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A COMMUTATIVITY STUDY FOR PERIODIC RINGS
HowarD E. BELL

Putcha and Yaqub have proved that a ring R satisfying a
polynomial identity of the form xy = w(x,y), where w (X, Y)isa
word different from XY, must have nil commutator ideal. Qur
first major theorem extends this result to the case where w (X, Y)
varies with x and y, with the restriction that all » (X, Y) have
length at least three and are not of the form X"Y or
XY". Further restrictions on the o (X, Y) are then shown to
yield commutativity of R ; among these is a semigroup condition
of Tamura, Putcha, and Weissglass—sepecifically, that each
o (X, Y)begins with Y and has degree at least 2in X. The final
theorem establishes commutativity of rings R satisfying xy =
yxs, where s = s(x,y) is an element in the center of the subring
generated by x and y. All rings considered are either periodic
by hypothesis or turn out to be periodic in the course of the
investigation.

1. Definitions and preliminary results. Let w =
o (X, Y) be a word or monomial in the noncommuting indeterminates X
and Y'; that is, w is a polynomial of form

(1) Y!lX"lYI:sz e Y!vka’

where j, k, =0 fori =1,---,s and 2}_, (j, +t k,)>0. By the X-length
(resp. Y-length) of w, which we denote by | |x (resp. |w|y), we shall
mean the non-negative integer 2k, (resp. %j,); the sum |o |x + | |y will
be called the length of w and denoted by |w|. It will be convenient to
divide the set of all words into nine types as follows:

(i) words with |w|x =2 and |o |, Z2;

(i1) words of form YX" n=1;

(i11))  words of form Y"X,n=1;

(iv)  words with ||, =0;

(v)  words with |w]|y =0;

(vi)  words of form X"YX" n,m = 1;

(vit) words of form Y"XY" n,m = 1;

(viii) words of form X"Y,n = 1;

(ix)  words of form XY" n=1.

A word of form (1) having j;=1 and |w|x =2 will be called a
Tamura-Putcha-Weissglass (T-P-W) word; a word which is either YX or
a T-P-W word will be called a G-T-P-W word. A multiplicative
semigroup S will be called a T-P-W (resp. G-T-P-W) semigroup if for
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each x, y € S, there existsa T-P-W (resp. G-T-P-W) word w for which
xy = w(x,y).

A ring R will be called periodic if for each x € R, there exist distinct
positive integers n, m, depending on x, for which x" =x™.  Among the
periodic (in fact, finite) rings which we shall refer to frequently are the
Corbas (p, k, ¢ )-rings [5], which we define as follows: R" is the additive
direct-sum GF(p*)@® GF(p*), ¢ is an automorphism of GF(p“), and
ring multiplication is defined by

2) (a,b)(c,d) = (ac, ad + bo(c)).

These rings have the property that D> = 0, where D denotes the set of
zero divisors (including 0); and they have as few zero divisors as a
non-domain may have—specifically, |D *’=|R| [5]. They are com-
mutative rings only when ¢ is the identity automorphism.

We shall make repeated use of two basic theorems on periodic
rings. The second is a special case of an old theorem of Herstein; but
since he deduces it as a corollary of one of his more complicated
commutativity theorems, we think it worthwhile to include a simple
proof. '

LEMMA 1. If R is any periodic ring, then R has each of the following
properties :

(a) For each x € R, some power of x is idempotent.

(b) For each x ER, there exists an integer n(x)>1 such that
x —x"® is nilpotent.

(c) Each x € R can be expressed in the form y + w, where y* =y for
some n = n{y)>1 and w is nilpotent.

(d) IfIis an ideal of R and x + I is a nonzero nilpotent element of
R /I, then R contains a nilpotent element u such that x =u (modI).

Proof. (a) If x"=x" with n>m, then x'**""™ =x/ for each
positive integer k and each j = m; thus, we may assume n —m +1=
m. It follows that x* "' = (x""""")"""*! and hence (x* ™))" " is idem-
potent.

(b) Let x"=x", n>m >1. Then

xm*l(x _ xn—m+l) — O — xm-Zx(x _ xn—m+]) — xm-an—m+1(x _ xn—m+l).
5

therefore, x™*(x —x" "*')>=0 and the result follows by the obvious
induction.

(¢) If x"=x" with n=n —m +1>m, the proofs of (a) and (b)
show that we may take y =x"""" and w = x —x"™"*".

(d) If x +1 is a nonzero nilpotent element of R /I, there exists a
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positive integer k such that x? € I for allq = k. By the proofs of (a) and
(b), R contains a nilpotent element u = x — x? with q = k; clearly, u =x
(mod. I).

THEOREM 2. (Herstein, [8]) If R is a periodic ring with all nilpotent
elements central, then R is commutative.

Proof. Let N denote the set of nilpotent elements; the usual
argument for commutative rings shows that N is an ideal. Moreover,
for x € R and e an idempotent in R, both ex — exe and xe —exe are in
N, hence commute with e; thus, idempotents in R are central.

By (d) of Lemma 1, we see that homomorphic images inherit the
hypotheses on R; consequently, we need consider only the case of
subdirectly irreducible R. Under this assumption, part (a) of Lemma 1
shows that R is either nil and hence commutative, or R has a unique
nonzero central idempotent, necessarily a multiplicative identity ele-
ment 1.

Considering this latter possibility, we see from (a) of Lemma 1 that
each element of R is either nilpotent or invertible; thus, the set D of zero
divisors is equal to N and hence is a central ideal. Moreover, by Lemma
1(b), R =R/D has the a" =a property of Jacobson; hence R is
commutative and its additive group is a torsion group. Thus, if a,
b € R\D, the subring of R generatedby @a=a+ D andb=b+D isa
finite field, which has cyclic multiplicative group. There must therefore
existg € R andd,, d, € D suchthata = g' +d,and b = g’ + d, for some
positive integers i,j. It follows that a and b must commute, and our
proof is complete.

2. A nil-commutator-ideal theorem and some
relatives.

THEOREM 3. Let R be a ring such that for each x, y € R, there exists
a word o (X, Y), of one of the types (i)—(vii) and with | |Z 3, for which
xy = w(x,y). Thenthe set N of nilpotent elements forms an ideal, and the
commutator ideal C(R) is contained in N.

Proof. Taking x = yshows that for each x €R, x> = x* for some
k >2; hence R is periodic and each nilpotent element squares to
zero. We next show that idempotents of R must be central. Lete bea
non-zero idempotent, let x € R, and suppose w (X, Y) is a word of the
allowed types for which e (ex — exe) = w (e, ex — exe). Clearly, w cannot
be of type (iv) since (ex — exe )’ = 0; and any of the other types has either
two adjacent Y’s or a Y preceding an X. Thus e(ex —exe)=
ex —exe =0, and similarly xe —exe = 0.
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It is proved in [3] that a periodic ring satisfies the conclusions of the
theorem if nilpotent elements commute with each other, so we may
complete our proof by showing that xy=0 for all
x,y €N. Accordingly, let x, y €N and o a word such that xy =
w(x,y). If o has two adjacent X’s or Y’s, then it is immediate that
xy = 0; otherwise, we have one of the following cases: (a) xy = (xy)* for
some k >1;(b) xy = xyxy ---x;(c)xy =yxy ---. Incase(a), (xy)'is
idempotent, hence central; and we get xy = x(xy)*'y =0. In case (b)
right-multiplication by x yields xyx =0=xy, and in case (c) left-
multiplication by y yields yxy =0 = xy.

REMARKS. An alternative, somewhat deeper, method of proof is to
note that idempotents are central, apply (a) of Lemma 1 to show that
some power of each element is central, and appeal to a well-known
theorem of Herstein [7].

In the hypotheses of Theorem 3, the restriction on the type of
w(X,Y) is essential, for without it, as Putcha and Yaqub have pointed
out in [11], the ring of 2 X2 matrices over GF(2) would satisfy the
hypotheses.

The hypotheses of Theorem 3 will not yield commutativity of
R. The Corbas (2,2,¢)-ring is a counterexample, where ¢ is the
nonidentity automorphism of GF(4)—indeed, in this ring, if u, v EN
and x, y&N, we have uv =ovu? xu =ux? ux =xux’, and xy =
(yxy’xy. However, restriction of o (X, Y') to words of fixed type (i)-(vii)
does yield commutativity, as we now prove.

THEOREM 4. Let « denote a fixed one of the word-types
(i)-(vii). Let R be a ring such that for each x, y € R, there exists a type-a
word w (X, Y), depending on x and y and having length at least three, for
which xy = w(x,y). Then R is commutative.

Proof. If a is type (i), commutativity follows from a theorem of
Putcha and Yaqub [12]; types (ii) and (iii) are covered by a theorem of the
present author [1, 2]. Suppose, then, that « is type (iv), i.e. for each x,
y €ER, xy =x" for some n =n(x,y)=3. Then, since nilpotent ele-
ments square to 0, they left-annihilate R. Taking x EN and a an
element such that a* =a, k >1, and recalling that idempotents are
central, we obtain the result that ax = aa*"'x = axa*™' = 0; and by (c) of
Lemma 1, nilpotent elements right-annihilate R as well and commutativ-
ity follows from Theorem 2. Clearly, type (v) may be treated similarly.

To complete the proof, we discuss type (vi), noting that (vii) is
similar. Let x € N,y € R and xy = x"yx", with n, m 2 1. If either of
n, m is greater than 1, then xy =0; if xy = xyx, right-multiplying by x
yields xyx =0 =xy. Also, yx = yxy* with k =1, so yx =0 as well, and
again commutativity follows by Theorem 2.
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THEOREM 5. Suppose that for each x, y € R, there exists an integer
n(x,y)>1such that xy = x"*"y. Then the commutator ideal C(R) is nil
and the nilpotent elements form an ideal. If the idempotents of R are
central, then R is commutative.

Proof. Clearly R is periodic with nilpotent elements squaring to
zero, and for x € R and u nilpotent we have ux = u"x = 0. Thus the set
N of nilpotent elements is the left annihilator of R, hence an ideal. The
ring R/N has the a"=a property by Lemma 1 (b), hence is
commutative. Thus C(R)C N.

Now assume that idempotents are central. If a* = a fork >1, and
u€EN,wegetau =a"u =a"'aa*'u = a"ua*"'=0; hence by Lemma 1
(c) and Theorem 2, R is commutative.

RemMARKs. Centrality of idempotents is not implied by the condi-
tion xy =x"y. A counterexample is the ring R with additive group
equal to the Klein 4-group and multiplication given by Ox =cx =0 and
ax = bx = x for all x € R; this ring satisfies the identity xy = x?y.

In the event that idempotents are central in Theorem 5, we can say a
bit more about R —specifically, it is the direct sum of a zero ring and a
J-ring (i.e. one with Jacobson’s a" = a property). For if x, y are
arbitrary elements of R, there exist integers n,, n,> 1 such that xy = x™y
and yx =y™x. A standard computation yields a single n such that
xy =x"y and yx =y"x, and the commutativity now shows that x"y =
xy". The direct-sum decomposition of rings with the latter type of
constraint has essentially been obtained in [9] and [15]. (Actually those
papers assume n constant, but the extension to variable n is not difficult.)

3. Two commutativity theorems.

THEOREM 6. Let R be a periodic ring, the multiplicative semigroup of
which is a G-T-P-W semigroup. Then R is commutative.

Proof. Ifa, b € R and ab = 0, then ba = 0 also. This observation
implies that the nilpotent elements of R form an ideal N, which, since R
is periodic, must coincide with the Jacobson radical J(R).

Again’we wish to deduce our result from Theorem 2. Suppose,
then, that v is a noncentral nilpotent element and b € R is an element
not commuting with v. Then

3) vb=b"vk---v% with j;=1 and 3k =2.

If k, =2, we obtain

(4) vb — bllvvkl—l . .vks — v‘(bix)q .. .Ukl_l PP Uk’.
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If t =1, we make no further substitutions in (4); otherwise, we write
vb =ovv' b Rt pR = pb e (v TT) - - - vk In either case, we
have vb = vby for some y € J(R), from which it follows that vb = 0 = b,
contradicting our choice of v. If k;=1 in (3), then some other k; is
positive, and a similar computation again yields the same
contradiction. Thus, nilpotent elements of R are central, and our proof
is complete.

COROLLARY 7. Let R be any ring having as multiplicative semi-
group a T-P-W semigroup. Then R is commutative.

Note that Theorem 6 and Corollary 7 would not be true if the
condition |w |[x =2 were omitted from the definition of G-T-P-W and
T-P-W words—again the Corbas (2,2, ¢ )-ring is the revealing example.

THEOREM 8. Let R be any ring such that for each x, y € R, there
exists an element s = s(x,y) in the center of the subring generated by x and
y, for which xy = yxs. Then R is commutative.

Proof. Taking x =y shows that x’=x’p(x), where p(x) is a
polynomial with integer coefficients and zero constant term; it follows by
a theorem of Chacron [4] that R is periodic. Moreover, the given
constraint shows that ab =0 implies ba =0=arb for arbitrary
r € R. This result, together with the obvious fact that nilpotent ele-
ments square to zero, shows that uvs = 0 for any nilpotent u and v and
any s in the subring generated by u and v; thus, the nilpotent elements
form an ideal N with N>=0. Moreover, a standard argument applied
to e, ex — exe, and xe — exe shows that all idempotents e are central.

The hypotheses of the theorem persist under the taking of
homomorphic images, so we need consider only subdirectly irreducible
R. Since nil rings with our condition are zero rings, and since sub-
directly irreducible rings can have at most one nonzero central idempo-
tent, Lemma 1(a) allows us to assume that R has 1 and that every
nonnilpotent element is invertible. Hence the set D of zero divisors is
an ideal, equal to N.

Since there exist distinct n, m with (1+1)" = (1+1)", R* must be a
torsion group, which in view of subdirect irreducibility, is a p-group for
some prime p. Since D?= 0, we then have (p - 1) (px)=p*x =0 for all
x €ER.

Now R is clearly a duo ring, so we may apply Thierrin’s results on
subdirectly irreducible duo rings [14]. Specifically, letting S denote the
intersection of the nonzero ideals of R and noting that R # D, we have S
equal to the annihilator of D —thatis, S = D. By Lemma 1 (b) and the
“a" = a theorem’ we know that R/D is commutative, and hence that
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commutators in R belong to D. Suppose now that pR# 0, let px # 0,
and let y be an arbitrary element of R. Since pxR is a nonzero ideal,
we have xy —yx €D =S CpxR, and there exists r E R such that
xy —yx = pxr and hence p(xy —yx)=p’xr =0. Thus pR =D is cen-
tral, and commutativity of R follows from Theorem 2.

Now suppose that we have a subdirectly irreducible counterexample
with pR =0. Applying Lemma 1(c) and the fact that D*=0, we can
then choose a non-central nilpotent element u and an element b € R
such that b"® =b for some n(b)>1 and b does not commute with
u. Since bu = ubs for some s in the subring generated by u and b, and
since uru = 0 for all r € R, we obtain bu = ubp (b), where p(X) is some
polynomial with integer coefficients and zero constant term. It follows
that the subring (u,b) of R generated by u and b is finite. Since the
hypotheses of the theorem are inherited by subrings and by homomor-
phic images, we can conclude that some homomorphic image T of (u, b)
is a finite subdirectly irreducible counterexample with pT = (.

As in [2], we can argue that T must be a Corbas (p, k, ¢ )-ring for
appropriate choices of p, k, and ¢. Indeed, Corbas showed in [6] that
finite rmgs R with 1 and with D?= 0= pR must have additive group
which is a direct sum K p D, where K is a finite field and D is a left
vector space over K. Since one-dimensional subspaces of D are left
ideals, the fact that our T is subdirectly irreducible and a duo ring shows
that D is one-dimensional and | T|=|D |*; and we apply an earlier result
of Corbas [5] to show that T is a (p, k, ¢)-ring.

Consider any Corbas (p, k,¢)-ring T with ¢ a nonidentity au-
tomorphism of K = GF(p"*); let g be a generator of the multiplicative
group of K, and let ¢ be given by x =»x”, 1=r<k. If (a,b)ET
commutes with both (g,0) and (0,g), then by (2) we have b =0 and
a = ¢(a). Then imposing the condmon that (g,0)(0, g) o, g)(g,O)(a 0)
ylelds g = ¢(g)a. Since d)(g) g” and g=g", we have g* =
g”a, so that a = g""? = g?"®"; now using the fact that ¢(a)= a, we
get g7 ®*" V"D = ¢ where e denotes the identity element of K. Since g
has order p* —1, which is relatively prime to p’, we conclude that
p =1|(p* " —1)(p" — 1), which is absurd. The possibility of a coun-
terexample is thus demolished, and the proof is complete.

REMARK. It is tempting to conjecture that R must be commutative
if it satisfies xy = yxs, where s = s(x, y) is merely assumed to belong to
the subring generated by x and y and not necessarily to its
center. However, the Corbas (2,2, ¢ )-ring shows that this is not true.
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