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SUMMABILITY R, FOR DOUBLE SERIES
M. J. KoHN

Let r be a positive integer. A trigonometric series T
of a single variable is said to be summable R, at 4, if the
series obtained by r times formally integrating 7' has an rth
symmetric derivative at 6,. For even values of 7, sum-
mability R, has been applied to double trigonometric series.
We study here summability R,, for odd values of », for
double trigonometric series. We obtain a connection between
Bochner-Riesz summable series and series which are sum-
mable R,.

1. Let

1.1) S e,6

—

be a trigonometric series of a single variable. Let » be a positive
integer. Suppose the series obtained by formally integrating (1.1)
r times
(1.2) coa—r + 3 _Cn_gint

r! n:O(?/ﬂ')r
converges to a function F'(d) in a neighborhood of 4,¢<(0, 27). We
will say that the series (1.1) is at 6, summable by the method R, to

sum s if F(f) has at 6, an rth symmetric derivative with value s.
That is, if » is even,

L.3) % (F@,+ 1)+ F6, — ) = a,+ 28 + o + 27+ oft)

as t—0, and if » is odd,

(L.4) %{F(ﬂ,, F1) = FO, = ) = at + 20+ e+ 28 olr),
as t—0.

The following result, see [8], p. 66, establishes a connection be-
tween summability (C, &) and summability R, for trigonometric series.

THEOREM A. Let @« > — 1 and assume the series (1.1) is sum-
mable (C, ) at 6, to sum s. Let r be an integer with r > a + 1,
and suppose the series (1.2) converges in a neighborhood of 6,. Then
the series (1.1) is summable R, to s.

2. In two variables we will denote points z € E, by z = (z,, 2,) =
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te’’ and integral lattice points by n = (n, n,). We write
o) = 1V/2% + at.
We will say a double trigonometric series

2.1) T: 3 c,e™*

neZy

is Bochner-Riesz summable of order « at z, to sum s, if

2\ «
l' ( _ (],n|> ) inzy .
RLIE !n.‘z<:13 1 R 0n0 5

Suppose 7 is an even number, » = 2s. A two dimensional analogue
of summability R, is given as follows, see [7], [4].

DEFINITION. Let F(z) be defined in a neighborhood of z,¢ E..
F has at 2z, a sth generalized Laplacian equal to s, if F is in-
tegrable on each circle |# — »,] = ¢ and

(2.2) 21 SF(x + te")d6 = a, SRR 7'

ast 28
e —2— {
7)o @y @sry

as t— 0.

THEOREM B. Let the series T of (2.1) be Bochner-Riesz-m
summable at x, to sum s,, where m is a nonnegative integer, and
suppose the coefficients of T satisfy

> nl7 e, P < e

neZg

for some ¢ > 0. Let v = 2s be an even integer with v = m + 2. Set

» . \28
2.3 F Xy = M + _1 s C. gLt .
2.3) @) = St T D S
Then the generalized sth Laplacian of F(x) exists at x, and s equal
to s,.

That is, if the series (2.1) is Bochner-Riesz-m summable to s,
and 7 is an even number with » = m + 2, then the series is also
summable R, to sum s,.

3. The purpose of this paper is to derive a connection between
Bochner-Riesz summability and summability R,, for odd values of
. We use the following definition, from [5]. This definition extends
the formula of (1.4) to two dimensions in a manner analogous to
the extension of (1.3) to two variables by (2.2).
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DEFINITION. Let » =2s + 1 be an odd positive integer. Let
L(xz) be a function defined in a neighborhood of z, € E,. We will say
L(x) has at z, a generalized symmetric derivative of order r with
value s, if L is integrable on each circle | — z,| = ¢, for ¢ small,
and if

3.1) Z_;SZ”L(% + te'%)(cos 6 + sin 6)df
0

— 3 ... So 25+1 25+1
= .t + at® + + 2——#—2“+1s'(s T t** 4 o(t**)
as t —0.

We are able to obtain the following results which, for odd values
of », form a two dimensional version of Theorem A. We begin with
the case of double trigonometric series which are Bochner-Riesz
summable of integral order, since the statement and proof of our
results are much simpler in this case.

THEOREM 1. Let m be a nonnegative integer. Suppose

(3.2) T: >, c.e™”

nedy

18 Bochner-Riesz-m summable at x, to finite sum s,. Let r=2s+1
be an odd integer such that r» = m + 1. Suppose the coefficients of
T satisfy

(3.3) 2 m [ e, P4 3 (o + ) m [T e, [P < oo

ny+ng=0 ny+ng=0

Jor some ¢ > 0. Then the series

3,4 M ’ Cy in-x
(34) (r)1(2r)12:7 ( ) ”1§2 =0 ]nl“
—icn pIT T

ey (n, + m)|mf*"

converges spherically to a function L(x) which has at x, a generalized
symmetric derivative of order r with value s,.

We are able to extend Theorem 1 to include some, but not all,
fractional orders of Bochner-Riesz summability. Let B8 be a non-
negative real number. We denote by [8] the largest integer <f@
and by {(B) the fractional part of 5, (8> =8 — [F].

THEOREM 2. Let 8 be a nonnegative real number with {(B8) <
1/2. Suppose the series (3.2) is summable Bochner-Riesz-B to finite
sum s,. Letr = 2s + 1 be an odd integer with » = [B] + 1. Suppose
the coefficients of the series (3.2) satisfy formula (3.8) for some ¢ > 0.
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Then the conclusion of Theorem 1 still holds.

In particular, in the two dimensional case, Bochner-Riesz sum-
mability of order £, for 8 < 1/2, is enough to imply summability
R, (which is Lebesgue summability).

4. Although Theorem 1 is a special case of Theorem 2, we give
its proof separately, since its proof is much easier than that of
Theorem 2. We will assume, as we may, that ¢, =0, 2, =0, and
s, = 0. We set

S:= S0 = 3 e,
and for 7 >0

7 — _1_ 7 — )7t
(4.1) Si=+ (77)50 (R — wyS.du .

Note that Sj, as a function of R, is the fractional integral of order
7 of f(R) = Si, see [6].

Hardy, see [2], has shown that a series >, ¢, is Bochner-Riesz-7
summable to 0 if and only if

s cn<1 — %)”Ho

Ini<R

as R— oo, Thus, for the proof of Theorem 1 we may assume
(4.2) % = o(R™)

as R — oo,
We will need the following lemmas. The first lemma has been

adapted from [7].

LEMMA 1. Suppose >.cz,¢.6™° is Bochner-Riesz-(m + 1) sum-
mable to 0 at z = 0, and suppose the coefficients c, satisfy condition
(8.3) of Theorem 1, with r Z m + 1. Then

(4.3) Sz = o(R™7?)
as R— oo, for k=0,1,---,m + 1,

Proof. We first note that for n, + n, = 0,

> (g + w) m [T e, [P
ny1+ng+0

g % Z Inl—2|n]—2'f+3+elcnlz
n1+ng#0

1 —2r+i+e 2
= — " C .
4nl+%kol | .|
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Thus, from (3.3),
z I,nl—2r+1+e}cnl2 < o~ ,

n1+ng#0

and therefore

ZZ In]—27+1+slcn12 < co

neZy

Using Schwartz’s inequality,
Z [c l — Z (| n |1/2(—2r+1+s) | c I)(I n |—1/2(—27+1+s))
ln|<R " lnl<R »
=<= ( Z ] n I—27+1+E | cn |2)1/2( Z I n IZ'r—l—s)l/Z
neZy Inl <R

p— C.(R2r+1—-e)1/2
— O(R’r+1/2)

(4.4)

as R'——> oo,
Now fix an integer j.

IHZ:‘Rci(R — ]@l + j)mﬂ = ,i|<zk‘+jci(R — [?'I + j)m—H
- > c(R~— 1]+ "

R=|iI<R+j

Since Y ¢,ei*® is Bochner-Riesz-(m + 1) summable to 0 at 0,

> c(B —[i] + )" = o(R™)

14[<B+j

as R— oo,

> e — i+ gt = o(R™7) ,

R=III<R+j§
because of (4.4). Thus,
Z Ci(R —_ l,bl + j)m+1 — O(Rm+1) + O(Rr+1/2)
(4.5) 1i{I<R
— 0(Rr+1/2) ,

as R — oo,

We next use the fact, see [7], that there are number C;, for
j=1, -, m+2, k=0,---,m+ 1 such that for all complex num-
bers z,

Ezcjk(z + )yt =2k,
J=1
Thus, for 0 k= m + 1,

Sk

2 R — [i])*

_1_
kly
oy z< 03 Cul® — 1] + Gy

i=1
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m+2 1 . .
= Z ?Cik > c(R — |t] + )"
=1 f! I{<R
m+-2 1
= 3, —Cj0(R™7)
=1 k!
—_ O(R‘r+1/2) R
by (4.5). This proves Lemma 1.

LEMMA 2. Let = (x, %,) = te’ e E, and n = (n, n,) € Z,, with
|n| # 0. Define

%(oc1 + 2)e™* if n, +n, =0

(4.6) ga() = o
— 1€

if n, +n,#=0.
Ny + Ny

Then

‘z‘lszew)(cos 0 + sin 6)d6 = ﬂl%m ,

where J(z) is the Bessel function of the first kind of order 1.

Proof. This is the lemma from [5].

5. Proof of Theorem 1. Let

1 C inew —1 n inex
Too) = 3 2o+ o) e b 3 e g
n'fft-'yfz:o ,nl nlﬁ'@io (nl + nz)l,nl

The hypothesis (3.3) insures that
L(z) = lim Tx(x)
R—x

exists a.e. on each circle |x| =¢, see [3], Theorem 1. Also, by
Theorem 2 of [3],

SZISup | Ta(te?)|d0 < oo,
o R

so, using Lebesgue’s Dominated Convergence Theorem,

—l—szxL(te”)(cos 6 + sin 6)do
21 Jo

= lim -}—SMTE(te“’)(cos 0 + sin 6)d6
21 Jo

R—co

27
= lim Cn —-l—s 9.(te*")(cos 6 + sin 6)do
0

R-o lnI<R | M| 21
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where g¢,(x) is defined by (4.6). Using Lemma 2 we get

—I—SZ”L(te”)(cos 0 + sin 6)do
27 Jo

=lim 3 ¢, Ji((nlt)
(5.1) Roo 4B ||

=lim Se, J(i’"/lt)
R |2]<R l/nl
=t"lim > ¢, Y(|nlt),
R—o |ni<R
where Y(t) = z7"J,(z).
We express the last sum as an integral and integrate by parts
m + 1 times.

S er(lnlt) = SR — SRSu..d_v(ut)du
1< o du

= S1(Re) — S LB + | =L,
(5.2) .
= Sy(Rt) — s;,_d_v(Rt) C (= 1)’"S'"

+ (—1)m+1§ Sz 3" yut)du .
From Lemma 1,
S’;g = 0(RT+1/2) fOI' I{; el O, oo, m
Repeatedly using the relations from [1],
(5.3) L&) = #)
z

and
J(2) = o(z7%),
as z— oo, we get

(5.4) j—k“f(z) = o(z™"""%)

as z — oo, SO, for k = 0, ree, M
dk 1 —r—
SkR T V(Rt) = O(R /Z)O(R 1/2)

=o(1),

(5.5)
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as R— oc. Thus, returning to (5.2),
lim S e, ¥(|n|t) = (—1)m+15 S22 yut)du,
R—o [n|<R

and (5.1) becomes,

1 SZRL(te”)(cos 0 + sin #)d6
27

(5.6) = t"lim Z ¢, 7(Inl|t)

R0 )<

- tr(—l)mﬂg Sr 2 utydu,
Now we make use of the series expansion for J(2), [1], p. 4.

( 1)k( )l+2k
(5.7) 16 = ST

=2+ @R’ + .-
Then,

(=) = 277J\(2)
= z—r(alz +a@+ e+, 2+ a,2" + - .) .

We define a polynomial P(z) as follows. If »=1, let P(z) = 0.
Otherwise, let

Piz)=a,2 + az® + - + a,_,2"°
where the a,’s are given by (5.7). Now we let
(5.8) Mz) = 7(2) — 27"P(2) .

Then \(2) is an entire function in the plane and
7(z) = 27" P(2) + \(z) .
Returning to (5.6),

~1—§”L(tef0)(cos 0 + sin 6)do
2 Jo

= (=1 S Sr 2 _y(ut)du

d

Il

t’(~1)’"“§ S O™ ((ut) " P(ut) + Mut))du

(5.9)

(ut) " P(ut)}du

e L W e
+t*(~1)m+18 Sr @\ (ut)du

= A+ t"B(t) .
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Since ¢, = 0, therefore ST =0 for 0 < u <1. Thus we may
replace the interval of integration of the integral involving A by
the interval (1/2, ).

m

d m+1
T —( Z a(ut)*")du

A= t*(—l)”“”g Sr 8" () P(ut))du

N

— Z tr+k Ta ( 1)m+1 S Sm dd ,,:_:1 k—‘rdu

k odd

- }3 tay(— 1)m+1S om0 """ Ydu

k odd

— Z tka ( 1)m+18 O('ll/k r—l)du

1/
Ia odd

k=1
k odd

Returning to (5.9),

1 SzﬂL(te”)(cos 6 + sin 6)d6
7T Jo

= A + t"B(t)
=D + bgt® + cor 4+ bt 4 0" + t"B(¢) .

The proof of Theorem 1 will be complete when we establish B(t) — 0
as t—0.

B(t) = (—1)m+1§ Sm dd’” Mut)du
(5.10) _ SW N Sm

= B,(t) + By(?) .

To estimate B,(tf) we use the fact that \(z) is entire, so for
lz] =1,

u‘l—;x(z)) < K.

Since |ut| =1 in the interval of integration involving B,(t),

‘#m; x(ut), < "MK

in this interval.
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B(t) = (—1)»* S”to(um)tmﬂKdu
1/t
= o(t™™") S urdu
0

el

= o(1)

as t—0,
For the estimate of B,(t) we use the decomposition

Mz) = () — 27" P(z) .

Clearly, as z— oo

jz 2 P(z) = Oz ")

and by (5.4),

m+1 i
7 vz) = O .

dzm-l-l
Thus, for z— oo
(5.11) ;mﬂx(z) Oz ,

and

By(t) = (—1)m+1§ Se— O \ut)du
= (1 SO(;to(um)t”’“O(ut)‘”“”zdu

— O(tm+1~r—-1/2) Soo o(u)me_x/Zdu
1/t

m—r+1/2
— 0(tm-r+1/2)0 <__:t[-_>

= o(1) .

(Note we needed m — » — 1/2 < — 1 to perform the last integration.)
Thus B,(t) — 0 as t— 0, and returning to (5.10), the proof of Theo-
rem 1 is complete,

6. Proof of Theorem 2. We may assume that the fractional
part of B is not zero. Otherwise Theorem 2 reduces to Theorem 1.
Write 8 = m + «a, where m is an integer and 0 < a < 1/2.

We again assume ¢, =0, 2, =0, s, = 0. We proceed as in the
beginning of the proof of Theorem 1.
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LS”L(tew)(cos 0 + sin 6)do
2 Jo

=t limI > e (nlt),
n|<R

R—oo

with 7(z) = 277J(2).
As in the proof of Theorem 1 we integrate the last sum by
parts. We now integrate by parts m + 2 times.

3 ear(inft) = Senre) — |8, Lout)du

s —
(6.1) = R’Y(Rt) - SRd—I—B-'Y(Rt) T+ e + ('_‘1) * SR+1 W’Y(Rt)
+ (oL utdu
0 “ dum+2 ¢

We are now assuming the series (3.1) is summable Bochner-
Riesz-8 to 0 at z, = 0, so it is also summable Bochner-Riesz-(m + 1)
to 0 at z, = 0. Therefore we may again apply Lemma 1. For

dk r+1/2 —r—1/2
Sk W’Y(Rt) = o(R™HO(R™Y)

=o(1),
as R — <o, S0

—l—SML(te“’)(cos f -+ sin 6)do
21 Jo

(6.2) =¢lim Y e, Y(nlt)

R—o |n|<R

= (1) rST* dd’":z Y(ut)du .
0 w

We define P(2) and M\(z) as in the proof of Theorem 1:

P(2) {0 if r=1
o= &2+ a2+ e F a2t i r#l

and
M) = 7(z) — 277P(z) .
Then (6.2) becomes,

—1—SML(te“’)(cos 6 + sin 6)do
21 Jo

= (=1~ | "s2 L ) Plut) + Mut)ldu
0 U
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_ t’(—l)’"S:SZ’“ dd";ﬂ [(uty~" P(ut)]du
Ftr(—1)" S°°sm+l A" 5 (ut)du
0 " dum™+?

= A(t) + t"B(¢) .

A —_— tr(_l)m S::zSZL-H ddmm+2 ( Z ak(ut)k r)du

— 'r+k— a ( 1)m§ O(u)m+1 d uk—rdu
1/2 du™

+2

k=1
k odd
= = bktk

k odd
Hence,
(6.3) 217r S L(te*)(cos § + sin 6)df = z bit* + t"B(2)

kodd
where
oo dm+2
— (1) m+1

(6.4) B@t) = (~1) Sosu < Mut)du .

To complete the proof of Theorem 2 we must show B(t)—0 as t —0.
If f(u) is a function defined for w > 0 and % is a positive real
number, denote by

1) = | (e = wrsda,

the fractional integral of order 7, see [6]. Now if we set
fu) =8, = 5, .,
then by (4.1),

S; = 1S, ,
SO
S;"“ — I’”“Su
— Il—aIm+aSu
— Il-—aSLn+a .
Thus,
m+1l __1_____ . 1—a—1Qm+a
St = s )S(u 2y 1Sy
1

7(1—_—6?)-5 (w — 2)"*Sr+edz .
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Returning to (6.4)

B(t) = (—1)"»5 e ;‘ Mut)du
— m 1 —_— aQmt+a d
= lim (1) ST_)S(“ QST dn O\ (ut)du
O ) N C oS O
- EIQT(TZT)S sree " — 2y L ut)duda
— =D (P omia
= lim 7 S S™<H(z, t, R)dz ,
where
He t, B) = | (- 9L nwydu
2 du™

B(t) = lim——w—gl/tS"'*"H(z t, R)dz
rRow (1 — @) Jo * tY

+ lim (=D SR S™H(z, t, R)dz
R F(]_ —_— ) 1/t

= B,(t) + Bi(t) .

445

We will make separate estimates of H(z, {, R) for B,(t) and for By(t).
First, in the interval of integration involving B,(t), 0 <z < 1/¢.

Hiz, t, R):S (u — 2)~ d A" \ut)du
(6.5) _ Sl/t N SR

1/t

=H + H,.

2z

Using the fact that \ is entire,
1/t
18, = | — wyer Kau
< Ktt? Sm-(z — u) “du
— O(tm+2)<_tl_ _ z>1—-a .

We estimate H, by employing (5.11)

H, = SR (u = 2o —Mut)du

1/t

= | @ — 2y om0ty du
1/t
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a (oo

e A

1/t

= O(tm*r-t-3/2)<% . z)‘“(%)—rﬂ/z
=o)L -2) "

Returning to (6.5),

Hz, t, R) = O(t”‘“)(% — z)““ + O(z:m-ﬂ)(_} - z)_“ .

B(t) = —(%S/S’"H(z t, R)dz
— S;/to(z”‘”) {O(t”‘“)(% - z)l"“ + O(t"”‘l)<% - z)‘”}dz

=) o (G ) e 0w [(G - ) )

o) oo o))
= o(1),

as t —0.
It remains to be shown that B,({)— 0. In the interval of in-
tegration for B,, 1/t < z < R, and

dm-lvz

H(z, t, R) = SR(u - 2L \ut)du

2

j;;( _(igﬁt) )d“

r d
+ S —2)"
B (u —2) dum™r?

fuar

m+2

Y(ut)du

:Ha"]“.Hb.

R dm+2 r—2
H, = — S (w — 20" (S g (ut)")du
2 du’IILTZ kk;;d
R
- S ( — 2)~t"0(ut) " *du

= ¢ {S(u — 2)7*0(u) ™ *du + S“’(u 2Oy du}
= t7HO(z) %2 * + Oz~ %)z~ ™%
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We change variables in the interval for H, by letting z = ut.

R dm+2
Hye,t, B) = | (= 97 - vut)dn
_ tRﬁ__ —a s dm+2 ﬂ
Stz( t z) ¢ du™** 7@ (4

tR
— tm+1+ag (Q}' — tz)—ary(m+2)(x)a1’x
tz

tz+1 tR
-l )
tz tz+1
=H, + Hy .
Recall that 1/¢ < z, so in the interval of integration for H,, x >tz = 1.
Thus, by (5.11)

]fy(m+2)(x)| é Gx—'r—l/2 ,
and

tz+1
H, = t'”“*“g (@ — t2)~ " (2)dz
tz

tz+1
— tm+1+a0(tz)—r—1/2§ (w — tz)—adx
tz
A () e

We estimate H; by integrating by parts.

t
143 +14
b pa— tm 1 as

R
(x — tz)*y™+2(g)dx
tz+1

R
— tm+1+a(x — tz)—my)m+1)(x)

t
tz+1

tR

+ t"‘“““’as (x — tz)"* 'yt (x)da
tz+1

tR

— tm+1+a(x — tz)——my(m«l—l)(w)

tz+1

+ tmt ‘“’O(tz)"‘”zszl(w — tz) " 'dx
= (IR — t2) Y™ HI(ER) — ey (tz 4 1)
+ t’”“*“O(tz)"”‘/z(—:lz—){(tR — tz)* — 1}
= "R — t2)"0(tz) "V 4 tmHeO(tr) T2
= tmreQ(tz) V.
Hence, in the interval of integration for B,,

Hyz,t, R) = H, + HY
— tm+l+a0(tz)—r—1/2 R
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and
H(z,t, R) = H, + H,
= t720(z"™ %) + tmTHO(tR) VR
So,

B(t) = lim _(:1_)1_83 S™<H(z, t, R)dz
? R—'wr(l—a) 1/t2 r

= lim _(T_D_’.M_SR O(z)"’“’{t’zO(z“”‘_“_s) + tm+1+a0(tz)—r—1/2}dz
B0 F(l — Of) 1/t

— t—z gw 0(zm+cz—m—a—3)dz + tm+1+a—1'—1/z Sw o(zm+a—r—1/2)dz
1/t 1/t

)

Il

t7%0(z7%)
=0(1) .

_|_ tm+l/2+a—’ro(zm+a——r+1/2)

©
1/t 1/t

(Note that the hypothesis @ < 1/2 is necessary here to insure that
the last integral converge.) This completes the proof of Theorem 2.
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