) € P implies (st™',1)E P. Thatis, 1€ ¢(st™"). Since ¢ is unitary,
this implies st~ is idempotent so that es = et for some idempotent e in S.
But then (e, 1)(s,g)=(e,1)(t,g)=(e,1)(t, h) so that (s,g)o(t,h). Thus
msoms C o

Finally, if (s,g)EP and (e,1)(s,g)=1(e,1) then g=1 so that
1€ ¢(s). Since ¢ is unitary, this requires s’=s; whence (s, g) is
idempotent. Hence P is an E-unitary cover of S through G.

Conversely, suppose that P is an E-unitary cover of S through G
and let 1€ ¢(s). Then (s,1)=py for some p EP. But 1= pyn; =
po* implies p*> = p, since P is E -unitary, so that s = py, = pf, where 6 is
the idempotent separating homomorphism P—S, is also
idempotent. Hence ¢ is unitary.

The proof of Proposition 3.2 is strikingly reminiscent of that of
Proposition 1.3. This is because Proposition 1.3 is a special case of
Proposition 3.2. For, let 8 be a homomorphism of S into a factorizable
inverse semigroup F, with group of units G, and set

d(s)={gEG:s0 =g}

Then g € ¢(s), h € ¢(t) implies s6 = g, t = h so that s6t0 = gh. Thus
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(st)0 = gh; thatis, gh € ¢(st). Hence ¢(s)@(t)C ¢d(st). Further s =
g if and only if s§'=g™'; thatis s7'0 = g~'. Hence ¢(s7") = ¢(s)" so
that ¢ is a subhomomorphism. If @ is one-to-one, then clearly ¢ is
unitary so that Proposition 1.3 follows.

In order to obtain a subhomomorphism ¢, as above, from a mapping
6: S — F one need not assume that 6 is a homomorphism. Only that 6
is a v-prehomomorphism in the sense of the following definition.

DEerFINITION 3.4. Let S, T be inverse semigroups then a mapping
6: S— T is a v-prehomomorphism if it obeys the following two condi-
tions.

(1) (st)f = s6t0 for each s, tE S;

(i) (s7)0 =(s#)" for each s € S.

If S and T are semilattices then a v-prehomomorphism is just an
isotone mapping of S into T.

The results in the next lemma follow straightforwardly from the
definitions.

LemmA 3.5. Let S be an inverse semigroup and let F be a factoriz-
able inverse semigroup with group of units G. Suppose that 0 is a
v-prehomomorphism of S into F. Then ¢ defined by

o(s)={gE€G:s0 =g}

is a subhomomorphism of S into G. It is surjective if and only if, for each
8 € G, there exists s € S such that s6 = g; it is unitary if and only if 0 is
idempotent determined in the sense that a6 idempotent implies a idempo-
tent.

Lemma 3.5 shows that v-prehomomorphisms of S into F give rise to
subhomomorphisms from S into G. On the other hand, Proposition 1.6
shows that surjective unitary subhomomorphisms of § into G can be
obtained from embeddings of S into factorizable inverse semigroups with
groups of units G. To end this section, we show that every sub-
homomorphism of § into G is determined by a v-prehomomorphism 6
of § into a factorizable inverse semigroup ¥ (G) which depends only on
G.

It follows from this that every subdirect product of $ and G, in
particular every E-unitary cover of S through G, is determined by a
v-prehomomorphism of S into ¥(G). The problem of constructing
v-prehomomorphisms between inverse semigroups is considered, in
detail, in [6].

Let G be a group. Then we shall denote by #(G) the set of all
cosets X = Ha of G modulo subgroups of G. The following simple
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lemma characterizes the members of % (G ) among the nonempty subsets
of G.

LemMA 3.6 [3]. Let G be a group and let X be a nonempty subset of
G. Then X € #(G) if and only if X = XX 'X.

It follows from Lemma 3.6 that any nonempty intersection of cosets
is again a coset. We may thus define a binary operation * on #(G) as
follows: for X, Y € ¥(G),

X * Y = smallest coset that contains XY.

ProposiTioN 3.7 [8]. Let G be a group. Then 3 (G) is a factoriz -
able inverse semigroup with group of units isomorphic to G. The idempo-
tents are the subgroups of G. Further, for X, Y € ¥(G), X =Y if and
only if XDY.

ProposiTION 3.8. Let S be an inverse semigroup and let G be a
group. Suppose that ¢ is a subhomomorphism of S into G. Then 0
defined by

ad = ¢(a) considered as a member of H(G)
is a v-prehomomorphism of S into X (G).

Proof. Let X = ¢(a); then X C XX 'X. On the other hand, if g,,
g 8:€ X then

88:'8:€ d(a)p(a)'d(a)=¢(a)p(a)d(a)C ¢(aa'a)= ¢(a),

since ¢ is a subhomomorphism. Hence XX 'X CX and so X =
XX 'X. This shows X € #(G), so that 0 is a mapping into ¥ (G).

Next, since ¢ is a subhomomorphism, a6bd C (ab)é for each a,
b € S. But af * bl is the smallest coset containing afb@ so this implies
af = b0 C (ab)6. That is, by Lemma 3.7, af * b0 = (ab)6. Finally,
again since ¢ is a subhomomorphism, (a )8 = ¢(a™')=¢(a)"' = (ab)™
for each a € S. Hence 6 is a v-prehomomorphism of S into ¥ (G).

It follows from Proposition 3.8 that the subdirect products of S and
G are determined by v-prehomomorphisms of S into ¥(G). More
precisely, we have the following theorem, which sums up the results of
this section. It should be pointed out however that it may be easier to
find subhomomorphisms of S into G directly than to find v-
prehomomorphisms of S into X (G).

THEOREM 3.9. Let S be an inverse semigroup and let G be a group.
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(A). Let 6 be a v-prehomomorphism of S into ¥ (G) and suppose
that, for each g & G, there exists s€S such that s6 ={g}; i.e.
g Es0. Then {(s, g): g € s0} is an inverse semigroup which is a subdirect
product of S and G. Every subdirect product of S and G is of this form for
some v-prehomomorphism of S into ¥ (G).

(B). With 0 as in (A), {(s,g): g € s8} is an E-unitary cover of S
through G if and only if 6 is idempotent determined. Every E-unitary
cover of S through G is of this form for some idempotent determined
v-prehomomorphism of S into H(G).

4. Subhomomorphisms from a group. In §3, we charac-
terized the E-unitary covers of an inverse semigroup S, through a group
G, as subdirect products II(S, G, ¢) with ¢ a subhomomorphism of S
into G. They can also be described in the form II(G, S, ¢) with ¢ a
subhomomorphism of G into S. In this section, we give such a
description. As might be expected the results obtained are, in a sense,
dual to those in §3.

DerFINITION 4.1. Let S and T be inverse semigroups. Then a
mapping 0: S — T is a A-prehomomorphism of S into T if it obeys the
following two conditions.

(i) a6bl = (ab)b for each a, b € S;

(i) (a )0 = (ab)" for each a € S.

PROPOSITION 4.2. Let S be an inverse semigroup and let G be a
group. Suppose that T is an inverse semigroup containing S and let 0 be a
A-prehomomorphism of G into T. Then ¢ defined by

d(g)={sE€S:s=gb}

is a subhomomorphism of G into S; ¢ is surjective if and only if, for each
s € S there exists g € G such that s = go.

The semigroup 11(G, S, ¢) is E-unitary. It is an E -unitary cover of S
through G if ¢ is surjective.

Proof. The fact that ¢ is a subhomomorphism and the statement
about the surjectivity of ¢ are readily verified.
Let a = 10; then, since 0 is a A-prehomomorphism

=aa'a=aaa=(1.1)0a=a’=a
so that a is idempotent. Let (g, s)EII(G,S, ¢) and suppose that

(g s)(1,e)=(1,e) where e is idempotent. Then g =1 so that s =16 =
a; thus s is idempotent. Hence II(G, S, ¢) is E-unitary.
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Suppose that ¢ is surjective. Then, if we identify S X G with
G xS, II(G,S,¢)=1I(S, G, ¢*) where g € ¢*(s) if and only if s €
¢(g). Since 1€ ¢*(s) implies s =16 = a, which is idempotent, ¢ * is
unitary. Hence, by Proposition 3.2, [I(G, S, ¢) is an E-unitary cover of
S through G.

Proposition 4.2 is analogous to Proposition 3.2. The next proposi-
tion is similar to Proposition 3.8; it shows that every E-unitary cover of S
through G is determined by a A-prehomomorphism of G into a
semigroup C(S) depending only on S.

DEerINITION 4.3 [9]. Let S be an inverse semigroup. Then a
nonempty subset H of S is called permissible if

(i) a€H, b=a implies b € H;

(i) a, b € H implies ab™', a™'b idempotent.

Schein [9] shows that the set C(S) of permissible subsets of S forms
an inverse semigroup under subset multiplication. Further § can be
embedded in C(S) by means of the homomorphism 1 given by

an ={x €S: x =a}
for each a € S.

PROPOSITION 4.4. Let S be an inverse semigroup and let G be a
group. Suppose that ¢ is a surjective subhomomorphism of G into S such
that 11(G, S, ¢) is an E-unitary cover of S through G. Then ¢(g) is
permissible for each g € G and 0 defined by

g0 = ¢(g) considered as a member of C(S)
is a A-prehomomorphism of G into C(S). Further
I(G,S,¢6)={(g,s)EG X S:s=gb}
here we identify S with Sn.

Proof. Suppose a € ¢(g), b=a; thus b=ea for some e’=
e€S. Then(ga)eEP=I1I(G,S,¢)and (1,e)E Psothat (1,e)(g,a)=
(g.b)E P. Hence b€ ¢(g). Next, suppose a, ¢ € ¢(g) then (g, a),
(g, c)EP so that (1,a”'c)€P. Since P is an E-unitary cover of S
through G, with 7 o w5 = o, where m; denotes the projection of P onto
G, this implies that a'c¢ is an idempotent. Similarly ac™ is an
idempotent. Hence ¢(g) is permissible.

It is now easy to show that 6 is a A-prehomomorphism and, because
X=YinC(S)ifandonlyif X C Y, that P ={(g,s)E G X S: s = gb}.
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If we combine the results of Propositions 4.2 and 4.4, then we obtain
the following dual to Theorem 3.9.

THEOREM 4.5. Let S be an inverse semigroup and let G be a
group. Let 0 be a A-prehomomorphism of G into C(S) such that, for each
s € S there exists g € G with s =g6. Then

{(g,s)EG X S: s =gb}

is an E-unitary cover of S through G. Conversely, each E-unitary cover
of S through G has this form for some a-prehomomorphism 0 of G into
C(S).

S. Examples

5.1. Free group covers. Let S be an inverse semigroup and let X
be a set of generators for S as an inverse semigroup. Let X' be asetin
one to one correspondence with, but disjoint from, X. Then there is a
homomorphism 6 from the free semigroup Fx x-1, on X U X', onto S
such that x0 ' = x7'0 for each x € X. Similarly, there is a homomorph-
ism ¢: Fxyx—— FGyx, the free group on X such that x¢y ' = x 7'y for each
x € X. Define ¢: S — 2"~ by

weE ¢(s) ifandonlyif w=uy forsome wu€E Fy x-
with uf = s; that is ¢(s)=s67'¢ for some s € S.

PROPOSITION 5.1. ¢ is a surjective unitary subhomomorphism of S
into FGy.

Proof. 1t is straightforward to show that ¢ is a surjective sub-
homomorphism of S into FGy. Suppose that 1€ ¢(s). Then there
exists w € Fy x— such that wf =s, wy =1.

Let  be the canonical homomorphism from Fx x- into the free
inverse semigroup FIy on S. Then both 6 and ¢ can be factored
through n. Since w¢ =1 and Flx is E-unitary [7] it follows that w,
regarded as an element of FIy, is idempotent. Hence s = wf is an
idempotent of S. This shows that ¢ is unitary.

As a result of the freeness of FGy, II(S, FGy, ¢), with ¢ as above,
has a weak universal property.

ProprosITION 5.2. Let S be an inverse semigroup and let P =
II(S, FGyx, @) as above with a the homomorphism P— S.  Suppose that Q
is an E-unitary cover of S through G with homomorphism
B: Q—S. Thenthereisa homomorphismy: P— Q such thata = yf.
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Proof. With the notation above, we have the following diagram of
maps

FGy G
[
v 0
| 8
% g
Frox

For each x € X, choose y € Q such that yB =x6. Then there is a
homomorphism v: Fy,x-— Q such that xv8 = x60 and (xv)™' = x"'v for
each x € X. Then vo" is a homomorphism of Fx x-into G and can be
factored through ¢. That is, there is a homomorphism 6: FGx — G
such that vo% = 8.

From the definition of P, P ={(w6, wy): w € Fx x—}. Define
v: P— Q by (W6, w)y = wr. Then w = ub, wy = uy implies wyé =
uyd, that is wrvos = uvot and wyB = urvB. Since Q is an E-unitary
cover of S through G, Corollary 1.8 shows that uv = wr. Hence vy is
well defined; it is clearly a homomorphism. Further, from the defini-
tion,

(WO, wir)yB = wiB = wh = (wb, w)a,
for each (wf, wy)€ P. Hence a = y8.

5.2. The Preston-Vagner cover. Let p:S—9%s be the
Preston—Vagner representation of an inverse semigroup S andlet Y =S
if S is finite, if not Y=SUS’ with SNS'=0, |S|=|S’|. Then
F={a € $y: a =y for some permutation y of Y} is a factorizable
inverse semigroup containing Sp. It gives rise to the subhomomorphism
¢ where, for each s € S,

é(s)={a: p, = a, a a permutation of Y}

', @ a permutation of Y}.

={a: xa = xs for each x € Sss~
This subhomomorphism gives an E -unitary cover of S through K where
K ={a € Sy: (xe)a = x(ea)forall x €S and some e’ = e € S},

where Sy denotes the symmetric group on Y.
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5.3.  E-unitary covers of bisimple inverse semigroups. A construc-
tion is given in [6] for the v-prehomomorphisms 6 of a bisimple inverse
semigroup S into an inverse semigroup 7. When applied to the
semigroup # (G) of cosets of a group G, this construction specializes to
give the following construction for the E-unitary covers of S through G.

Let H be a subgroup of G and let S(H)={a € G:aHa™'C
H}. Then S(H)is a subsemigroup of G and (G/H, S(H)/H)is a partial
semigroup under the multiplication *:

X*Y=XY foreach X€S(H)H, Ye&€G/H

Pick an idempotent e € S andset R, ={a € S: aa'= e}, P, = R, N eSe
and let : R, —» G/H be a one-to-one mapping such that the following
hold

(i) a0ESH)H ifa€EP

(i) a6bbl = (ab)d for a€ P,, b ER,

(i) G = U{a@'b0: a,b € R.}.
Then {(s,g§)E S X G: g € a®7'b where s = a'b} is an E-unitary cover
of S through G. Conversely, each such has this form for some
0: R, — G/H as above.

5.4.  E-unitary covers for semilattices of groups. A construction is
given in [6] for the v-prehomomorphisms 6 of a semilattice of groups S
into an inverse semigroup T. When applied to the semigroup #(G) of
cosets of a group G, this construction specializes to give the following
description of the E-unitary covers of S through G.

Let E be a semilattice and let § be an anti-isotone mapping of E
into the lattice of subgroups of G. For each e € E set G, = ef and
C.={a € G: aGja™'= G; for each f=e}. Then G. is a normal sub-
group of C, and the groups K, = C,/G, form a semilattice of groups
SL(E, 6, #(G)) with linking homomorphisms ¢,;: K, — K| given by

X¢.; =G X foreach XEK, e=f

Suppose that S is a semilattice of groups with semilattice of
idempotents E. Suppose that 6 is an anti-isotone mapping of E into the
lattice of subgroups of G and let ¢ be an idempotent determined
homomorphism of § into SL(E,0,#(G)) such that G =
U{ad: a € S}. Then

{(s,8) ES X G: g € s}

is an E-unitary cover of S through G. Conversely, each such has this
form for some 6: E— % (G) and ¢: S — SL(E, 6, ¥(G)).
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