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SEMIGROUPS WITH IDENTITY
ON PEANO CONTINUA

W. WILEY WILLIAMS

A continuum is cell-cyclic if every cyclic element is a
finite dimensional cell. We show that any finite dimensional
cell-cyclic Peano continuum X admits a commutative semi-
group with zero and identity, and apply this to show that if
X is also homogeneous it is a point.

In [12] we showed that each cell-cyclic Peano continuum (locally
connected metric continuum every cyclic element of which is a finite
dimensional cell) X admits a semilattice (commutative idempotent
topological semigroup). We now extend this result to show that X
admits a commutative semigroup with identity and zero, and then
apply this to homogeneous continua. Our extension is a partial
answer to a question first raised by R. J. Koch in [6].

A semilattice is also a partially ordered Hausdorff topological
space in which every two elements have a greatest lower bound
and the function (z, ¥) — glb{x, ¥} is continuous. For ACS, let
L(A) ={2:2 <2 for some xcA} and M(A)={y:xc <y for some
rxeA}. A set A is increasing if M(A) = A. An arc chain is a
totally ordered subset of a semilattice whose underlying space is an
arc. We reserve I for the unit interval under min multiplication,
and T for the quotient semilattice obtained by identifying (0, 0) and
(1,0) in {0,1} x I. Note that I* and 7", under coordinatewise
multiplication, are semilattices with identity on the n-cell, with zero
in the boundary and interior respectively.

Let X be a cell-cyclic Peano continuum. We use the cytlic ele-
ment notation and results of Whyburn [10] and Kuratowski and
Whyburn [8], slightly modified in the following way. In X we say
a set A separates a and b if each arc from « to b meets A. C(p, q)
denotes the cyclic chain from p to ¢ and is {x € X|some arc from p
to ¢ contains x}. An subcontinuum A of X is an A-set if each arc
in X having end points in A is contained in A. Cyclic elements and
cyclic chains are A-sets. Given a point # and an A-set A4, if x¢ 4
there is a unique element y € A such that y separates each element
of A from z. Denote this y by P(4, z). If xe€ A set P(4, 2) = x.
Then for a fixed A-set A the function x— P(4, ) is a monotone
retraction of X onto 4 mapping X\A into Fr(A) = {xcA|zx¢ D for
any cyclic element D of A} U {cut points of A}. A set M is nodal
in X if M N (X\M)* contains at most one point. A point is an end
point of X if it has a basis of neighborhoods having one point
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boundary. A #wode of X is either (i) a true cyclic element which is
a nodal set or (ii) an endpoint. By Com (z, A) we mean the component
of # in A. The interior of A is denoted by A°.

I. Preliminary results.

THEOREM 1.1. [12]. Any cell-cyclic Peano continuum admits
the structure of a semilattice.

We note that in the proof of 1.1 given in [12], I" and T™", as
defined above, could have been used for the semilattice structures on
the individual cyclic elements. Thus the structure may be so con-
structed that each cyclic element is a semilattice with identity; also
the zero may be chosen to by any predetermined point.

The following is an unpublished result due to Phyrne Bacon.
We include a proof for completeness.

THEOREM 1.2. Let X be a compact semilattice and C an arc
chain containining 0. If Il; 1is defined by Il (x)=sup{a € C|xz e M(a)},
then

(i) I, s a homomorphism from X onto C

(ii) 11, is continuous tf whenever x, yeC and x <y then
y € M{(x)°.

Proof. X compact implies 1, is well-defined. For (i), first note
that I7, is order preserving. Let z, y € X and suppose 7 ,(x) < 11 (y).
Since 1, is order preserving we have I (xy) < Il (x). If T (xy) <
T (), then there exists zeC such that I (ay) <z < II,(x). Thus
xeM(zy and axy ¢ M(z). But IIy(x) < II(y) and xe M(z) implies
y e M(z). We conclude xy € M(z), a contradiction. Thus

H(xy) = H(x) = H(x)(y) .

By symmetry, if 7,(y) < II,(x) then the same conclusion is reached,
and 7, is a homomorphism.

For (ii), suppose whenever z,ycC and x <y, then ye M(x).
For each zeC define V(z) = X\M(z). Then each V(x) is open, and
we claim that # < y implies V{z)* € V(y). First note that M(M(z))
is open by the continuity of multiplication, contains M(z)°, and is
contained in M(x). Thus M(M(xz)°) = M(x)’, and M(z)° is increasing.
So if <y, then yeM(x),, and M(y) S M(M(x)°) = M(z)°. Thus
V(y) = X\M(y) contains X\M(z)° = [X\M(x)]* = V(x)*. Since C is an
arc chain, inf{acC|xe V(a)} = sup{aecC|xc M(a)} = II,(x). Thus a
proof like that for Urysohn’s lemma [3] shows /I, is continuous.
This completes the proof.
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It is implicit in results of Lawson [9] that if X is a semilattice
on a finite dimensional Peano continuum, then (i) each point of X
lies on an arc chain C containing 0, and (ii) if 2 <y in C, then
y € M(z)°’. We conclude

COROLLARY 1.3. Each point of a finite dimensional Peano con-
tinuum X lies on an arc chain C containing 0 and there is «
homomorphic retraction of X onto C.

THEOREM 1.4. Any finite dimensional cell-cyclic chain C(p, q)
admits a semilattice with identity. Moreover, if q € Fr(C(p, q)) then
q can be chosen to be the identity.

Proof. Note that the true cyclic elements of C(p, q) form a
countable collection {D,}. We consider two cases:

Case 1. Some true cyclic element D, of C(p, ¢) contains gq.
Then D, admits a semilattice structure with zero a = P(D, p) # ¢
and identity e. Moreover if ¢ e F»(C(p, ¢)) then ge Fr(D,), so we
may choose ¢ =g¢q. By 1.1, C(p, ) admits a semilattice in which
each cyclic element D, is a semilattice with identity e, and zero
P(D,, p). In each D, there is an arc chain T, from ¢; to b, = P(D,, q)
and also an arce chain T, in D, from ¢ to ¢ and a homomorphism
h: D,— T, which is a retraction. Let f;: T, — T be an onto homomor-
phism for each 4. Now define a semilattice structure * on C(p, q)
to agree with those on C(p, @) and D, and such that if z e C(p, a)
and y € D then

x if ¢ is a cut point of C(p, @)

“yzwxzkfﬂw»ﬁxea

This obviously idempotent and commutative. Associativity and
continuity follow since h and f, are homomorphisms and continuous.
Note that ¢ is an identity for =.

Case 2. q is not in any true cyclic element of C(p, q). Then
there is a sequence {c;} of distinct cut points of C(p, q) such that
{¢;} —q and c¢,,, separates ¢ from q. This implies

Clp, 9\ U Cley 00) = {a} -

Endow each C(c, ¢,,,) with a semilattice structure as in 1.1 so that
¢; is the zero of C(e, ¢;.) and each cyclic element D; is a semilattice
with zero P(D;, p) and identity e;, and let T'; be a (possibly degenerate)



560 W. WILEY WILLIAMS

are chain in D; from e¢; to P(D;, q). Let S, be an arc chain in
Cl(e;, ¢;1,) from ¢; to ¢, and let h;: C(c, ¢,.,) — S; be a homomorphism
and retraction. For each ¢, j€Z™*, let f;;: S;— T; be an onto homo-
morphism. Now define an operation * on C(p, q) to agree with that
on each C(c,, ¢,.,) and such that if = e C(c,, ¢nii) and y e C(c,, C,,.) then

x if x is a cut point and n =m + 1
zifn>m+1

xf,, i(h.(y)) if = is not a cut point
(i.e., x€ D; for some jeZ*) and
n=m+1

Y*x = xxy =

zy if n=m

Define q to be an identity for C(p, q).

This is obviously idempotent and commutative. The proof of
associativity is similar to that in Case 1 except in the following
case: Suppose x € C(c,, €,y1), Y€ C(Crisy Crye) and 2 € C(Cppyy Coys). If 2
is a cut point, then x+y+z = « in any order, and if y is a cut point
then z+y+z = x+y in any order. If neither is a cut point then ze D,
and y € D, for some true cyclic elements D; and D,. So

(x*y)*z =¥y = xfn+1,j(hn+1(y)) .

Now a* (y*z) = = (yfn+2,k(hn+2(z)) = xfn+1,j(hn+1(yfn+2,k(hn+2(z))))‘ But
B iU ni2 (01 2(2))) = By s() Py i (Fas,1(Bens(2))) since h,,, is a homomor-
phism. Also h,.,(y) < P(Dy, q) = hyii(frse,1(Raio(2))) since S,., N D, is
an arc chain with maximum element P(D,, ¢) and T, is an arc chain
with minimum element P(D,, q). It follows that

x(Y*2) = Bf i, i(hnrn(y)) = Txy = (Wry)*2 .

Suppose 2z, —x and y,—y. If x = q # y, then one can prove
Z,*Y, — ¢y using the continuity of the functions %, and f,; and the
fact that the cyclic chains C(e, ¢;,,) meet only at cut points. If
zx=q+#y and yecC(c,c;y,) then eventually ¢, <y, <c., and
Ciss = X, 80 that z,xy, =y, —y=2y. If x=¢q =y and if W(z,, y,)
denotes the smaller of ¢ and j where %, € C(c,, ¢;.,) and ¥, € C(c;, ¢;41)
then W(x,, y,) — > as n—co. Since 2,4y, € ClCnia, v Cwiopvw+) a0d
since C(p, q) is locally connected we conclude that z,xy, —q = 2y.
This completes the proof.

We note that in Case 2, if ¢,,, separates z from » and e,
separates y from ¢ then xxy = y.

II. Ruled continua.

DEFINITION 2.1. Suppose X is a topological space and E < X,
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0eX. Let A ={[0,¢]:ecE} be a collection of arcs in X satisfying:

(i) X = U{0,¢]:ec E}.

(ii) [0, e] N[0, f] is a proper subarc of each when ¢ and f are
distinct elements of E.

(iii) For each e¢c E, there is a unique [0, ¢] € A.

(iv) If x,— 2 then [0, z,] — [0, ] in the sense of lim sup-lim
inf convergence.

Then A is said to be a ruling of X and X is said to be a ruled
space with zero 0. The concept of a ruled space was introduced by
Eberhart in his dissertation [4]. Spaces admitting a stronger type
of ruling have been studied by Koch and McAuley [7]. We note
that if X is ruled then for each ze X there is a unique arc [0, x]
which is contained in every [0, ¢] containing z.

DEFINITION 2.2. A metric d is radially convexr with respect to
a partial order < on X if <y, y =<2 and y # 2z imply d(z, y) <
d(x, z).

LEMMA 2.3. Let X be a compact metric ruled space. Define
=y of x€]0,y]. Then = is a closed partial order on X. More-
over X admits o metric radially convexr with respect to this order,
so that if v = d(0,e) there is a wunique wz(r)el0,e] such that
(0, z(r)) = r.

Proof. This is clearly a partial order; that it is closed follows
from property iv) of ruled spaces. By a result of Carruth [2], X
admits a metric radially convex with respect to this order. The
lemma now follows.

THEOREM 2.4. Any cell-cyclic Peano continuum X admits «
ruling, and 0 may be chosen to be any point of X.

Proof. By 1.1, X admits a semilattice with zero 0 chosen arbi-
trarily. As in the proof of 1.1 given in [12], for each true cyclic
element D of X let h, denote the homeomorphism from I™ or T™
to D used to define this semilattice. Set E = Fr(X)\({cut points of
X}U{0}). For each ec E and each true cyclic element D of C(0, )
define T'(D, ¢) to be the image under h, of the straight line segment
[n3Y(P(D, 0)), hp'(P(D, €))] in I* or T". Then define [0, e] = (U{T(D, e):
D e C(0, e)}) U{cut points of C(0, ¢)}. Then [0, ¢] is a metrie, compact
(since C(0, e)\[0, ¢] is open in C(0, ¢)) order dense chain in the semi-
lattice X and hence an arc. We now show the four conditions are
satisfied.
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(i) X=U{0,¢el:ecE}. If xcX\E then z is either an interior
point of some cyclic element D of X or a cut point of X. If z is an
interior point of D then z € hp(h3'(P(D, 0), h3'(e)]) for some e € Fr(D).
If ec Ethenx e T(D, ¢) =0, ¢]. If ec E then choosing an end element
¢’ of a component of X\{e} other than the one containing 0, = € [0, ']

(ii) and (iii) are clear

(iv) If e,—e, then [0, e,]— [0, ¢]. This follows from the fact
that [0, e,] & L(e,) and from techniques like those in [12]. We omit
the details.

THEOREM 2.5. Awny cell-cyclic Peano continuum with a nodal
cyclic element admits o commutative semigroup with identity and
zero.

Proof. Let X be a cell eyclic Peano continuum and suppose
X =CUD, where CND = {0} and D is a true cyclic element. Then
C is a cell-cyclic Peano continuum and hence admits a ruling
A ={[0, e]: ec E} with zero 0 and a radially convex metric. Let &
be a homeomorphism from I* or 7" to D, depending on whether
0 is in the boundary or interior of D, and define a semilattice with
identity ¢ on D using #. Then there is in D an arc chain S from 0
to ¢ and a retraction f: D-— S which is a homomorphism. Moreover
we may assume that S is radially convex so that for z,yeS,
d(0, xy) = min {d(0, z), d(0, ¥)}. Without loss of generality we may
assume d(0, ¢) is maximal among {d(0, )|z € X}. Now define a semi-
group on X by

0if ¢,ycC

yrw = wry = {OY if 2, yeD

The point in [0, ] of distance » =
‘min {d(0, %), d(0, f(%))} from C if xeC, yeD.

Associativity is obvious in all cases except the following: Suppose
2xeC and y,zeD. Then (x+y)=z is the point in [0, z] of distance
min {d(0, z), &0, f(v)), d(0, f(2))} from 0, whereas xx(y=z) is the point
in [0, #] of distance min {d(0, ), d(0, f(y, 2))} from 0. But d(0, f(yz)) =
a(0, f(y)f(2)) =min {d(0, f(y)), d(0, f(2))} so (x+y)xz=w+(y*z). Continuity
follows from the properties of ruled spaces and the fact that f is
continuous. It is clear that e is an identity and 0 a zero. This
completes the proof.

We conjecture that any X as in 2.5 admits a semilattice with
identity. In fact, if X can be embedded in a plane then X can be
embedded in a two-cell N and ruled in such a way that X N Fr(N)
is one of the arcs ruling X. One can now apply a theorem from
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Eberhart’s dissertation to show that X admits a semilattice with
identity.

III. Cell-cyclic Peano continua without a nodal cyclic ele-
ment. The goal of this section is a result like 2.5 for finite dimen-
sional cell-cyclic Peano continua without a nodal cyclic element.

LEMMA 3.1. Let X be a cell-cyclic Peano continuum. Then there
exist two sequences {p;} and {g;} in Fr(X), with p, and q, chosen
arbitrarily, such that

(i) If we set H,=Ur C(p,q), then for each n>1,
{pa} = C(0uy ) N H,,

(ii) If we set H= Uy, H,, then each point of X\H is an end
point of X, and so H* = X,

(iii) The diameter of the components of S\H, tends to 0 uni-
formly with 1/n.

Proof. This was proved by Whyburn ([10], p. 73) without the
condition that {p} and {q.} are in F»(X). We show this condition
can also be assumed. Whyburn’s proof considers a dense sequence
{r;} and sets », = r, q, = 7,. Clearly these may be chosen arbitrarily
in Fr(X). In Whyburn’s proof, for 7 > 1 ¢, is the =, of smallest
index such that r,¢ H;_, and p;, = P(H;_,, ¢;). Thus p;c Fr(X). If
q; ¢ F'r(X), then g; is an interior point of some true cyclic element D.
Let ¢; be any point in F7r(D) other than P(D, p;). Then C(p;, q;) =
C(p;, 4;), so we may assume q; € Fr(X). The lemma follows.

Now let X be a finite dimensional cell-cyclic Peano continuum
without a nodal cyclic element. Then X has at least 2 end points
([10], p. 77); let 0 and 1 denote end points of X. Let {p}, {¢.}, {H.},
and H be as described in 3.1, with p, =0, ¢q, = 1. Each C(»,, q,)
admits a semilattice with zero p, and identity ¢, by 1.8. We now
define inductively an algorithm for defining a semilattice with identity
on H.

Let {¢;} be the sequence of cut points of C(0, 1) converging to
1 such that c;,, separates ¢; from 1 used in 1.3 to define the semi-
lattice on C(0,1). Let n, be one more than the smallest 7 such that ¢,
separates p, from 1 in X. Set Q,=C(p,, ¢,), P,=[Com (1, C(0, 1)\{c, N]*,
and R, = [Com (0, C(0, 1)\{c, })]*. Let T, be an arc chain from p, to
¢; in @, and S, be an arc chain from ¢, to1lin C(0,1). Letf;:S,—T,
be a continuous onto homomorphism such that fi'(g;) = M(c,.)NS,
and let h,;: P,— T, be the continuous onto homomorphism obtained
by composing f, and a homomorphic retraction r, of C(c,, 1) onto S..
We now define a semilattice = on H, = C(p,, q,)UC(p,, ¢,) = H,UQ, by
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xy if #,yeC(0,1) =P, UR, or z, yeQ,
wry = yxx = {wp, if xeR, yeQ,
h(x)y if xeP, yeQ,

where juxtaposition means whichever of the previously defined
operations on H, or @, fits the context.

Associativity is clear in all cases except when re R, pelP,
¢ €Q,. In this case r«(pxq) = r=(h(p)q) = rp,, Whereas

(7~>:<p)*q = ('rp)pz = T(ppz) = 7D,

by the note at the end of Section I. Continuity is easily checked
since P, @, and R, meet only at cut points of X. Note that any
point in C(c,,.,, 1) acts as an identity for any point in

[Com (0, H\{e, DI* ,

and 1 acts as an identity for all of H,.

Suppose that a semilattice structure with zero 0 and identity 1
has been defined on H, , so that the structure agrees with those on
C(P,, q;) for each ¢ =< k. Also suppose ¢,, , € {c;} has been chosen so
that any element of [Com (1, H,_,\{c,, ,+.}))]* acts as an identity for
any element [Com (0, H,_\{c,, }DI*.

Let n, be one more than the smallest integer greater than n,_,
such that ¢, ~separates p,,, from 1. Set Q.= C(p.., ¢r11),
P, = C(c,,, 1) = [Com (1, H}\{¢c, )]*, and R, = [Com (0, H}\{c, })]*. Let
T, be an arc chain from P,., to ¢,,, in @, and S, =S, N P,. Let
fu: S, — T, be a continuous onto homomorphism such that

f;l(q“_l) = M(an+1) NS,

in P,, and let h,:P,— T, be a continuous onto homomorphism
obtained by composing f, and the homomorphic retraction », = .| P,
of C(c,,1) =P, onto S,. We now define a semilattice * with
identity 1 on H, by

xy if »,ye H,_, or x, y€Q,
wxy = yxx = {wp, if veR,, yeQ,
i (x)y if we P, Yyeq,

where juxtaposition means whichever of the previously defined
operations on H, or Q, fits the context.

Again associativity is clear in all cases except when reR,,
peP,, qeQ, In this case 7x(pxq) = r=(h,(p)q) = rp,, Whereas
(r+p)xq = (rp)p, = r(pp,) since the operation on H, , is associative.
But pe[Com (1, H,-\(¢w,_,+)]* and p, e [Com (0, H,_\c., D]* so by
hypothesis pp, = p,, and rx(pxq) = (rxp)*q. Continuity is again
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easily checked. Again any point in [Com (1, H\\{c.,+.})]* acts as an
identity for any element [Com (0, H,\{c, })]*. By induction we have
proved the following:

LEMMA 3.2. FEach H, admits a semilattice with zero 0 and
identity 1 so that the operations agree whenever possible.

LEMMA 3.3. The function P(H,, -): H— H, is a retraction and
a homomorphism for each n.

Proof. It has been previously noted that each P(H,, :) is a
retraction. To show that each is a homomorphism it suffices to show
that the restriction of P(H,, :) to H,,, is a homomorphism, since
P(H,, -) is the composition of this restriction and P(H,,, :). Let
z,yeH,,, = H,UQ,. If z,ycQ, then

P(H,, 2)+P(H,, ¥) = p,*p, = v, = P(H,, x*+y)

since z+y € Q,. If x€Q,, y<€ H, then there are two cases. If yeP,
then P(H,, 2)xP(H,, y) = p,*y = p, since p,€R,_, by definition and
any element of P, acts as an identity for any element of R,_,.
However P(H,, 2xy) = P(H,, x+h,(y)) = p, since z+h,(y)cQ,. If yeR,
then P(H,, x)xP(H,, y) = p,*y = x*y = P(H,, v+y). This completes the
proof of the lemma.

LEMMA 3.4. Let X be as above and let x, ye X, and suppose
{x.}, {y.} are sequences in H such that z,—2, Y,— Y. Then there
exists z € X such that {x,xy,} — 2, where = denotes the operation on
any H, containing x, and y,, and z 18 independent of the choice of
the sequences.

Proof. We distinguish four cases.

Case I. =y =1. From the definition of multiplication on H,
if a, beP, = [Com (1, H\{c,})]* then axbeP,. Now {P,} forms a
neighborhood basis at the end point 1. Since both {x,} and {y,} are
eventually in each P,, {z,+y,} is eventually in each P, and hence

{wy,} — 1.

Case II. x, y, and 1 all distinet. Let NN be an integer so large
that P(H, #) and P(H, y) are in Com (0, H,\{cy}) and that the
diameter of any component of X\H, < d(z,y)/2. This implies
Com (», X\H,) and Com (y, X\H,) are digjoint open sets, and we may
assume 2y € Com (z, X/Hy) and y,€Com (y, X\Hy) for all n. Also
we may assume d(x,, ¥.) > d(z, y)/2 for all n. We now show
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<Y, = P(Hy, y,)*P(Hy, y,) for all n. The statement is obvious if
%., Y. € Hy. Suppose it is true whenever x,, ¥, € H,, for some m = N,
and let 2, ¥, ¢ H,,, = H,UQ,. If z,€Q, and y,c H, then z,xy, =
Du*Y,. By hypothesis, since 9,., ¥.¢<€ H, then

pm*y'ﬂ = P(HN’ pm)*P(-HN7 y'n) .

But P(Hy, p.)=P(Hy, x,) since Q,,C[Com (x,, X\H,)]*. Thus z,*y, =
P(Hy, z,)xP(Hy, ¥,). By symmetry the statement is true if z,€ H,,
and y,€Q,. The statement is obvious if both =, y,<c H,, whereas
the case z,, ¥, € Q.. is impossible for it implies d(z,, ¥,) < d(z, ¥)/2 <
A2y Yn)-

We know H, is a semilattice and hence

xn*yn = P(HN’ xn)*P(HN’ yn) I P(HN9 x)*P(HNy y)

since P(Hy, -) is continuous.
Case I1I. z=y+1

(a) x=y¢H. Then z =y is an end point of X and {U} =
{[Com (x, X\H,)]*} is a neighborhood basis at = y. We show that
if U, is fixed and if «,, y, ¢ U,N Hy, then z,xy,c U,NHy, for any N.
Note the statement is true for N < 4. Suppose it is true whenever
., Y. € U; N H, for some m = 4, and let

Luy Yn € UinHm-H = Uiﬂ (HmUQm) .

If z,€Q, and y,c H,, then x,xy, = p.xv,€ U,NH,CcUNH,,, by the
induction hypothesis. By symmetry the statement is true if x, € H,
and ¥,¢@Q,. If z,v%.€@Q, then z,»y,e@Q,cUNH,,, and if
Z., Y. € H, the statement follows from the induction hypothesis.

Since {z,} and {y,} are eventually in each U,, and since for each
n and each ¢ we can find N(n, 7) such that z,,y,€ U,NHy,..,, We
conclude that {x,*y,} is eventually in each U,. Thus {z,*y,} —z = ¥.

(b) x=yeH,, some N. Let ¢ >0. There exists L > N so
that the diameter of any component of X\H, is less that /2, and
so that B(x,¢/2)NP,= @. We may assume d(x,, x) <¢&/2 and
a(Y., y) < /2 for each n. Divide {x,xy,} into two (perhaps finite)
sequences: If z,xy, e H, then

xn*yn = P(HL! xﬂ*yn)
= P(HL’ xn)*P(HL’ yn) —"P(HLy x)*P(Hb x) =Y ==Y,
by Lemma 3.3 and the continuity of multiplication on H;. If z,xy, ¢ H;,

then z,¢ H; and vy, ¢ H, because B(x, ¢/2) N\ P, = @ and using the
definition of multiplication on H. Also, using the definition of
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multiplication x,*y, € Com (x,, X\H,) or z,*y, € Com (y,, X\H;). Thus
@, TuxyY,) < d(@, ©,) + Dy TxY,) < €
or

Ay, .xY,) = AW, ¥,) + (Y Txy,) < €.

In either case d(z, z,*y) = d(y, ©,*y,) <e. We conclude that {z,y,} —
T =Y.

Case IV. y =#x=1. We first establish two facts.

(A) If a,be H so that P(H,, a)cCom (1, H\{c,}) and P(H, b)e
Com (0, H,\{c,}) for some n, then a*b = P(H,, a)*d.

The proof is by the induction on the H; containing . It is
clear for a € H,. Suppose the statement is true for e¢c H,, m =0,
and let acH,,, = H,U®Q,,,. Suppose a€@,., for the induction
hypothesis assures the statement is true if ¢ € H,. Then since a
and b are separated by ¢, b¢@,,,. Hence axb=p,.xb. But
Dms¥b = P(H,, Ppi)*b by the induction hypothesis, and

P(Ho, pm+1) = P(Ho’ a') ’
SO
axb = P(Ho, a)xb .

Thus (A) is established.

(B) Ifa,be Hsothat a € Com (1, Hy\{c,}) and b € Com (0, H\{c,})
for some n, then either ¢*b = a*P(H,, b) or a*be Com (b, X\H,)*.

The proof is by induction on the H; containing b. If be H,
then P(H, b) =b and the statement is true. Suppose the state-
ment is true when beK, for some m=mn, and let beQ,,..
If aeCom(1, H\{c,}) then axbeQ,.,cCom (b, X\H,)*. If ac
[Com (0, H \{¢,.})]* then axb = axp,. But axp, = axP(H,, p,) by the
induction hypothesis, and P(H,, p,) = P(H,, b). Thus a+b = axP(H,, b)
and (B) is established.

We now distinguish two subcases of Case IV.

Subcase 1. ye€ H,, some M. Lete > 0. Choose M so large that
¢y does not separate y from 0 and the diameter of any component
of X\H, is less than ¢/2. We may assume that for each =,
P(H,, y,) € Com (0, H)\{cx}) and P(H, =,)cCom (1, H\{cy}). Then by
(A), z,xy, = P(H, 2,)*Y,, and by (B), P(H,, ©,)*y, = P(H,, ©,)*P(Hy, y.,)
or P(H, %,)*y, € Com (b, X\H,)*. If the former then

xn*yn = P(-HO’ x»)*P(HM, yn) E— 1*P(HM’ y) = y
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by the continuity of the multiplication on H, and Lemma 3.3. In
the latter case d(P(H,, 2,)*Y., ¥.) <&/2. We may assume d(¥,, y) < /2,
so d(y, P(H, x,)*y,) < ¢. Thus we conclude that {x,xy,} — v.

Subcase 2. ye¢H. If V,=[Com (y, X\H,)]* then {V,} is a
neighborhood basis, so we need only show {z,xy,} is eventually in
each V,. Fix a V,. We may assume again that for each =,
P(H,, y,) € Com (0, H\{cx}), P(H,, @) € Com (1, H\{c,}), and y, €V, for
some M = k. By (A) and (B), 2,xy, = P(H,, %,)*P(Hy, y,) OF Z,xY, €
Com (y,, X\Hy)*<V,. However P(Hy, ¥.) € V,, and P(H, z,) e H,, so
P(H,, x,)«P(Hy, ¥,) € V,. This completes the proof of the lemma.

THEOREM 3.5. Let X be a finite dimensional cell-cyclic Peano
continnum without o nodal element. Then X admits a semilattice
with tdentity.

Proof. By the above, the dense set H admits a semilattice with
identity. For each z, y € X let {x,} — =, {y.} — v where {z,}, {y.} are
sequences in H. Define zy = lim {x,*y,}. By 3.4 this limit exists
and is independent of the choice of the sequences. It follows that
this operation is a semilattice with identity on X. Combining this
with Theorem 2.3 we have

COROLLARY 3.6. Let X be a finite dimensional cell-cyclic Peano
continuum. Then X admits a commutative semigroup with identity
and zero.

COROLLARY 3.6. Any retract of a two-cell admits a commutative
semigroun with identity.

Proof. Borsuk [1] has shown that a subset X of a two-cell 4
is a retract of A if and only if A is a locally connected continuum
which does not separate the plane. Whyburn [11] has shown that
for locally connected continua in the plane, not separating the plane
is equivalent to every cyclic element being a simple closed curve
with interior, i.e., a two-cell. Thus a retract of a two-cell is a
cell-cyclic Peano continuum, and the result follows from Corollary
3.6.

DEFINITION 3.8. A space X is homogeneous if for each pair of
points  and y in X there is a homeomorphism of X onto itself

carrying z to .

THEOREM 3.9. Any finite dimensional homogeneous cell-cyclic
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Peano continuum (in particular, any homogeneous retract of a two-
cell) s a point.

Proof. By a result of Hudson and Mostert [5], any homogeneous
compact connected semigroup with identity is a group. Combining
this with Corollaries 3.6 and 3.7, unless X is a point X admits the
structure of a group with two idempotents, a contradiction.
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