REMARKS ON SINGULAR ELLIPTIC THEORY FOR COMPLETE RIEMANNIAN MANIFOLDS

H. O. CORDES AND R. C. McOWEN

This paper is about a C^* -algebra $\mathfrak A$ of 0-order pseudo-differential operators on $L^2(\Omega)$, where Ω is a complete Riemannian manifold which need not be compact. This algebra is designed to handle singular elliptic theory for certain Nth-order differential operators. In particular, this paper studies the maximal ideal space M of the (commutative) algebra $\mathfrak A/\mathcal A$, where $\mathcal A$ denotes the compact ideal. The space M contains the bundle of cospheres as a subspace, and in general will contain additional points at infinity of the manifold. The significance of this for elliptic theory lies in the fact that an operator $A \in \mathcal A$ is Fredholm if and only if the associated continuous function $\sigma_A \in C(M)$ is never zero.

1. Introduction. Let Ω be an n-dimensional paracompact C^* -manifold with complete Riemannian metric $ds^2 = g_{ij}dx^idx^j$ and surface measure $d\mu = \sqrt{g} dx$ where $g = \det(g_{ij})$. As in [5] we define $\Lambda = (1 - \Delta)^{-1/2}$ as a positive-definite operator in $\mathcal{L}(\mathfrak{k})$, the bounded operators over the Hilbert space $\mathfrak{k} = L^2(\Omega, d\mu)$, and define the Sobolev spaces $\mathfrak{k}_N \subset \mathfrak{k}$ for $N = 0, 1, \cdots$ by requiring $\Lambda^N : \mathfrak{k} \to \mathfrak{k}_N$ to be an isometric isomorphism. It was shown in [3] that $C_0^*(\Omega)$ is then dense in each \mathfrak{k}_N .

In [5] we defined classes of bounded functions and vector fields, A and D, whose successive covariant derivatives with respect to a symmetric affine connection ∇ vanish at infinity in the special sense that for $f \in C(\Omega)$ we write $\lim_{x \to \infty} f = 0$ if for every $\epsilon > 0$ there exists a compact set $K \subset \Omega$ such that

$$(1.1) |f(x)| < \epsilon \text{for} x \in \Omega \setminus K.$$

Let L^N denote the class of Nth-order differential operators generated by taking sums of products of elements in \mathbf{D} and \mathbf{A} . The connection ∇ need not be the Riemannian connection ∇g , but must satisfy *Condition* (r_0) of [5] that it does not differ drastically from ∇g at infinity. We also require $Condition(L^2)$ that $1-\Delta \in L^2$, a condition which was seen in [5] to imply the curvature tensor R tends to zero as $x \to \infty$ in the sense of (1.1). Under these two conditions it was shown that the operators $L \Lambda^N$ and $\Lambda^N L$ for $L \in L^N$ are bounded over \mathfrak{k} and thus generate an algebra $\mathfrak{A}^0 \subset \mathcal{L}(\mathfrak{k})$. Moreover it was found that after adding the compact ideal \mathcal{K} to

 \mathfrak{A}^{0} and taking the norm closure, we obtain a C^{*} -algebra \mathfrak{A} with compact commutators.

In this paper we focus our attention on the maximal ideal space M of the commutative C^* -algebra \mathfrak{A}/\mathcal{K} . If we define the symbol σ_A to be the continuous function on M associated with the coset $A + \mathcal{X}$, then a necessary and sufficient condition for A to be Fredholm is that σ_A never vanish on M (c.f. [1]). Thus a further analysis of M and the symbols σ_A is desirable for the Fredholm theory of differential operators in L^N . For compact manifolds Ω it was shown in [8] that M is just the bundle of unit co-spheres $S^*\Omega \subset T^*\Omega$. For the special noncompact manifold $\Omega = \mathbb{R}^n$ it was shown in [4] that M contains $\hat{S}^*\Omega = \mathbb{R}^n \times S^{n-1}$ as a proper subset: in fact $\mathbf{M} = \partial P^* \Omega = P^* \Omega \setminus T^* \Omega$ where $P^* \Omega$ is a certain compactification of $T^*\Omega$. In both [4] and [8] explicit formulas for σ_A were obtained. For general Ω , the main result of this paper (c.f. Theorem 2.2) asserts the inclusions $S^*\Omega \subset M \subset \partial P^*\Omega$. Although we do not achieve a complete description of M and σ_A , this theorem yields many results (e.g. criteria for "weak = strong" and characterizations of Fredholm essential spectra) of classical elliptic theory (c.f. [2]). For example, if $L \in L^N$ is uniformly elliptic (see $\S 2$) and formally self-adjoint, then L is essentially self-adjoint (with domain $C_0^{\infty}(\Omega)$). A discussion of this and further applications of the result of this paper is planned for a subsequent publication.

2. The formal algebra symbol. Let \mathfrak{A}_M denote the function algebra obtained by closing **A** under uniform norm. Since \mathfrak{A}_M is a subalgebra of the bounded continuous functions on Ω , the Gelfand isomorphism yields $\mathfrak{A}_M \cong C(\bar{\Omega})$ where $\bar{\Omega}$ is some compactification of Ω . On the other hand, considering $\mathfrak{A}_M \subset \mathfrak{A}$ we obtain a canonical injection $i: \mathfrak{A}_M \to \mathfrak{A}/\mathfrak{K}$ whose associated dual map $p = i^*$ provides a continuous surjection $p: \mathbf{M} \to \bar{\Omega}$. Let us denote the open subset $p^{-1}(\Omega) \subset \mathbf{M}$ by **S**. The following theorem, which is an immediate consequence of Theorem 2.2 although we state it first for purposes of exposition, extends the corresponding well-known result for compact Ω .

Theorem 2.1. Let $\pi: S^*\Omega \to \Omega$ denote the fibre bundle of unit cospheres $S^*\Omega \subset T^*\Omega$. There is a (surjective) homeomorphism $\theta: S \to S^*\Omega$ such that $\pi \circ \theta = p$ on S and for $m \in S$ and $\theta(m) = (x, \xi) \in S^*\Omega$ we have

(2.1)
$$\sigma_{a}(m) = a(x) \qquad \sigma_{D\Lambda}(m) = b^{i}(x)\xi_{i}$$
$$\sigma_{\Lambda}(m) = 0 \qquad \sigma_{K}(m) = 0$$

where $K \in \mathcal{H}$, $a \in A$, and $D \in D$ is given in local coordinates by $-ib^{i}(\partial/\partial x^{j})$ and $\xi = \xi_{i}dx^{j}$.

For $a \in \mathbf{A}$ and $D \in \mathbf{D}$ with local expression $-ib^{\prime}(\partial/\partial x^{\prime})$, the following formal symbols define continuous functions on $T^*\Omega$.

(2.2)
$$\tilde{\sigma}_{a}(x,\xi) = a(x) \qquad \tilde{\sigma}_{D}(x,\xi) = b'(x)\xi_{J}$$
$$\tilde{\sigma}_{\Lambda}(x,\xi) = (1+|\xi|^{2})^{-1/2}$$

and we may extend algebraically to sums and products. In particular, the formal symbols $\tilde{\sigma}_a$, $\tilde{\sigma}_{D\Lambda}$, and $\tilde{\sigma}_{\Lambda}$ for $a \in \mathbf{A}$ and $D \in \mathbf{D}$ generate a C^* -algebra, \mathfrak{A}_{σ} of continuous bounded functions on $T^*\Omega$. The maximal ideal space of \mathfrak{A}_{σ} is a compactification, $P^*\Omega$, of $T^*\Omega$, and we define the boundary $\partial P^*\Omega = P^*\Omega \setminus T^*\Omega$. The associated dual map to the injection $\mathfrak{A}_M \to \mathfrak{A}_{\sigma}$ provides a surjection of $P^*\Omega$ onto $\bar{\Omega}$, and the restriction of this map to the boundary is denoted $\pi: \partial P^*\Omega \to \bar{\Omega}$. Using (2.1) of [5], the formal symbols of $L\Lambda^N$ and $\Lambda^N L$ for $L \in \mathbf{L}^{N}$ defined by algebraic extension of (2.2) are unique when restricted to $\partial P^*\Omega$. Thus we are lead to defining the formal algebra symbol as the algebra homomorphism

$$\dot{\sigma} \colon \mathfrak{A}^0 \to C(\partial P^*\Omega)$$

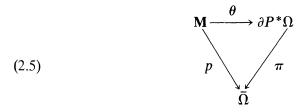
obtained by this restriction of $\tilde{\sigma}$.

It is evident that $S^*\Omega$ is homeomorphic to $\pi^{-1}\Omega$ by the map $(x, \xi) \to \lim_{r \to \infty} (x, r\xi) \in \partial P^*\Omega$. Theorem 2.1 may be interpreted as providing a continuous injection $\theta: \mathbf{S} \to \partial P^*\Omega$ such that

(2.4)
$$\dot{\sigma}_A(\theta(m)) = \sigma_A(m)$$

for $m \in S$ and operators A = a or $A = D\Lambda$. The main result of this paper extends this formula as follows.

THEOREM 2.2. Under Conditions (r_0) and (L^2) , there exists a continuous injection $\theta: \mathbf{M} \to \partial P^*\Omega$ such that



is commutative, surjective on fibres over Ω , and (2.4) holds for all $m \in M$ and $A \in \mathfrak{A}^0$.

If $L \in \mathbf{L}^N$ with $\dot{\sigma}_{L\Lambda^N}$ bounded away from zero on $S^*\Omega = \theta(S)$, we say L is uniformly elliptic.

3. Proof of Theorem 2.2. Condition (L^2) implies that we may write

(3.1)
$$1 - \Delta = \sum_{\nu=1}^{M} C_{\nu} D_{\nu} + \text{lower order terms}$$

with 2M vector fields C_{ν} , $D_{\nu} \in \mathbf{D}$. Taking real and imaginary parts in (3.1), we may assume C_{ν} and D_{ν} are real. Let $B_{\nu} \in \mathbf{D}$, $\nu = 1, \dots, N$, be a basis for the module spanned by $C_1, \dots, C_M, D_1, \dots, D_M$ over the algebra of real-valued functions in \mathbf{A} . In local coordinates, let G denote the $n \times n$ matrix $((g^{ij}))$ and G denote the G denote the components of G denote the matrix transpose of G. Considering principal parts in (3.1), there is a symmetric G matrix-valued function G matrix whose coefficients G are all real-valued functions of G, such that

$$(3.2) G = BAB^{T}.$$

Let us introduce the $N \times N$ matrix-valued function $P = B^T G^{-1} B A$. Observe that P does not depend on local coordinates and $P^2 = P$ implies that P is a projection matrix with rank n. Let $\Gamma = \binom{N}{n}$, the binomial coefficient. We shall require the following lemma from linear algebra.

LEMMA 3.1. For any $N \times N$ projection matrix P with rank n, there exists an $n \times n$ diagonal matrix minor \tilde{P} such that $|\det \tilde{P}| \ge \Gamma^{-1}$.

Proof.. Since $\det(P-\lambda) = (1-\lambda)^n (-\lambda)^{N-n}$, the coefficient of λ^{N-n} is ± 1 . But this coefficient equals the sum of all $n \times n$ diagonal minors. Since there are precisely Γ such minors, at least one must have absolute value not less than Γ^{-1} .

Applying the lemma, we see that at each point $x \in \Omega$ there is a matrix minor \tilde{P} of P, $\tilde{P} = B_{(\gamma)}^T G^{-1} B \tilde{A}$ where $B_{(\gamma)}$ denotes one of the Γ distinct $n \times n$ matrix minors of B and \tilde{A} denotes a certain $N \times n$ matrix minor of A, such that

$$|\det \tilde{P}| > (2\Gamma)^{-1}.$$

The matrix $\tilde{A}^T B^T G^{-1} B \tilde{A}$ has coefficients in A so that $|\det \tilde{A}^T B^T G^{-1} B \tilde{A}|$ is uniformly bounded over Ω . Thus $|\det G^{-1/2} B \tilde{A}| = |\det \tilde{A}^T B^T G^{-1} B \tilde{A}|^{1/2}$ is also uniformly bounded. So by (3.3), there exists a constant C > 0 such that at each $x \in \Omega$, $|\det B_{(\gamma)}^T G^{-1/2}| > C$ holds for at least one $\gamma = 1, \dots, \Gamma$. Observe that $d_{\gamma} = \det B_{(\gamma)}^T G^{-1/2}$ is a C^{∞} -

function on Ω and we have a finite open cover of Ω by the Γ sets

$$(3.4) \qquad \Omega_{\gamma} = \{x \in \Omega : |d_{\gamma}(x)| > C\}.$$

Let us suppose that we have chosen C such that also the sets

$$\Omega_{\gamma}'' = \{x \in \Omega : |d_{\gamma}(x)| > 2C\}.$$

cover Ω . Also define

(3.5')
$$\Omega_{\gamma}' = \{x \in \Omega : |d_{\gamma}(x)| > \frac{4}{3}C\}.$$

Observe that $\Omega''_{\gamma} \subset \Omega'_{\gamma} \subset \Omega_{\gamma}$. Let $\overline{\Omega'_{\gamma}}$ and $\overline{\Omega''_{\gamma}}$ denote the closures of Ω'_{γ} and Ω''_{ν} respectively in Ω .

In each set Ω_{γ} , det $B_{(\gamma)} > 0$ so we may define the $n \times N$ matrix-valued function $Q_{\gamma} = B_{(\gamma)}^{-1}B$. Let us also define an $n \times n$ matrix-valued function on Ω_{ν}

(3.6)
$$A_{\gamma} = Q_{\gamma} A Q_{\gamma}^{T} = (B_{(\gamma)}^{-1} G^{1/2}) (G^{1/2} B_{(\gamma)}^{-1T}).$$

Clearly A_{γ} is coordinate invariant and positive definite with spectrum bounded uniformly (over Ω_{γ}) below by $\epsilon > 0$. Since $|\det A_{\gamma}| < C^{-2}$ on Ω_{γ} , we conclude that the spectrum of A_{γ} is contained in a fixed (independent of $x \in \Omega_{\gamma}$) compact subset of $(0, \infty)$. Thus we may define $A_{\gamma}^{1/2}$ by a resolvent integral. A computation shows that the coefficients of $A_{\gamma}^{1/2}$ are bounded over Ω_{γ} and have covariant derivatives tending to zero in Ω_{γ} outside large compact sets of Ω . Thus if we define $\tilde{B}_{(\gamma)}$ = $B_{(\gamma)}A^{1/2}$ we have $G = \tilde{B}_{(\gamma)}\tilde{B}_{(\gamma)}^T$ in Ω_{γ} . In other words we have diagonalized the metric in Ω_{γ} as follows.

PROPOSITION 3.2. Under Condition (L²), there is a finite open cover of Ω by open sets $\{\Omega_{\gamma}\}_{\gamma=1}^{\Gamma}$ such that in each set Ω_{γ} we may express

(3.7)
$$g^{ij} = \sum_{\nu=1}^{n} \tilde{b}_{\nu}^{i} \tilde{b}_{\nu}^{j}$$

where the n real vector fields \tilde{B}_{ν} with components \tilde{b}_{ν}^{i} are bounded over Ω_{γ} and satisfy: for every $n \ge 1$ and $\epsilon > 0$ there exists a compact set $K_{\epsilon} \subset \Omega$ such that

$$|\nabla^n \tilde{B}_{\nu}| < \epsilon \quad \text{for all} \quad x \in \Omega_{\gamma} \backslash K_{\epsilon}.$$

Now let $\chi \in C^{\infty}(\mathbf{R})$ with $\chi(t) = 0$ for $t \le 0$, $\chi(t) = 1$ for $t \ge C$ and $0 \le \chi \le 1$ for 0 < t. Define $\varphi_{\gamma}(x) = \chi(3 \mid d_{\gamma}(x) \mid -4C)$, $\psi_{\gamma}(x) =$

 $\chi(3 \mid d_{\gamma}(x) \mid -3C)$, and $\mu_{\gamma}(x) = \chi(3 \mid d_{\gamma}(x) \mid -2C)$. Dividing each φ_{γ} by $\Sigma_{\gamma=1}^{\Gamma} \varphi_{\gamma}$, we may assume $\Sigma_{\gamma=1}^{\Gamma} \varphi_{\gamma} \equiv 1$ on Ω . Observe $\varphi_{\gamma}, \psi_{\gamma}, \mu_{\gamma} \in \mathbf{A}$, $\varphi_{\gamma} \equiv 1$ on Ω_{γ}'' and $\mu_{\gamma} \equiv 0$ on $\Omega \setminus \Omega_{\gamma}$. In fact $\psi_{\gamma} \equiv 1$ on $\overline{\Omega_{\gamma}'} = \operatorname{supp} \varphi_{\gamma}$ and $\mu_{\gamma} \equiv 1$ on supp ψ_{γ} , so $\varphi_{\gamma} = \varphi_{\gamma}\psi_{\gamma}$ and $\psi_{\gamma} = \psi_{\gamma}\mu_{\gamma}$. Observe that $D_{\gamma,\nu} = -i\mu_{\gamma}\tilde{B}_{\nu} \in \mathbf{D}$ (in particular, a vector field defined on all of Ω).

LEMMA 3.3. Vector fields of the form $\varphi_{\gamma}D$ and $\psi_{\gamma}D$ with $D \in \mathbf{D}$ may be written as $\varphi_{\gamma}D = \sum_{\nu=1}^{n} a_{\gamma,\nu}\varphi_{\gamma}D_{\gamma,\nu}$ and $\psi_{\gamma}D = \sum_{\nu=1}^{n} a_{\gamma,\nu}\psi_{\gamma}D_{\gamma,\nu}$ with $a_{\gamma,\nu} \in \mathbf{A}$.

Proof. If D is given in local coordinates by $b^j \partial / \partial x^j$, simply define $a_{\gamma,\nu} = i b^j g_{jk} \tilde{b}_{\nu}^k \mu_{\gamma}$.

We now invoke some of the results of [5]. Condition (r_0) implies that the formal adjoint of $\psi_{\gamma}D_{\gamma,\nu}$ is of the form $(\psi_{\gamma}D_{\gamma,\nu})' = \psi_{\gamma}D_{\gamma,\nu} + a$ with $\lim_{x\to\infty} a = 0$ (c.f. (2.2) of [5]). Thus if we let $T_{\gamma,\nu} = \psi_{\gamma}D_{\gamma,\nu}\Lambda \in \mathfrak{A}^0$, we have by Remark 2.3, Theorem 3.1, and Proposition 4.4 of [5] that

$$(3.9) T_{\gamma,\nu}^* = \Lambda(\psi_{\gamma}D_{\gamma,\nu})' \equiv \Lambda\psi_{\gamma}D_{\gamma,\nu} \equiv \psi_{\gamma}D_{\gamma,\nu}\Lambda = T_{\gamma,\nu} \pmod{\mathcal{H}}.$$

Also observe

(3.10)
$$\sum_{\nu=1}^{n} (\psi_{\gamma} D_{\gamma,\nu})'(\psi_{\gamma} D_{\gamma,\nu}) = -\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{i}} g^{ij} \psi_{\gamma}^{2} \sqrt{g} \frac{\partial}{\partial x^{j}}$$
$$= -\psi_{\gamma}^{2} \Delta - D$$

with $\lim_{x\to\infty} |D| = 0$. Thus using Corollary 3.6 of [5] together with (3.9) and (3.10) above

(3.11)
$$\psi_{\gamma}^{2} = \psi_{\gamma}^{2} \Lambda (1 - \Delta) \Lambda \equiv (\psi_{\gamma} \Lambda)^{2} - \Lambda \psi_{\gamma}^{2} \Delta \Lambda \qquad (\text{mod } \mathcal{X})$$
$$\equiv (\psi_{\gamma} \Lambda)^{2} - \sum_{\nu=1}^{n} \Lambda (\psi_{\gamma} D_{\gamma, \nu})' (\psi_{\gamma} D_{\gamma, \nu}) \Lambda \qquad (\text{mod } \mathcal{X})$$
$$\equiv \sum_{\nu=0}^{n} T_{\gamma, \nu}^{2} \qquad (\text{mod } \mathcal{X})$$

where we have also defined $T_{\gamma,0} = \psi_{\gamma} \Lambda$. Similarly, let us define $S_{\gamma,\nu} = \varphi_{\gamma} T_{\gamma,\nu}$ for all γ and ν .

Let $\mathbf{M}'_{\gamma} = p^{-1}(\overline{\Omega'_{\gamma}}) \subset \mathbf{M}$. Also let S^n be the half-sphere

$$\left\{\sigma = (\sigma_0, \sigma_1, \cdots, \sigma_n) \in \mathbf{R}^{n+1} \colon \sum_{\nu=0}^n \sigma_{\nu}^2 = 1 \quad \text{and} \quad \sigma_0 \geqq 0\right\}, \text{ and } S^{n-1} = \partial S_+^n.$$

Proposition 3.4. For each $\gamma = 1, \dots, \Gamma$ there is a continuous injection

$$\mathbf{M}'_{\gamma} \to \overline{\Omega}'_{\gamma} \times S^{n}_{+}$$

where $m \mapsto (x, \sigma)$ such that $\sigma_a(m) = a(x)$ and $\sigma_{S_{x,\nu}}(m) = \varphi_{\nu}(x) \sigma_{\nu}$ for $\nu = 0, 1, \dots, n$. In addition, (3.12) maps $\mathbf{M}'_{\nu} \cap \mathbf{S}$ onto $\Omega'_{\nu} \times \mathbf{S}^{n-1}$.

Proof. Let \mathfrak{A}^*_{γ} denote the smallest C^* -algebra with unit containing \mathcal{H} and $T_{\gamma,\nu}$ for $\nu=0,1,\cdots,n$. Let \mathfrak{A}_{γ} denote the smallest C^* -algebra containing \mathfrak{A}_{M} and $\mathfrak{A}_{\gamma}^{\#}$. Since $\mathfrak{A}_{\gamma}/\mathcal{H}$ is a commutative C^{*} -algebra, let N_{γ} denote its maximal ideal space, and let $\sigma^{\gamma}: \mathfrak{A}_{\gamma} \to C(\mathbf{N}_{\gamma})$ be the symbol homomorphism. Also let $p_y : \mathbf{N}_y \to \bar{\Omega}$ be the associated dual map to the inclusion $\mathfrak{A}_M \to \mathfrak{A}_{\gamma}$. For $a \in \mathbf{A}$ and $D \in \mathbf{D}$, define $\rho_{\gamma}(a) = a$, $\rho_{\gamma}(D\Lambda) =$ $\psi_{\nu}D\Lambda$, and $\rho_{\nu}(\Lambda) = \psi_{\nu}\Lambda$. By Lemma 3.3, ρ_{ν} extends to a continuous algebra homomorphism of \mathfrak{A} onto \mathfrak{A}_{γ} . Since $\rho_{\gamma}(\mathcal{X}) \subset \mathcal{X}$, there is an induced surjective homomorphism $\bar{\rho}_{\gamma} \colon \mathfrak{A}/\mathcal{H} \to \mathfrak{A}_{\gamma}/\mathcal{H}$. Thus the associated dual map $i_{\gamma} = \bar{\rho}_{\gamma}^*$ provides a continuous injection such that

$$\begin{array}{ccc}
\mathbf{N}_{\gamma} & \stackrel{i_{\gamma}}{\longrightarrow} \mathbf{M} \\
p_{\gamma} & & p \\
\bar{\Omega}
\end{array}$$

commutes and

(3.14)
$$\sigma_{\rho_{\gamma}(A)}^{\gamma}(n) = \sigma_{A}(i_{\gamma}n)$$

for all $A \in \mathfrak{A}$ and $n \in \mathbb{N}_{\gamma}$. The restriction of i_{γ} to $\mathbb{N}'_{\gamma} = p_{\gamma}^{-1}(\bar{\Omega}'_{\gamma})$ may easily be seen to provide a surjection of N'_{ν} onto M'_{ν} . Thus we may consider $N'_{\gamma} \subset M$.

On the other hand, $\mathfrak{A}_{r}^{*}/\mathfrak{K}$ is also a commutative C^{*} -algebra with unit whose maximal ideal space will be denoted $\mathbf{M}_{\gamma}^{\#}$. But by a wellknown theorem concerning C^* -algebras generated by a finite number of elements (c.f. [7]), \mathbf{M}_{γ}^{*} is homeomorphic to the joint spectrum of the n+1cosets $T_{\gamma,\nu} + \mathcal{K}$ of $\mathfrak{A}_{\gamma}^{*}/\mathcal{K}$. Using (3.11) and the non-negativity of $T_{\gamma,0}$, this implies that $\mathbf{M}_{\gamma}^{*} \subset B_{+}^{n+1} = \{r\sigma : \sigma \in S_{+}^{n} \text{ and } 0 \leq r \leq 1\}$. Since \mathfrak{A}_{γ} is generated by \mathfrak{A}_{M} and $\mathfrak{A}_{\gamma}^{*}$, Herman's Lemma (c.f. [6] Theorem 1) implies the existence of a continuous injection

$$\mathbf{N}_{\gamma} \to \bar{\Omega} \times B_{+}^{n+1}$$

such that $n \mapsto (x, \psi_{\gamma}(x)\sigma)$ where $\sigma_a^{\gamma}(n) = a(x)$ and $\sigma_{T_{\gamma,\nu}}^{\gamma}(n) = \psi_{\gamma}(x)\sigma_{\nu}$ for $\nu = 0, 1, \dots, n$. But since $\psi_{\gamma} \equiv 1$ on $\overline{\Omega'_{\gamma}}$, the image of N'_{γ} under (3.15) is contained in $\Omega'_{\gamma} \times S^n_{+}$. Combining this with (3.13) and (3.14) yields $\sigma_a(m) = \sigma_a^{\gamma}(i_{\gamma}^{-1}m) = a(x)$ (3.12)and with $\sigma_{\varphi_{\lambda}}^{\gamma}(i_{\gamma}^{-1}m)\cdot\sigma_{T_{\lambda}\nu}^{\gamma}(i_{\gamma}^{-1}m)=\varphi_{\gamma}(x)\sigma_{\nu}.$

Finally, let $m^1 \in \mathbf{M}'_{\gamma}$ with $p(m^1) = x \in \Omega'_{\gamma}$. Let $\varphi \in C^{\infty}_{0}(\Omega'_{\gamma})$ with $\varphi(x) = 1$. Then $\sigma_{T_{\gamma,0}}(m^1) = \sigma_{\varphi T_{\gamma,0}}(m^1) = 0$ since $\varphi T_{\gamma,0} = \varphi \Lambda \in \mathcal{H}$ by Theorem 3.1 of [5]. Thus $m^1 \mapsto (x, \sigma^1)$ with $\sigma^1 \in S^{n-1}$. Let σ^2 be arbitrary in S^{n-1} and $0 = ((r_{\nu\mu}))$ an orthogonal $n \times n$ matrix such that $\sigma^2 = 0\sigma^1$. Defining $\tau(a) = a$, $\tau(T_{\gamma,0}) = T_{\gamma,0}$, $\tau(T_{\tau,\nu}) = \sum r_{\nu\mu} T_{\gamma,\mu}$ induces a surjective automorphism $\bar{\tau} : \mathfrak{A}_{\gamma} / \mathcal{H} \to \mathfrak{A}_{\gamma} / \mathcal{H}$. The associated dual map $\bar{\tau}^* : \mathbf{M}_{\gamma} \to \mathbf{M}_{\gamma}$ is a homeomorphism such that

$$\sigma_{\tau(A)}(m) = \sigma_A(\bar{\tau}^*m)$$

for all $A \in \mathcal{U}_{\gamma}$ and $m \in \mathbf{M}_{\gamma}$. In particular, for $A = T_{\gamma,\nu}$ and $m^2 = \bar{\tau}^* m^1$,

$$\sigma_{T_{\gamma,\nu}}(m^2) = \sum_{\nu} r_{\nu\mu} \sigma_{T_{\gamma,\mu}}(m^1) = \sigma_{\nu}^2$$

implies $m^2 \mapsto (x, \sigma^2)$. Hence (3.12) provides a homeomorphism of $\mathbf{M}'_{\gamma} \cap \mathbf{S}$ onto $\Omega'_{\gamma} \times S^{n-1}$.

Let $\mathfrak{A}_{\sigma,\tau}$ denote the C^* -subalgebra of $CB(T^*\Omega'_{\gamma})$ obtained by restricting functions in \mathfrak{A}_{σ} to $T^*\Omega'_{\gamma}$. Let $P^*\Omega'_{\gamma}$ denote the compactification of $T^*\Omega'_{\gamma}$ induced by $\mathfrak{A}_{\sigma,\gamma}$, and consider the functions $\tilde{\sigma}_A$ extended to $P^*\Omega'_{\gamma}$ without change in notation.

Proposition 3.5. For each $\gamma = 1, \dots, \Gamma$ there is a continuous injection

$$(3.16) P^*\Omega'_{\gamma} \to \overline{\Omega'_{\gamma}} \times S^n_{+}$$

such that $(p) \mapsto (x, \sigma)$ with $\tilde{\sigma}_a(p) = a(x)$ and $\tilde{\sigma}_{s_{\gamma,\nu}}(p) = \varphi_{\gamma}(x)\sigma_{\nu}$ for $\nu = 0, 1, \dots, n$. In fact (3.16) is surjective.

Proof. Restricting the formal symbols $\tilde{\sigma}_{T_{\gamma,\nu}}$ for $\nu=0,1,\cdots,n$ to $T^*\Omega'_{\gamma}$ generates a C^* -algebra with maximal ideal space S^n_+ and which together with $\mathfrak{A}_M \mid_{\Omega_{\gamma}}$ generates $\mathfrak{A}_{\sigma,\gamma}$. Herman's Lemma yields the injection (3.16) which may easily be seen to be surjective.

Now we may prove our main result.

Proof of Theorem 2.2. For each $\gamma = 1, \dots, \Gamma$, (3.12) together with (3.16) yield a map $\theta_{\gamma} \colon \mathbf{M}'_{\gamma} \to P^*\Omega'_{\gamma}$ such that $\sigma_a(m) = \tilde{\sigma}_a(\theta_{\gamma}(m))$ and $\sigma_{S_{\gamma,\nu}}(m) = \tilde{\sigma}_{S_{\gamma,\nu}}(\theta_{\gamma}(m))$ for $\nu = 0, 1, \dots, n$. Since each $P^*\Omega'_{\gamma} \subset P^*\Omega$, and $m \in \mathbf{M}'_{\gamma} \cap \mathbf{M}'_{\delta}$ implies $\tilde{\sigma}_{S_{\gamma,\nu}}(\theta_{\gamma}(m)) = \tilde{\sigma}_{S_{\delta,\nu}}(\theta_{\delta}(m))$ for every $\nu = 0, 1, \dots, n$, the θ_{γ} induce a continuous injection $\theta \colon \mathbf{M} \to P^*\Omega$ such that

(3.17)
$$\sigma_A(m) = \tilde{\sigma}_A(\theta(m))$$

for all A = a or $S_{\gamma,\nu}$, $a \in A$ and $\gamma = 1, \dots, \Gamma$ and $\nu = 0, 1, \dots, n$. Now let $D \in \mathbf{D}$, and write $D\Lambda = \sum_{\nu} \varphi_{\nu} D\Lambda = \sum_{\nu} a_{\nu\nu} S_{\nu\nu}$ by Lemma 3.3. Then

$$\sigma_{D\Lambda}(m) = \sum_{\gamma,\nu} \sigma_{a_{\gamma,\nu}}(m) \sigma_{S_{\gamma,\nu}}(m) = \sum_{\gamma,\nu} \tilde{\sigma}_{a_{\gamma,\nu}}(\theta(m)) \tilde{\sigma}_{S_{\gamma,\nu}}(\theta(m)) = \tilde{\sigma}_{D\Lambda}(\theta(m)).$$

Similarly $\sigma_{\Lambda}(m) = \tilde{\sigma}_{\Lambda}(\theta(m))$. In fact the second statement of Proposition 3.4 implies that the image of θ is contained in $\partial P^*\Omega$, and (3.17) becomes

(3.18)
$$\sigma_A(m) = \dot{\sigma}_A(\theta(m))$$

for all A = a, $D\Lambda$, or Λ with $a \in \mathbf{A}$ and $D \in \mathbf{D}$. The extension of (3.18) to all $A \in \mathfrak{A}^0$ follows from the algebraic properties of σ and $\tilde{\sigma}$.

REFERENCES

- 1. M. Breuer and H. O. Cordes, On Banach algebras with σ -symbol, J. Math. Mech., 13 (1964),
- 2. F. Browder, On the spectral theory of elliptic differential operators I, Math. Ann., 142 (1961), 22-130.
- 3. H. O. Cordes, Self-adjointness of powers of elliptic operators on noncompact manifolds, Math. Ann., 195 (1972), 257-272.
- 4. H. O. Cordes and E. Herman, Gel' fand theory of pseudo-differential operators, Amer. J. Math., **90** (1968), 681–717.
- 5. H. O. Cordes and R. C. McOwen, The C*-algebra of a singular elliptic problem on a noncompact Riemannian manifold, Math. Z., 153 (1977), 101-116.
- 6. E. Herman, The symbol of the algebra of singular integral operators, J. Math. Mech., 15 (1966),
- 7. C. E. Rickart, General theory of Banach algebras, v. Nostrand, Princeton, 1960.
- 8. R. T. Seeley, Integro-differential operators on vector bundles, Trans. Amer. Math. Soc. 117 (1965), 167-204.

Received December 19, 1976. Both authors supported in part by NSF Grant MPS 73-08593.

University of California, Berkeley BERKELEY, CA 94720