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THE MAXIMAL RIGHT QUOTIENT SEMIGROUP
OF A STRONG SEMILATTICE OF SEMIGROUPS

ANTONIO M. LOPEZ, JR.

Let S be a strong semilattice Y of monoids. If S is right
nonsingular then Y is nonsingular. The converse is true
when S is a sturdy semilattice Y of right cancellative
monoids. Should S have trivial multiplication then each
monoid of more than one element has as its index an atom
of Y. Finally, if S is a right nonsingular strong semilattice
Y of principal right ideal Ore monoids with onto linking
homomorphisms then Q(S), the maximal right quotient semi-
group of S, is a semilattice Q(Y) of groups.

1. Introduction. Let Y be a semilattice and let {S,}..r be a
collection of pairwise disjoint semigroups. For each pair a, Be€Y
with @ = 8, let +,,:S,—S; be a semigroup homomorphism such
that ., is the identity mapping and if a >8> 7 then 4, =
Ps¥ase  Let S = Uzer S, with multiplication

a*b = "l"a,aﬁ(a’)"kﬁ ,aﬁ(b)

for aeS, and beS,. The semigroup S is called a strong semi-
lattice Y of semigroups S,. If, in addition, each 4, is one-to-one
then S is called a sturdy semilattice of semigroups. The Dbasic
terminology in use throughout this paper can be found in [1], [7],
and [9]. Note that a semilattice of groups [1, p. 128] is a strong
semilattice of semigroups. In [6], McMorris showed that if M is a
semilattice X of groups G,, then Q(M), the maximal right quotient
semigroup of M, is also a semilattice of groups. Hinkle [2] con-
structed QM) and showed that its indexing semilattice is Q(X).

Let S be a semigroup with 0. A right ideal D of S is dense
if for each s, s, se€S with s, # s, there exists an element d €D
such that s, d # s, d and sd e D. A right ideal L of S is N-large if
for each nonzero right ideal R of S, RN L + {0}. It is easy to see
that dense implies N -large. If each N-large right ideal of S is also
dense then S is said to be right nonsingular. If a semigroup is
commutative or each one-sided ideal is two-sided then we will use
the term nonsingular. Let T be a right S-system with 0[5] then
the singular congruence +, on T is a right congruence defined for
e, beT by ayb if and only if as = bs for all s in an N-large
right ideal of S. McMorris [8] showed that +5 = 45, the identity
congruence on S, if and only if S is right nonsingular.

Recently it has been shown [4], [5] that if S is a commutative
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nonsingular semigroup then Q(S) is a semilattice of groups. How-
ever, since S is commutative it is uniquely expressible as a semi-
lattice Y of archimedian semigroups [1, p. 135]. Thus we investi-
gate right nonsingular strong semilattices of semigroups.

Henceforth we require that both S and Y be semigroups with
0. If for «¢e Y, S, is a monoid then the identity will be denoted
by e,. Also a semigroup homomorphism which takes the identity
of one semigroup to the identity of the other is called a monoid
homomorphism.

LEMMA 1.1. If S 4s a strong semilattice Y of right cancella-
tive monoids S, then for each a, BeY with a =B, Vs 18 @
monotd homomorphism and Y s isomorphic to the semilatiice E
of idempotents of S.

LEMMA 1.2. Let S be a strong semilattice Y of monoids S,
With e & monoid homomorphism for ¢« = BeY. If L is an N-
large right ideal of S, then A ={ceY|LNS,+* @} is an N-large
ideal of Y.

Proof. To see that A is N-large let R be a nonzero ideal of
Y and define B= J..zS.. Let te BN S; and se S, for some Be R
and €Y. Then txs = s ,s(E)Vrs,06(8) € S,s. But S, & B since SeR
an ideal of Y. Dually we can show that sxt e S,; and so B is a two-
sided ideal of S. Since L is an N-large right ideal of S then
LNB=+#{0} so there exists 0 #reLNB. But then reS; for
0#0ecR and so 0 26ceANR and A is N-large. It is easy to
show that A is an ideal of Y.

LEMMA 1.8. Let S be a strong semilattice Y of monoids S,
With . & monoid homomorphism for a ZBeY. If T is an N-
large ideal of Y, then L = User S 18 an N-large ideal of S.

Proof. We saw in the proof of Lemma 1.2 that L is an ideal
of S. To see that L is N-large we let B be a nonzero right ideal
of S, and define R={ceY|BNS,+# @}. Since R is a nonzero
ideal of Y and T is N-large then RN T = {0}. Thus there exists
0#6eRNT for which S, Z L, and so there exists 0 #te BN L.

2. Right nonsingular strong semilattices of semigroups. In
studying a semigroup M which is a semilattice X of groups G,,
Johnson and McMorris [3] showed that if M is nonsingular then the
set E of idempotents of M is a nonsingular semilattice. Note that
under these conditions the idempotents of M are central, every
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one-sided ideal is two-sided, and X is isomorphic to E. Here we
consider a weaker structure and obtain the results of Johnson and
McMorris.

THEOREM 2.1. Let S be a strong semilattice Y of monoids S,
WIth . @& monoid homomorphism for = BeY. If S is right
nonsingular, then Y is nonsingular.

Proof. Let T be an N-large ideal of Y and define L=U;.r S;.
Since S is right nonsingular then L is a dense right ideal of S for,
by Lemma 1.8, L is an N-large right ideal of S. Let &, 8€ Y such
that @ = 8. Then ¢, # ¢; and there exists an € L such that e xx+
esxx where € S,. Thus 6eT and ad + Bo for if otherwise

ea*x = "/f‘a,ad(ea)"ll‘ﬁ,mi(x) = “#5,&5(37)
Va,85(®) = Vp,55(€5)Vs,85(X) = €5*x

which is a contradiction. Thus T is dense in Y.

THEOREM 2.2. Let S be a sturdy semilattice Y of right coan-
cellative monoids S,. If Y 1is momsingular, then S is right non-
singular.

Proof. Let L be an N-large right ideal of S and let xz =y,
zeS. Since L is N-large then z7'L = {se€S|z*se€ L} is an N-large
right ideal of S and so is L* = L N2 'L. By Lemma 1.2, A = {c¢
Y|L*NS,+# @} is an N-large ideal of Y, and since Y is nonsingular
then A is dense in Y. We now consider the following two cases:

Case 1. Suppose that ¢S, and yeS, with @ # 8. Since A
is dense there exists d € A such that ad = Bd. Hence there exists
a teL*N S, such that 2+teL and te L. Since ad #* Bd then S,; N
Si; = @ and so xxt = yxt.

Case 2. Suppose that z,ye S, and define [0,a] ={ccY |0
0 < a}. Since [0, @] is a nonzero ideal of Y, then there exists
0~06€ANJ0,a]l. Thus there is a teL* with teL and zxteL.
Now z+t = yxt for if otherwise then (%)t = V.:(¥)t. But S, is
right cancellative 80 (%) = ¥.,(y¥). Since 4, , is one-to-one then
& = y which is a contradiction.

Thus in both cases L is a dense right ideal of S.

COROLLARY 2.3. Let S be a sturdy semilattice Y of right
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cancellative monoids S,. Then S is right nonsingular if and only
if Y is nonsingular.

If each +, (@ > B) is the trivial homomorphism; that is, it takes
all elements to the identity, we say that S has trivial multiplica-
tion.

THEOREM 2.4. Let S be a strong semilattice Y of monoids S,
and let S have trivial multiplication. If S is right nonsingular,
then |S,| >1 implies @ is an atom (a minimal nonzero element)
of Y.

Proof. Let |S,|>1 and let x,yeS, with # %y. Also let L
be an N-large right ideal of S. Since S is right nonsingular, L is
dense and so there exists ze€.S such that xxz # y+*z and exz¢e L.
We claim that if zeS; then @ < 8. To see this we consider the
following two cases:

Case 1. If a is not related to B then a > af and B > af.
Thus 2%2 = Ya,as(B)V5,a6(2) = €aslas = €as ANA Y52 = VYoo,0(Y)V5,05(2) =
€.3€.5 = €5 This is a contradiction since zxz == yxz.

Case 2. If B < a then x*z = 4, ;(¥)9;,5(2) = €2 = 2 and y*z =
Yo s(Y)Vrs,s(2) = €2 = 2. Again this is a contradiction.

Let B be an N-large ideal, L* and z as before. Then a < 8
implies aB = a € B.

Finally, we suppose that « is not an atom of Y. Then there
exists 6 € Y such that 0 <6 < @. Define I = {ce€ Y |0dd = 0or 0=5}.
It is easy to see that I is an N-large ideal of Y but a¢I which
is a contradiction.

THEOREM 2.5. Let S be a strong semilattice Y of right can-
cellative monoids S,. If Y is nmonsingular and |S.| > 1 implies
is an atom of Y, then S is right nonsingular.

Proof. Let x =y, z€ S and let L be an N-large right ideal of
S. If zeS, and y€S; with @ # 8 by the same argument as in
Theorem 2.2, Case 1 there exists te€L such that xxf # yxt and
2+t € L. Hence assume that z,y €S, then since |S,|>1, a is an
atom of Y and [0, «] is a nonzero ideal of Y. Thus there exists
teL NS, such that zxteL and xxt = yxt, for if otherwise © =y
since S, is right cancellative and this would be a contradiction.

Note that if |S,.| > 1 implies « is an atom of Y, then S has
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trivial multiplication.

COROLLARY 2.6. Let S be a strong semilattice Y of right can-
cellative monoids S, and assume S has trivial multiplication.
Then S is right nonsingular +f and only if E is nonsingular and
|S.] > 1 implies that e, 1s an atom of E.

3. The maximal right quotient semigroup. Since McMorris
[6] showed that the maximal right quotient semigroup of a semilat-
tice of groups is a semilattice of groups, a natural question arises;
which strong semilattices of semigroups have for their maximal
right quotient semigroup a semilattice of groups? In this section,
we let S be a strong semilattice Y of right cancellative principal
right ideal monoids S, with the linking homomorphisms onto.

LemMA 3.1. If aS, is a dense principal right ideal of S, then
Yo 5(@)Ss 1s a dense principal right ideal of S, for a = B.

Proof. The proof is straightforward and is omitted.

Let a,8eY with a = 8 and let Q(S,), Q(S;) be the maximal
right quotient semigroup of S, and S, respectively. The members
of these equivalence classes will be denoted [f]. and [g]; with the
subseripts being dropped if there is no confusion.

We can extend +r,,:S.—S; to a mapping P s’ Q(S,) — Q(S;)
defined by [f]a'—')[f]p where if f:aS,— S, then f: Vo, ,g(a)S,g-—»S,; is
defined by vr.s(@)s — e s(f(@))s for seS,. Note that f is an S;-
homomorphism Asince if te §ﬁ then 7 (Y, 5(@)8) = (Yra,p(f(@))8)t =
Ve, s(F(@))(88) = f (¥,6(@) (1)) = f (¥a,6(@)8)t)-

We next show that ¢, is independent of the representative we
choose from [f]. Hence let [f] =[g], then f and g agree on a
dense right ideal of S,, call it D, found in the intersection of their
domains D; and D, respectively. Since S, is a principal right ideal
semigroup then D; = g,Sa, D, =AcSa and D = S, for some a,c¢, €
S.. Now 6,,4(If]) = [f] where f: v,,4(a)S; — S, defined by ¥ s(a)s —
Ve s(f(@))s, and g.s([g]) = [§] where J: 4 5(c)S;— S defined by
Yre,5(€)8 — 4y (g(c))s. We claim 7 and § agree on the dense right
ideal v, 4(®)Ss S VYa,5(@)Ss N Yra,5(c)Ss.  Since %S, S aS, N ¢S, it is easy
to see that ¥, ()S, S V¥, s5(@)Ss N Y., p(¢)S;.  Furthermore, since S,
is dense in S, then by Lemma 3.1, q/ra,,;(xA)Sﬁ is dense in S,;. Hence
let 4,5(%)8 € ¥a,s(¥)S; then f(va,s(#)8) = f (¥, s(¥)¥e,6(t)) Where t €S,
since . is onto. Since v, is a semigroup homomorphism, it
follows that [f(v,s(2)s) = f(¥,s(at)) = Va5 (f (#2)) = ap(g(28)) =
G(Va,s(®@t)) = J(Wa,s(@)Va,5(t)) = G(Vop(®)s). Thus the claim is estab-
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lished.

THEOREM 3.2. Let S = ..y S be a strong semilattice Y of
right cancellative principal right ideal monoids S, with . onto
Jor azBeY. If T = User (S, with multiplication defined by

[f]a[g]ﬁ = ¢u,aﬁ([f]a)¢ﬂ,aﬁ([g]ﬂ)

where [fl.€ Q(S.), [9]: € Q(Ss) and ¢uus, bs..p are defined as above,
then T is a strong semilattice Y of monoids Q(S.,).

Proof. Note that since S,NS;= @ for a =B then Q(S,) N
Q(S;) = @, and that 4., is the identity mapping. We now show
that ¢, : Q(S,) — Q(S;) is a semigroup homomorphism. Let [f], [g]€
Q(S.) then we must show that ¢.,,([fl[9]) = ¢us([fDgas([g]). To
this end we let ¢, ,(f]) = [f] and 8.:(g]) = [§] Where if f:aS,— S,
and g: ¢S, — S, then 7 Va,5(@)Ss — Sp defined by 4, s(@)s —r, s(f(a))s
and §: v.,5(¢)S; — S; defined by +,5(c)s — e 5(g(c))s. Since [f1lg] =
[fg] where fg:97%(aS,) — S, and g~ *(aS,) = {# €eS.|g(x) € aS,}, then
for some e S, hS, = g~*aS.) and s0 Fg: v, §(h)S; — S defined by

Ve, s(R)s = Po,s(fg(R))s.  Thus ¢e(If1l9]) = ¢, p([fg]) =[fg]. On the
other hand, g s([fDéws(g]) = [F1[6] = [F§] Where F§: 5 (v,s(@)Sp)—
Sp and §7(Va,s(@)Ss) = {4 € ¥as(€)S | §(Y) € V,p(@)S;}.  Hence we must
show that [fg] = [f@]; that is, fg and 74 agree on a dense right
ideal found in the intersection of their domains. Now 4, ;(h)S; &
97 (Va,5(@)S;) for if e s(h)s € vras(R)S; then v s(h)s = Yrap(R)Vra,s(t)
where €S, since ., is onto. Thus a4, s(R)S = Ve s(At) = . a(cr)
since htecS, and so ht = ¢r for some re€S,. Hence +,; being a
semigroup homomorphism implies . s(h)S = Ve, s(C)Va,s(1) € Ve, 5(¢)Ss.
Now §(¥a,s(h)8)=va,s(9(h))s =4, 6(g(1))Vra,6(t) = Ve, s(g(R)E) = Ve, p(g(hL)) =
rq.p(@x) since g(ht)caS, and so g(ht) = ax for some xecS,. Again
since 4, ; is a semigroup homomorphism we haﬁe that (i, s(h)s) =

Vo 5(@) Ve, p(T) € Ve, 5(@)Ss. We now claim that fg and f§ agree on

Va,s(h)Ss.  Liet o 5(h)s € Yra5(h)S; then 2> 9J(Va,6(R)8) = Y s(Fg(h))s =
Va,s(f(g(h)))s= f (Vra,5(g(R)))s = f(ﬂﬂ‘a s(g(h))s)= f (G(Yra,p(R))8) = fG(Yra,5(h)s).

Finally, we show that if @ >8> 0J then ¢;;fes = us. Let
[f1eQS) with f:aS,—S, and let ¢.,(f]) = [f1€Q(S,) where
I 4es(@)S, — S; defined by r,,,(a)s — ¥ras(f(@)s. Let g.s((f)=[f]e
Q(S;) where 7 Ve, 8(2)S; ’—’Sp defined by Yo s(@)t — ., 5(f(@))t. Hence
35,58 s([F]) = &5, a([f]) = [f] where f: (v, ﬁ(a))sa —8; is defined
bY Vs.s(¥e,s(@))s — ¥ o(F(Hras(@)))s.  To see that f = f, we note that
Vo,Vap = Vas 80 Va,s(@)S; = ¥s,s(¥a,5(2))S;. Hence if s ,(v,,5(a))s €
V,5(Va,5(@))S; then flors s(Pa,s(@))8) =p,o(f (¥a,5(@)))8 = s 5(Va,s(f(@)))s =
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V5,0%a,s(F(@)8 = s s(f(a))s.

THEOREM 3.3. Under the hypothesis of Theorem 3.2, S can be
embedded into T.

Proof. Define @: S— T by s—[n,] where if s€ S, then [X\,].€
Q(S,) and \,:S,— S, is defined by t — st. The mapping @ is one-to-
one for suppose @(s) = &(r) where s€ S, and r € S,.

Case 1. If a + B then @(s) # @(r) since Q(S,) N Q(S;) = @.

Case 2. If a = B then [\]. = [M]. and so A, and M\, agree on
a dense right ideal of S, say D. Hence for deD, sd = \(d) =
M (d) = rd and since S, is right cancellative then s = 7.

Next we show that @ is a semigroup homomorphism. Let ze€S,,
y € S; then O(w+y)=[N,,,].s Where \,,,: S,;—S,; defined by s—(2*y)s =
Vaas(@)Vs,06(Y)s.  Now  0@)0(y) = [¢.)IN)s = Baee([Nal)dp,aa(M]e) =
[f1[9] = [f§] where [f], [§]€Q(S.) and f: S, — S.; defined by s—
Vaas(®)s and §: Sep — Sgp deﬁrled by s— s s(y)s. If s€8S, then
F9(s) = (@) = F(¥a,05¥)8) = F(¥5,08(¥))3 = Va,es(®)V5,06(4)8 = Nay(8)-

We identify S with its image in T and note that if S is right
nonsingular we have the diagram

T — Ty
u - u
S = Sl¥, .

THEOREM 3.4. Let R = T/y,. Under the hypothesis of Theorem
3.2 and if S is right nonsingular then +rz = ip.

Proof. Suppose that ¢fgt¥. Let ¢, et¥ and t¢,€tf then
(t.d)yr(t,d) for all de D a dense right ideal of S. Hence for each
deD there exists X, dense in S such that tdx = t,da for all
xeX,;. Let W= U;codX,;, then t,w = t,w for all we W. If W is
dense in S then ¢qt, and so t¥ = t¥. To see that W is dense in
S, we let s, #s,, s;€S. Since D is dense then there exists de D
such that sd # s,d and s, deD. Since X, , is dense then there exists
weX,, such that (sd)r # (s, d)r and (s d)x e (s,d)X,,. But then
s,(dx) # s,(dx) and sy(dx)e W. Since dexeD and X, is dense there
exists y € X,, such that s,((dz)y) # s,((dx)y) and s,((dx)y) € X;,. But
W is a right ideal so s;((dx)y) € W with (dx)y € W. This shows that
W is dense in S.
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A right Ore semigroup is a right cancellative semigroup all of
whose nonzero right ideals are N-large. The maximal right quoti-
ent semigroup of a right Ore semigroup R is a group Q(R) =
{ab™| @, b € R}[2].

THEOREM 3.5. Let S = U.cr S, be a strong semilattice Y of
principal right ideal Ore mongids S, with +r.,; onto for « = Be Y.
If S is right nonsingular then Q(S) is a semilattice of groups.

Proof. By Theorem 3.2, T = ..y Q(S.) is a strong semilattice
and since each Q(S,) is a group then T is a semilattice Y of groups
Q(S,) and so regular with idempotents in the center of T [1, pD.
128-129]. Hence T/y, is regular and its idempotents are in
the center of T/, which makes T/y, a semilattice of groups.
McMorris [6] showed that Q(T/+,) is also a semilattice of groups.
By Theorem 3.4, Q(S) ~ Q(T/4,) and so is a semilattice of groups.

THEOREM 3.6. Under the hypothesis of Theorem 3.5, T/y, can
be taken to be the uwion of the same semilattice Y of groups.

Proof. Since T = U,y Q(S,) where each Q(S,) is a group, we
let e, = [e.] € Q(S,). If e,r,e; when a # B then e,xx = ¢zxx for all
2z €L an N-large right ideal of S. Since S is right nonsingular then
Y is right nonsingular by Theorem 2.1. Furthermore, A={oc€ Y|LN
S} # @ is dense in Y. Hence since a #= B there exists de A such
that o + Bd. Let teL NS, then et = ¢;«t which implies that
CasVs,as(t) = €s575,:(t) OF that @, .;(t) = @, 5:(t). This is a contradiction
since for ad = B0, Q(S.;) N Q(Ss) # @. Hence e, # e, When
a # B. Thus in T/y, there are at least as many idempotents as
there are in 7. Now suppose that g+, is an idempotent of T/v.
Since g € Q(S,) a group then g+, € Q(S,)/+,, also a group. The only
idempotent of Q(S,)/v; is e,y S0 gy = eyr,. Hence in T[4, there
are no new idempotents.

Hinkle [2] showed that Q(T/+) is a semilattice Q(Y) of groups.
Thus Q(S) is a semilattice @Q(Y) of groups where Y is the semilat-
tice of both S and T/y,. The next theorem is a restatement of
the above results.

THEOREM 3.7. Let S be a strong semilattice Y of principal
right ideal Ore monoids with onto linking homomorphisms. If S
18 right monsingular then Q(S) is a semilattice Q(Y) of groups.
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