PACIFIC JOURNAL OF MATHEMATICS
Vol 70,No 1, 1977

REMARKS ON SINGULAR ELLIPTIC THEORY
FOR COMPLETE RIEMANNIAN MANIFOLDS

H. O. CorpEs AND R. C. McOWEN

This paper is about a C*-algebra A of 0-order
pseudo-differential operators on L*({}), where () is a complete
Riemannian manifold which need not be compact. This algebra
is designed to handle singular elliptic theory for certain
Nth-order differential operators. In particular, this paper stu-
dies the maximal ideal space M of the (commutative) algebra
A/¥, where ¥ denotes the compact ideal. The space M con-
tains the bundle of cospheres as a subspace, and in general will
contain additional points at infinity of the manifold. The
significance of this for elliptic theory lies in the fact that an
operator A € 9 is Fredholm if and only if the associated
continuous function o, € C(M) is never zero.

1. Introduction. Let () be an n-dimensional paracompact
C~-manifold with complete Riemannian metric ds’= g;dx'dx’ and
surface measure du = Vg dx where g = det(g;). As in [5] we define
A=(1-A)" as a positive-definite operator in £(f), the bounded
operators over the Hilbert space = L*(Q, du), and define the Sobolev
spaces Iy Ct for N=0,1,--- by requiring A" : f— {5 to be an isometric
isomorphism. It was shown in [3] that C5({2) is then dense in each 5.

In [5] we defined classes of bounded functions and vector fields, A
and D, whose successive covariant derivatives with respect to a symmetric
affine connection V wvanish at infinity in the special sense that for
fE C(Q) we write lim,_.. f = 0 if for every € >0 there exists a compact
set K CQ such that

(1.1) [f(x)|<e for x€Q\K

Let L" denote the class of Nth-order differential operators generated by
taking sums of products of elementsin D and A. The connection V need
not be the Riemannian connection Vg, but must satisfy Condition (r,) of
[5] that it does not differ drastically from Vg at infinity. We also require
Condition (L*) that 1-A € L?, a condition which was seen in [5] to imply the
curvature tensor R tends to zero as x — in the sense of (1.1). Under
these two conditions it was shown that the operators LA™ and A"L for
L €L" are bounded over f and thus generate an algebra A°C
Z(f). Moreover it was found that after adding the compact ideal ¥ to
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A’ and taking the norm closure, we obtain a C*-algebra % with compact
commutators.

In this paper we focus our attention on the maximal ideal space M of
the commutative C*-algebra A/%. If we define the symbol o, to be the
continuous function on M associated with the coset A + J, then a
necessary and sufficient condition for A to be Fredholm is that o, never
vanish on M (c.f. [1]). Thus a further analysis of M and the symbols o,
is desirable for the Fredholm theory of differential operators in L". For
compact manifolds (2 it was shown in [8] that M is just the bundle of unit
co-spheres S*Q C T*Q). For the special noncompact manifold ) = R" it
was shown in [4] that M contains S*(} = R" X §"! as a proper subset: in
fact M= 9P*Q = P*Q\ T*Q) where P*() is a certain compactification of
T*Q. In both [4] and [8] explicit formulas for o, were obtained. For
general (), the main result of this paper (c.f. Theorem 2.2) asserts the
inclusions S*QQ CM CdP*(2. Although we do not achieve a complete
description of M and o, this theorem yields many results (e.g. criteria for
“weak = strong” and characterizations of Fredholm essential spectra) of
classical elliptic theory (c.f. [2]). For example, if L €L" is uniformly
elliptic (see §2) and formally self-adjoint, then L is essentially self-adjoint
(with domain C;(Q2)). A discussion of this and further applications of
the result of this paper is planned for a subsequent publication.

2. The formal algebra symbol. Let %, denote the func-
tion algebra obtained by closing A under uniform norm. Since %, is a
subalgebra of the bounded continuous functions on (2, the Gelfand
isomorphism yields %, = C(€) where Q is some compactification of
Q. On the other hand, considering A, CA we obtain a canonical
injection i: Ay — A/H whose associated dual map p =i* provides a
continuous surjection p: M— Q. Let us denote the open subset
p '(Q)CM by S. The following theorem, which is an immediate conse-
quence of Theorem 2.2 although we state it first for purposes of
exposition, extends the corresponding well-known result for compact ().

THEOREM 2.1. Let m: S*Q0— Q denote the fibre bundle of unit
cospheres S*QQCT*Q. There is a (surjective) homeomorphism
0:S—S*Q such that w20 =p on S and for m €S and O(m)=
(x, £) € S*Q we have

g.(m)=a(x)  op\(m)=b'(x)§
@.1)
o(m)=0 ox(m)=0

where KE X, a€ A, and D €D is given in local coordinates by
—ib’(3/3x") and ¢ = &dx'.
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For a €A and D €D with local expression —ib’(d/dx’), the
following formal symbols define continuous functions on T*Q).

2:2) G.(x, &)= a(x) 6o (x,§) = b'(x)§
Galx, €)= (A +[£])"

and we may extend algebraically to sums and products. In particular,
the formal symbols &,, 6p, and &, for a € A and D €D generate a
C*-algebra, ¥%,, of continuous bounded functions on T*Q). The maxi-
mal ideal space of U, is a compactification, P*Q), of T*Q), and we define
the boundary dP*Q = P*Q\T*Q). The associated dual map to the
injection A, — A, provides a surjection of P*Q onto {, and the
restriction of this map to the boundary is denoted by
m: dP*Q— Q. Using (2.1) of [5], the formal symbols of LA™ and AL
for L €LY defined by algebraic extension of (2.2) are unique when
restricted to dP*Q). Thus we are lead to defining the formal algebra
symbol as the algebra homomorphism

(23) ¢: A > C(aP*Q)

obtained by this restriction of 4.

It is evident that S*Q is homeomorphic to 7~ 'Q) by the map
(x, &)= lim,_.(x,r¢) € dP*Q. Theorem 2.1 may be interpreted as pro-
viding a continuous injection 6: S— dP*(} such that

(2.4) da(6(m))=0a(m)

for m €S and operators A =a or A = DA. The main result of this
paper extends this formula as follows.

THEOREM 2.2. Under Conditions (r;) and (L*), there exists a con-
tinuous injection : M— dP*Q such that

—————> aP*Q)

. S

is commutative, surjective on fibres over (), and (2.4) holds for allm €M
and A € A’

If L €L" with g, ,~ bounded away from zero on $*Q = 6(S), we say
L is uniformly elliptic.



136 H. O. CORDES AND R. C. McOWEN

3. Proof of Theorem 2.2. Condition (L) implies that we
may write

M
(3.1) 1-A= 2 C,D, + lower order terms
v=1

with 2M vector fields C,, D, € D. Taking real and imaginary parts in
(3.1), we may assume C, and D, arereal. LetB,€D,v=1,---,N,bea
basis for the module spanned by C,, - - -, Cy, D,, - - -, Dy over the algebra
of real-valued functions in A. In local coordinates, let G denote the
n X n matrix ((g”)) and B denote the n X N matrix ((b})) where b; are
the components of B,. Let B” be the matrix transpose of B. Consider-
ing principal parts in (3.1), there is a symmetric N X N matrix-valued
function A = ((a,.)) whose coefficients a,, are all real-valued functions of
A, such that

(3.2) G = BAB'.

Let us introduce the N X N matrix-valued function P = B'G'BA.
Observe that P does not depend on local coordinates and P> = P implies

that P is a projection matrix with rank n. Let I' = <l’:l>, the binomial

coefficient. We shall require the following lemma from linear algebra.

Lemma 3.1. For any N X N projection matrix P with rank n, there
exists an n X n diagonal matrix minor P such that |detP|=T"".

Proof.. Since det(P—A)=(1—A)"(— A)"™", the coefficient of AN™"
is *=1. But this coefficient equals the sum of all n X n diagonal
minors. Since there are precisely I' such minors, at least one must have
absolute value not less than I'".

Applying the lemma, we see that at each point x € () there is a
matrix minor P of P, P = Bl,,G'BA where B, denotes one of the I’
distinct n X n matrix minors of B and A denotes a certain N X n matrix
minor of A, such that

(3.3) |det P|>(2I)".

The matrix A"B"G 'BA has coefficients in A so that |det ATB"G 'BA |
is  uniformly  bounded over Q. Thus |det G "’BA|=
|det ATBTG'BA |"* is also uniformly bounded. So by (3.3), there
exists a constant C > 0 such that at each x € Q, |det B{,,G*| > C holds
for at least one y =1,--- . Observe that d, =det B},G™"* is a C™-
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function on ) and we have a finite open cover of () by the I' sets
(3.4 Q,={x€Q:|d,(x)|>C}.

Let us suppose that we have chosen C such that also the sets
(3.5) O ={x€:|d,(x)|>2C}.

cover (1. Also define

(3.5) Q,={xeQ:|d,(x)|>5C}.

Observe that Q7 CQ,CQ,. Let ] and Q) denote the closures of £} and
Q! respectively in Q.

In each set (1,, det B(,,> 0 so we may define the n X N matrix-valued
function Q, = B{)B. Let us also define an n X n matrix-valued function
on ),

(36) Av = Q‘YAQT‘Y = (B (_yl)G 1/2)(6 I/ZB (_VI)T)‘

Clearly A, is coordinate invariant and positive definite with spectrum
bounded uniformly (over €,) below by € >0. Since |det A, |< C™ on
1,, we conclude that the spectrum of A, is contained in a fixed
(independent of x € (2,) compact subset of (0,%). Thus we may define
A’ by a resolvent integral. A computation shows that the coefficients
of A} are bounded over ), and have covariant derivatives tending to
zero in , outside large compact sets of Q. Thus if we define B, =
B, A'"” we have G = B,,B(,,in Q,. In other words we have diagonal-
ized the metric in ), as follows.

ProOPOSITION 3.2.  Under Condition (L?), there is a finite open cover
of Q by open sets {Q,},., such that in each set (), we may express

3.7) g' =3 b5
v=1

where the n real vector fields B, with components b, are bounded over
and satisfy: for every n =1 and € >0 there exists a compact set K, CQ)
such that

(3.8) [V'B,|<e€ forall x€Q\K..

Now let y € C*(R) with x(¢)=0 for t =0, x(¢)=1 for t = C and
0sxy=1 for 0<t Define o¢,(x)=x3|d,(x)|-4C), ¢, (x)=
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x(3ld,(x)|=3C), and pu,(x)= x(3| d,(x)| = 2C). Dividing each ¢, by
2 ¢,, we may assume 2\ _, ¢, =10n Q. Observe ¢, ¢, u, EA, ¢, =1
on () and u, =00on Q\Q,. Infact ¢, =10nQ,=suppe, and u, =1 o0n
supp ¥,, so ¢, = ¢, and ¢, = yu,. Observe that D,, = —iu B, ED
(in particular, a vector field defined on all of Q).

Lemma 3.3, Vector fields of the form ¢,D and ,D with D € D may
be written as ¢,.D = %;_, a,,¢,D,,and ¢y,D = Z;_, a, ¥,D,, with a,, € A.

Proof. 1f D is given in local coordinates by b'd /dx’, simply define
ay, = ibjg/kbff:u'w

We now invoke some of the results of [5]. Condition (r,) implies
that the formal adjoint of ,D,, is of the form (¢,D,,) = ¢,D,, + a with
lim,..a =0 (c.f. 2.2) of [5]). Thus if we let T,, = ¢,D,, A €A’ we
have by Remark 2.3, Theorem 3.1, and Proposition 4.4 of [5] that
(3.9) TY.,=AW,D,.)=Ay,D,, =¢,D,,A=T,, (mod ¥).

Also observe
(3.10) S (0D, (4D,.) = ~ == —= gyt Vg
oo Vg ax' T % oxd

=~ yA-D

with lim,.| D |=0. Thus using Corollary 3.6 of [5] together with (3.9)
and (3.10) above

(3.11) U= A= M)A =, A~ AYSAA - (mod )

= (WAP = 3 AWD,Y(BDIA  (mod )

= E" T, (modX)

v=0

where we have also defined T,,= ,A. Similarly, let us define S,, =

¢, T,, for all y and v.
Let M,=p~'(2))CM. Also let S" be the half-sphere

{a’ = (o, 04, -+, 0,)ER"™: 2 ol= and o,= 0}, and S"'=9S".
v=0
ProrposiTioN 3.4. For each y=1,--- ' there is a continuous
injection

(3.12) M, — Q% S*
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where m & (x,0) such that o,(m)=a(x) and as,(m)=¢,(x)o, for
v=0,1,---.n. In addition, (3.12) maps M, NS onto Q,x S"".

Proof. Let A7 denote the smallest C*-algebra with unit containing
K and T,, for v=0,1,---,n. Let %, denote the smallest C*-algebra
containing A, and AZ. Since A, /¥ is a commutative C *-algebra, let N,
denote its maximal ideal space, and let o” : %, = C(N,) be the symbol
homomorphism. Also let p,: N, — Q) be the associated dual map to the
inclusion A, — UA,. For a € A and D €D, define p,(a)=a, p,(DA)=
¥,.DA, and p,(A)=¢,A. By Lemma 3.3, p, extends to a continuous
algebra homomorphism of U onto U,. Since p,(¥%)C ¥, there is an
induced surjective homomorphism pg,: A/H — A, /#. Thus the as-
sociated dual map i, = p*% provides a continuous injection such that

N———)M

o N

commutes and
(3.14) o (n)=oa(in)

for al A €U and n EN,. The restriction of i, to N/= p;'(Q!) may
easily be seen to provide a surjection of N; onto M. Thus we may
consider N, CM.

On the other hand, A}/ ¥ is also a commutative C*-algebra with
unit whose maximal ideal space will be denoted M. But by a well-
known theorem concerning C*-algebras generated by a finite number of
elements (c.f. [7]), M7 is homeomorphic to the joint spectrum of the n + 1
cosets T,,, + X of A7/ H. Using (3.11) and the non-negativity of T, this
implies that M} CB:"' ={ro: 0 € St and 0 =r =1}. Since ¥, is gener-
ated by Ay and A7, Herman’s Lemma (c.f. [6] Theorem 1) implies the
existence of a continuous injection

(3.15) N, - Qx B!

such that n » (x, y,(x)o) where o(n) = a(x) and o1, (n)= ¢, (x)o, for
v=0,1,---,n. But since ¢, =1 on ), the image of N/ under (3.15)
is contained in Q)X S%. Combining this with (3.13) and (3.14) yields
(3.12) with o.(m)=0oli;'m)=a(x) and os,,(m)=
o1 (iy'm) o3 (iy'm) = ¢,(x)a.
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Finally, let m'€ M/, with p(m")=x € Q). Let ¢ € C5(Q)) with
¢(x)=1. Then or,(m")=o0,,,(m")=0 since ¢T,,=¢pAEH by
Theorem 3.1 of [5]. Thus m'e (x,0') with '€ S"'. Let o? be
arbitrary in S and 0 = ((r,.)) an orthogonal n X n matrix such that
o’=0c'. Defining 7(a)=a, 7(T,0)= T, 7(T,.,)=2r,T,, induces a
surjective automorphism 7: U, /#H — A, /K. The associated dual map
7*: M, = M, is a homeomorphism such that

Tam)=0s(7*m)

forall A €U, and m €M,. In particular,for A =T,, and m?>=7*m/,

O-T‘m»(m 2) = z r"l"oLTY-u(m 1) = 0-%’

implies m’m (x,0?). Hence (3.12) provides a homeomorphism of
M;NS onto Q;X §"7".

Let 2A,, denote the C*-subalgebra of CB(T*()) obtained by
restricting functions in %, to T*Q,. Let P*Q denote the compactifica-
tion of T*Q! induced by %, ,, and consider the functions 6, extended to
P*Q) without change in notation.

ProrosiTiON 3.5. For each y=1,---,I' there is a continuous
injection

(3.16) P*Q—> QX §*

such that (p)e (x,0) with &,(p)=a(x) and &, (p)= ¢,(x)o, for v=
0,1,---n. In fact (3.16) is surjective.

Proof. Restricting the formal symbols &, for »=0,1,---,n to
T*Q) generates a C*-algebra with maximal ideal space S} and which
together with 9, |o, generates A,,. Herman’s Lemma yields the injec-
tion (3.16) which may easily be seen to be surjective.

Now we may prove our main result.

Proof of Theorem 2.2. For each y=1,---,T, (3.12) together with
(3.16) yield a map 6,: M,— P*Q! such that o,(m)=d,(6,(m)) and
os,.(m) = 0s,.(0,(m)) for v=0,1,---,n.  Since each P*Q,CP*Q, and
m € M, N M; implies d5,,(0,(m)) = &s,,(0;(m)) for every v=0,1,--- n,
the 6, induce a continuous injection §: M— P*Q such that

(3.17) ga(m)=G.(6(m))
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forallA=aorS,,,a€Aandy=1,---,Tand »=0,1,---, n. Now let
D €D, and write DA=2,¢,DA=% ,a,,S,, by Lemma 3.3. Then

opa(m) =Z,,0,,.(m)as,, (m) = 2,,6,,,(0(m))ds,,(6(m)) = Go(6 (m)).

Similarly o\(m)= 6,(6(m)). In fact the second statement of Proposi-
tion 3.4 implies that the image of 6 is contained in dP*(}, and (3.17)
becomes

(3.18) aa(m)=d,(6(m))

forall A = a, DA, or A with a € A and D €D. The extension of (3.18)
to all A € A’ follows from the algebraic properties of o and 6.
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