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COHOMOLOGY OF HOMOMORPHISMS OF LIE
ALGEBRAS AND LIE GROUPS

ROBERT F. BROWN

Given compact, connected Lie groups Gλ and G2 and given
h: Gx -> G2 a homomorphism with kernel ϋf, let Pft*: PH*(G2) ->
PH*^) be the homomorphism of the primitives in the real
cohomology induced by ft. We prove that if the rank of G2

is greater than or equal to the rank of Gl9 then the dimen-
sion of the kernel of Ph* is greater than or equal to the
rank of K. We discuss when the inequality is an equality
and we use the inequality to study when the hypothesis that
Ph* is an isomorphism implies that ft itself is an isomorphism.

1* Introduction* This paper was initially motivated by a quite
specific question. Let G be a compact, connected Lie group and let
h:G~+G be an endomorphism of G, then ft induces an endomorphism
h*:H*(G)-+H*(G) of the real cohomology of G. The question is:
if ft* is an automorphism, does it follow that ft is an automorphism?

The answer to this question is "no" in general. Represent the
circle S1 as the complex numbers of norm one and define ft: S1 —> S1

by h(z) = z\ Then for ft*'1: H\Sι) — H\Sι) = R (the reals) we have
h*Λ(x) — 2x, so ft*: H*^1)—*H*^1) is an automorphism even though
the kernel of ft contains two points. However, as we shall prove
below (Corollary 5.1), if ft* is an automorphism then the differential
dh of ft is an automorphism of the Lie algebra of G. Consequently,
the example illustrates the worst that can happen because if dh is
an automorphism then h is onto and its kernel, though not neces-
sarily trivial, is finite. (For this and other facts from Lie group
theory, see [6].)

We wish to restate the relationship between ft* and ft above in
a form which will lead us in a natural way to a statement of the
basic problem of this paper. We still have the endomorphism ft:
G~+G that we assume induces an automorphism ft*: H*{G)—*H*(G)
of real cohomology. However, our results will be easier to describe
if, instead of considering all of JΪ*(G), we restrict our attention to
elements which generate H*(G) as an algebra. Let m:G x G~+G
be the group operation, then m induces m*: Jϊ*(G)—>ίί*(G)(g)ίί*(G).
An element ω e H*(G) is primitive if m*(ω) = l(x)ft)-|-α)(g)l. Now
let Pft*: P£r*(G)-^PJff*(G) be the restriction of ft* to the primitives
in JΪ*(G), then ft* is an automorphism if and only if Pft* is an
automorphism. Stating the hypothesis another way: the dimension
of the kernel of Pft* is zero. (The dimension of a graded vector
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space W, written dim W, is the sum of the dimensions of the in-
dividual vector spaces that make up W.) The conclusion that the
kernel of h is finite can be expressed by saying that the rank of
the kernel of h is zero. (The rank of a compact Lie group G,
written rk(G), is the dimension of a maximal torus.) The basic
problem of this paper is to determine the relationship between the
dimension of ker P/t*, the kernel of Ph*, and the rank of the kernel
of h.

Since Corollary 5.1 implies that when the dimension of the kernel
of Pfc* is zero the rank of the kernel of h is also zero, one might
wonder whether the two numbers are always equal. Again represent
S1 as the complex numbers of norm one and let S3 be the quater-
nions of norm one. Let G = S*x S3 and define h:G~*G as follows.
For a complex number a + bi and a quaternion t + ui + vj + wk,
set

h(a + bί,t + ui + vj + wk) = (1 + Oi, a + bi + Oj + Ofc) .

Now h is homotopic to the constant map on G so the dimension of
the kernel of Ph* is two because that is the dimension of PH*{G).
On the other hand, the kernel of h is isomorphic to S\ which is of
rank one. Therefore, equality does not hold in general.

In the next section, we will show that rank the of the kernel K
of an endomorphism h:G-+G is always less than or equal to the
dimension of the kernel of Ph*. This inequality will follow from a
corresponding inequality for homomorphisms between (possibly dif-
ferent) Lie groups. Section 3 examines how the one-dimensional
cohomology contributes to the inequality. In § 4, we state sufficient
conditions for the inequality to be an equality. Finally, in §5, we study
homomorphisms h: Gι—*G2t with the property that &*: H*(G^—*H*(G^)
is an isomorphism.

The results of this paper are most naturally stated and proved
in the context of Lie algebras. Consequently, §§2, 3, and 4 each
begin with a theorem concerning homomorphisms of Lie algebras.
The corresponding results for homormophisms of Lie groups follow as
corollaries.

In order to avoid frequent repetitions of the same hypotheses,
we adopt the following

conventions'. (1) all Lie groups are compact and connected (2)
all Lie algebras are the Lie algebras of compact Lie groups (3) all
homomorphisms of Lie algebras are differentials of homomorphisms
of Lie groups.

2. The main inequality. For a Lie algebra ©, let PH*(®)
denote the primitives in the cohomology (see [5]). The rank of ©
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(written rk(®)) is the dimension of a Cartan subalgebra [6, p. 264],
It follows from a theorem of Hopf [4] (or see [1]), via the de Rham
theorem [3], that rk(®) is equal to the dimension of Piϊ*(©).

THEOREM 2.1. Let ®, and ®2 be Lie algebras such that rki®,) <:
rk(®2). Let rj\ ®x •—• ®2 be a homomorphism with kernel $ inducing
Pψ: PH*(®2) — PH*(©,). Then

dim ker Pψ ^ rfc(^) .

Proof. Since $ is an ideal in ®lf it follows from [6, p. 213]
that ίΐ is a direct summand of ®t. Therefore, the homomorphism
Pc*:PH*(®ί)—*PH*(Sl) induced by inclusion is onto. Let m —
dim ker Pη* and suppose that the dimension of PH*(&) were greater
than m. We can choose {zu z2, , zm, zm+1}, a linearly independent
set of elements of PH*(&) - and then a linearly independent set
{Vι, Vif , Vmy Vm+i] of elements of PH*^) such that c*(y5) = zό for
all j . Let V be the vector subspace of PϋΓ*(©1) spanned by
{#i> •••> 2Λ»+i} Since r ^ S J ^ ri;(@2), the dimension of P i ϊ * ^ ) is
no larger than the dimension of PH*(®2). Consequently, the dimen-
sion of the intersection of V and the image of Prf must be at
least one. So there exists y = ΣΓ=V ajVs in the image of Pψ with
some ad nonzero. Let xePH*(®2) such that η*(x) = ?/. Now the
composition

is trivial and yet
7ψ 0

which is a contradiction, so rk(&) ^ m.
The conclusion of Theorem 2.1 is false for the trivial homomor-

phism η:®i—>®2 if rk(®t) > rk{®2), so we do require a restriction
on the ranks.

COROLLARY 2.2. Let GL and G2 be Lie groups such that rk(G^) ̂
rk{G2). Let h:G1—^G2 be a homomorphism with kernel K inducing
Ph*:PH*{GJ-+PH*(G1). Then

dim ker Ph* ^ rk(K) .

3* One-dimensional cohomology* For a Lie algebra ©, we
write ® = 3 Θ ^@ where 3 is the center of ® and ^ © is semisimple.

LEMMA 3.1. Let ®ί and ®2 be Lie algebras such that dim (3i) =
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dim (S2) and let rj\ ©x —> ©2 be a homomorphism. The dimension of
the kernel of the induced homomorphism y]*Λ:Hι{®2)-+Hι{®d is equal
to dimension of the Lie algebra η~1(^ί®2) Π Si

Proof. Define fj\ $ : —> 3 2 to be the composition

where r is inclusion and TΓ is projection. Since c*A and TΓ*'1 are
isomorphisms, then ker Ύ]*Λ ~ ker η**1. (See [5] for the eohomology
of Lie algebras.) Since Si a n d 32 are abelian Lie algebras of the
same dimension, it follows from the definitions that the dimension
of the kernel of η*'1 is equal to the dimension of the kernel of rj.
The fact that

ker η - ψι{&®2) n Si

completes the argument.

THEOREM 3.2. Let ©x αwcί ©2 6e Lie algebras such that rk{®^) <;
rk(®2) and dim (Si) = dim (S2). i β ί ?̂ ©1 -~>®2 be a homomorphism
with kernel &. If dim ker T?τf = rk(&), then 7]{^x) Q g2.

Proof. Let 2$r]\ ^®x —> &®2 denote the restriction of η. For
©! or ©2, define

PH*{%) -

so PfΓ*(@) = fί 1 (©)0PiJ Γ *(©). Then 27 induces 2?
and P57*: Pίί*(©2) ~> Pίf *(©x). Furthermore,

dim ker P';?* = dim ker 77*}1 + dim ker

The inclusion of ϋ^©2 into ©2 induces on isomorphism between
PH*{®2) and P f ί * ( ^ © 2 ) , so since iΓ(i^© 2 ) = 0,

dim ker Pη* = dim ker P(&7})* = dim ker

Lemma 3.1 then implies that

dim ker Pη* - dim (Ύ]~1{&(&2) n SI) + dim ker P{βrη)*

Since β n ^ © 1 = ker (^27), Theorem 2.1 states that

rfe(β Π ̂ ® i ) ^ dim ker P(&rj)* .

If (̂Bx) Π ̂ © 2 ̂  0 then Λ n Si S ψ\^®2) Π Si and so

dim ker Pψ = dim (97~1(^'©2 n Si)) + dim ker

^ dim (i7-1(^©2 Π Si)) + rk(St n

> dim (Λ n Si) + rfc(Λ Π ̂ ©1) -
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Denote the identity component of the center of a Lie group G
by Z°.

COROLLARY 3.3. Let Gx and G2 be Lie groups such that rk(G^) ̂
rk(G2) and dim Z\ — dim Z\. Let h: G1 —>G2 be a homomorphism
with kernel K. If dim ker Ph* = rk(K), then h{Z§ £ Z\.

Corollary 3.3 explains why, in the example h: G-+G = S1 x S3

of § 1, we found that dim ker Ph* > rk(K). The reason is that the
center S1 of G was not mapped into itself by h. There can be other
reasons why dim ker Ph* > rk(K), as the following examples show.

Let j : SO(8) -»SO(9) be defined as follows. For A a matrix in
SO(8), let

0

A \

0

_ ) --.0 1

Then j is one-to-one, but there is an element of iJ15(SO(9)) in
PH*(SO(9)) while iϊ15(SO(8)) = 0. For an example where G, = G2,
let G = SO(8) x SO(9) and define h:G->G to be the composition

SO(8) x SO(9) — SO(8) — SO(9) -Ϊ-+ SO(8) x SO(9)

where π is projection and i is inclusion. Now the kernel of Ph*
contains Pff*(SO(8)) and iϊ15(SO(9)) which implies that it is of dimen-
sion at least 5. But the kernel of h is isomorphic to SO(9), a group
of rank 4.

4* Sufficient conditions for equality* The previous section
suggests that strong hypotheses will be required in order for the
inequality of § 2 to be an equality. The next results employ such
hypotheses.

THEOREM 4.1. Let ®ι and ®2 be Lie algebras such that rί

rk(®2). Let rj: ®ι-+®2 be a homomorphism with kernel $. If
is an ideal of ®2, then

dim ker (Pη*) = rk(St) .

Proof. Let φ = ^(©0 then by hypothesis § is an ideal of ©2 so
the kernel of the homomorphism Pc*: PJΪ*(©2)->PJϊ*(φ) induced by
inclusion is isomorphic to PίJr*(©2/§). Let ^":©1/ίϊ—>φ be the iso-
morphism induced by η. Then the diagram
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J2

J £
V

where q is the quotient homomorphism, can be used to show that

keτPη* ~ PH*(®M .

Since rk(®,) = rk(®2), it follows that rk($l) = rk(®J§) and that com-
pletes the proof.

COROLLARY 4.2. Let Gλ and G2 be Lie groups such that rk(Gt) —
rk(G2). Let h:G1—*G2 he a homomorphism with kernel K. If h(Gx)
is a normal subgroup of G29 then

dim ker (Ph*) = rk(K) .

If we mimic the example at the end of § 3 with" SU(2) x SU(S)
in place of SO(8) x SO(9) then h(G) = ijπ(G) is not a normal subgroup
of G and yet dim ker (Ph*) = rk(K) = 2. Consequently, the sufficient
conditions of this section are not necessary conditions for equality.

5. Homomorphisms that induce isomorphisms* We come now
to the result promised in the introductory section.

COROLLARY 5.1. If h: Gx ~>G2 is a homomorphism of Lie groups
such that h*: H*(G2) —> H*(G1) is an isomorphism, then the dif-
ferential of h is an isomorphism of Lie algebras.

Proof. Let K be the kernel of h. Since h* is an isomorphism,
so also is Ph*\PH*(Gά-»PH*(Gύ and, by Corollary 2.2, the rank
of K is equal to zero. Let dh: ©L —* ©2 be the differential of h, then
$, the kernel of dh, is trivial because it is of rank zero. We con-
clude that dh is an isomorphism.

A homomorphism h: G1—>G2 induces a homomorphism hπ: πSβD—*
πί(G2) of the fundamental groups.

COROLLARY 5.2. // h: Gλ —> G2 is a homomorphism of Lie groups
such that h*: H*(G2)—>H*(G1) is an isomorphism. Then

(i) hπ:π1(G1)—+πι(G2) is one-to-one
(ii) h is an isomorphism if and only if hz is an isomorphism.

Proof. Corollary 5.1 implies that h is a local homeomorphism so
ht: G1 ~-» G2 is a covering space with fiber K, the kernel of h. Thus
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we have the exact sequence

πx{K) > πx{Gx) — πx(G2) > πo(K) > πo(Gd

and observe that hπ is one-to-one. The homomorphism h is an iso-
morphism if and only if K is trivial, that is, if and only if πQ(K) — 1.
By exactness, πo(K) = 1 if and only if hπ is onto.

COROLLARY 5.3. Let G be a semisimple Lie group and let h:
G-+G be an endomorphism such that h*: H*(G) —>H*(G) is an iso-
morphism, then h is an isomorphism.

Proof. Since G is semisimple, πx{G) is finite, so the result is a
consequence of Corollary 5.2.

An inner automorphism h: G—>G, defined by h{%) = axa~ι for
some a e G, is homotopic to the identity map because G is pathwise
connected, so h induces the identity isomorphism on H*(G). Our
final result shows that the converse is also true.

COROLLARY 5.4. Let G be a compact, connected Lie group and
let h:G—+G be an endomorphism such that h*: H*(G)~+ H*(G) is
the identity isomorphism, then h is an inner automorphism of G.

Proof. We write πL(G) = Zm@T where Zm is free abelian and
T is finite. By Corollary 5.2, hπ: Z

m ®T-~+Zm @T is one-to-one
and therefore its restriction to T must be an isomorphism of T to
itself. The fact that A*'1: H\G) -»H^G) is the identity isomorphism,
together with the Universal Coefficient Theorem and the Hurewicz
Homomorphism Theorem, imply that the restriction of hπ to Zm is
the identity transformation from Zm to itself. Therefore, by Co-
rollary 5.2, h is an isomorphism of G inducing the identity isomor-
phism on Jϊ*(G). Proposition 4 of [2] thus implies that h is an
inner automorphism.
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