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WHEN IS A REPRESENTATION OF A BANACH
*-ALGEBRA NAIMARK-RELATED TO A

^REPRESENTATION ?

BRUCE A. BARNES

Conditions are given which imply that a continuous
Banach representation of a Banach *-algebra is Naimark-
related to a ^-representation of the algebra.

1* Introduction* The representation theory of a Banach algebra
necessarily includes the notion of comparing representations to de-
termine when they are essentially the same or related in important
ways. Thus, if the algebra is a Banach *-algebra, then two ^re-
presentations are considered essentially the same if they are unitarily
equivalent. When π is a representation of a Banach algebra on a
Banach space X, we denote this Banach representation by the pair
(TΓ, X). A strong notion used to compare Banach representations is
that of similarity.

DEFINITION. The Banach representations (TΓ, X) and (φ, Y) of a
Banach algebra A are similar if there exists a bicontinuous linear
isomorphism V denned on X and mapping onto Y such that

φ(f)V= Vπ(f) (feA).

If (TΓ, X) and (φ, Y) are similar, then the representation spaces X
and Y are bicontinuously isomorphic. Thus the concept of similarity
is limited to comparing representations that act on essentially the
same Banach space. A notion that has proved useful in comparing
representations that act on perhaps different representation spaces
is that of Naimark-relatedness.

DEFINITION. Let (TΓ, X) and (<p, Y) be Banach representations
of a Banach algebra A. Then TΓ and φ are Naimark-related if there
exists a closed densely-defined one-to-one linear operator V defined
on X with dense range in Y such that

(i) the domain of V is τr-invariant, and
(ii) φ(f)Vξ = Vπ(f)ξ for all fe A and all ξ in the domain of V.

The relation of being Naimark-related is in some ways a rather
weak way of comparing representations. For this relation is not in
general transitive [15, p. 242], and an irreducible representation can
be Naimark-related to a reducible one [15, p. 243]. On the positive
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side, ^representations that are Naimark-related are unitarily equiva-
lent [15, Prop. 4.3.1.4], and the relation is transitive on certain
kinds of irreducible representations [15, p. 232]. Also, the concept
has proved useful in comparing Banach representations of the algebra
L\G) for certain locally compact groups G.

In this paper we are concerned with the question: when is a
Banach representation of a Banach *-algebra Naimark-related to a
^representation of the algebra? We are mainly interested in the
cases where the algebra is either a 2?*-algebra (= C*-algebra) or
L\G), for these cases occur in the theory of weakly continuous
group representations of locally compact groups. Some results on
this question are known, a few are classical. In the latter category
is a theorem of A. Weil that every continuous finite dimensional
representation of L\G) is similar to a ^representation [8, p. 353].
Another well-known result is that if G is an ammenable locally
compact group (in particular if G is abelian or compact), then every
continuous representation of L\G) on Hubert space is similar to a
^-representation [7, Theorem 3.4.1]. R. Gangoli has recently proved
that if G is a locally compact motion group, then every continuous
topologically completely irreducible Banach representation of L\G)
is Naimark-related to a ^representation [6, Cor. 1.3]. In the case
of a 2?*-algebra, J. Bunce has shown that for a GCR algebra (or
more generally, a strongly ammenable algebra), every continuous
representation of the algebra on Hubert space is similar to a ^rep-
resentation [3, Theorem 1]. The present author proves in [2, Cor.
1] that every continuous irreducible representation of a J3*-algebra
on Hubert space is Naimark-related to a ^representation. Also in
[2] conditions are given which imply that such a representation is
similar to a ^representation.

In this paper we give conditions on representations of certain
Banach *-algebras that imply that the given representation is
Naimark-related to a ^-representation. The main results are Theo-
rem 3 and its corollaries and Theorem 7. Among the results we
prove are: any cyclic representation of a separable JB*-algebra on
Hubert space is Naimark-related to a ^representation [§ 4, Corollary
4]; for unimodular second countable locally compact groups, any
weakly continuous bounded irreducible group representation which
has a nonzero square integrable coefficient lifts to a representation
of L\G) which is Naimark-related to a ^representation [§ 4, Corol-
lary 6]; and under very general conditions, a finite dimensionally
spanned representation of a Banach *-algebra is Naimark-related to
a ^representation [§ 5, Theorem 7].

2. Notation and a basic construction* Throughout this paper
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A is a Banach *-algebra. The Gelfand-Naimark pseudonorm 7 on A
is defined by

where the sup is taken over all ^representations φ of A on Hubert
space. In general 7(/) is an algebra pseudonorm with the property
that 7(/*/) = 7(/)2 for all fe A [12]. When 7 is anorm, then A is
called an A*-algebra. In this case we denote by A the completion
of A with respect to this norm. Then A is a JB*-algebra. We use
the standard meanings of state and pure state of A. If a is a state
of A, then the left kernel of a is the left ideal

We use the notions of modular maximal left ideal, primitive ideal,
and Jacobson semisimplicity as in C. Rickart's book [14]. If M is
a left ideal of A, then A — M is the usual quotient space of A
modulo M. We denote the elements of A — M by f + M where
feA. If M is closed, then A — M is a Banach space in the quotient
norm

\\f+M\\ = mί{\\f+g\\:geM}.

Let π be a representation of A on a Banach space X. We often
designate such a pair by (π, X). The representation (π, X) is irre-
ducible provided that the only closed ττ-invariant subspaces of X are
{0} and X. It is algebraically irreducible provided that the only
7r-invariant subspaces of X are {0} and X. A representation (π, X)
is essential if whenever ζeX, ξ Φ 0, then there exists feA such
that π{f)ξ Φ 0.

If V is a linear operator with domain and range in given linear
spaces, then we use the notation £&(V)9 ^4^{V)y and &(V) for the
domain of V, null space of V, and the range of V, respectively.

Now we describe a basic construction which occurs frequently
in what follows. In (I) and (II) below, (π, X) is a given Banach
representation of A, and under the appropriate hypothesis, a *-rep-
resentation of A is formed which is closely related to π. Then (III)
deals with the case where the intertwining operator which is involved
has a closure.

(I) . Assume ξoeX. If

{feA:

for some state a oί A, then

= <g*f) (g, f e A)
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defines an inner-product on π(A)ξ0 with the property that

<π(h)ξ, V) = <£, π(h*)τ}) (£, 37 e π(A)ξ0, he A).

Proof. Assume that 7r(/i)£o = π(/2)f0 and πigjζo = TT(02)£O. Then
by hypothesis f,- f2e Ka and g,- g2e Ka. It follows that α(flrΓ/i) =
tf(02*/2), and therefore the form is well-defined. That the form is
an inner product is clear.

Now assume that h, f, g e A. Then

(π(h)π(f)ξ0, π(g)ξ0) = a{g*hf)

= a{{h*gTf) = (π(f)ξ0, π(h*)π(g)ξ0) .

(II). Let Xo be a ττ-invariant subspace of X with < , •> an
inner product on Xo such that

> = <ί, π(/*)3?> (ί, η e Xo,

Let iϊ 0 denote the inner-product space (Xo, < , •», and define φ0 on

Let if be the Hubert space completion of Ho. Define a linear operator
U: X-+ H with ^(C7) = Xo by J7f = ξ for £ e Xo. Then

(1) φ0 has a unique extension to a ^representation φ on ί ί ,
and

(2) 3ΠJJ) is 7r-invariant and φ(/)J7f = Uπ(f)ξ (ξ

Proof. By definition φQ is a *-representation of A on the inner-
product space Ho. Then by a result of T. Palmer φo(f) is a bounded
operator on Ho for each / e ^ i and f—*φo(f) is a continuous map of
A into the algebra of bounded linear operators on Ho [12, Proposi-
tion 5]. Thus, (1) holds. Part (2) follows immediately from the
definitions given.

(III). Assume that (TΓ, X) and (φ, Y) are continuous Banach
representations of A. Assume that U: X—> Y is a linear operator
with 3f{JJ) π-invariant and

φ{f)Uξ = Uπ(f)ζ (ξeSf{JJ\ fe A) .

Furthermore assume that U has closure U. Then S2f(U) is π-in-
variant and

φ(f) Uξ = Uπ(f)ξ (ξ 6 &( U\ feA).
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Proof. Assume that ξe&(U). Then by the definition of Ό
there exists {ζn}cz&(U) such that f, — £_and Uξn~->Uξ. Then
π{f)ξn — π{f)ξ and Uπ{f)ξn = φ(f)Uξn^φ(f)Uξ. Again, by the de-
finition of U we have

π(f)ξe&(ϋ) and ϋπ(f)ξ = φ{f)Uξ .

3* Symmetry and Naimark>relatedness* In this paper we are
basically concerned with conditions that imply that a given Banach
representation of A is Naimark-related to a ""-representation. In
this regard it is natural to ask what Banach algebras have the
property that every continuous irreducible Banach representation
is Naimark-related to a ^representation? It is known that every
irreducible representation of a £*-algebra on Hubert space is
Naimark-related to a ^representation [2, Cor. 1]. The next result
shows that if a Banach *-algebra A has the property that every
algebraically irreducible Banach representation is Naimark-related
to a ^representation, then A must be symmetric. In fact, the
symmetry of A can be characterized in this fashion. The symmetry
of a Banach *-algebra has other implications for the representation
theory of the algebra; see Corollaries 5 and 11.

THEOREM 1. Let A be a Banach *-algebra. The following are
equivalent:

(1) A is symmetric;
(2) every modular maximal left ideal of A is the left kernel

of some state of A (which in this case may be chosen to be a pure
state);

(3) every algebraically irreducible Banach representation of A
is Naimark-related to a *-representation of A (which in this case
may be chosen to be irreducible).

Proof. By [13, Theorem ] (1) and (2) are equivalent.

Assume that (2) holds. Let (π, X) be an algebraically irreducible
representation of A. Fix ξ0el, f o ^O. A simple algebraic argu-
ment verifies that M = {fe A: π(f)ξ0 = 0} is a modular maximal left
ideal of A. Therefore by hypothesis there exists a state a of A
such that M = Ka (and a may be chosen to be a pure state). Define
an inner-product < , •> on X = π(A)ξ0 as in (I), i.e.,

o, π(g)ξ0) = a(g*f) (/, geA).

Let (φ, H) be the ^-representation of A, and let U be the intertwin-
ing operator constructed as in (II).
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Consider the map ψ:A — M-+X defined by

± M) = π(f)ξ0 (feA).

Clearly ψ is continuous, and therefore bicontinuous by the Open
Mapping Theorem, Hence there exists B > 0 such that for all feA

isd{\\f+g\Y.gsM}=\\f+M\\£B\\π{f)ξ*\\z.

lίfeA,geM, then

I I t W ) f o | | 2 * = « ( ( / + </)*(/ + g)) ̂  y(f + gf ̂  11/ + 0II 2 .

Taking the infimum over all geM we have for all feA

ιιUπ(f)ξ0\\x ^ | | / + M|| ̂  B\\π(f)ξo\\x .

This proves that U: X—+H is bounded on X and is therefore closed.
It follows that π is Naimark-related to φ. This verifies that (2)
implies (3).

Conversely, assume that (3) holds. Let M be a modular maxi-
mal left ideal of A. Let π be the algebraically irreducible represen-
tation of A on A — M given by

π(f)(g + M) = fg + M (Age A).

By (3) there exists a ^representation (φ, H) of A Naimark-related
to π (φ may be chosen to be irreducible). Let U be a closed one-
to-one linear operator with ττ-invariant domain in A — M such that

φW)Uξ= Uπ(f)ξ {ξe&{U)JeA) .

Since % is algebraically irreducible and 2f(JJ) is τr-invariant, we have
&(U) = A-M. Fix uoeA such that fuo-feM for all feA.
Define a on A by

«(/) = (φ(f)U(u0 + M), U(u0 + M)) (feA).

Clearly, a is a positive linear functional on A. Also,

feM<==>f(uo + M) = 0

«=- Uπ(f)(u0 + M) = 0

— «(/*/) = 0.

Thus, M = EΓα. Finally, some constant multiple of a is a state of A,
and if φ is irreducible, then this multiple of a is a pure state.

4* Representations on a Hubert space* In this section we



REPRESENTATIONS NAIMARK-RELATED TO ̂ REPRESENTATIONS 11

investigate a variety of conditions on A and on a representation
(π, H) of A, H a Hubert space, that imply that π is Naimark-related
to a ^representation of A. In order to construct a ^representation
of A by the methods of (I) and (II), some reasonable hypothesis is
necessary to insure that certain closed left ideals of A are left
kernels of a state of A. The next lemma provides a useful tool in
this regard.

LEMMA 2. Let A be a separable A*-algebra. Let M be a Ύ-closed
left ideal of A. Then there exists a state a of A such that M = Ka.

ProofL Let M be the closure of M in A. Since 7(/) £ \\f\\ for
all / e A, A is separable. If there exists a state a on A such that
M = Ka, then M = Ka where a is the restriction of a to A. Thus
we may assume that A is a separable ί?*-algebra and that M is a
closed left ideal of A.

Let Δ be the set of all pure states ω of A such that MaKω.
Define for all / + M e A - M

| |/ + M\\Δ = sup {ω(/*/)1/2: α> e 4 .

Since for every state ω we have

ω((/ + </)*(/ + </))1/2 ^ ω(/*/)1 / 2 + ω(<7*</)1/2 (/, g 6 A) ,

it follows that

fir) + M||, ̂  | | / + ΛfH, + Her + M\\Δ (f,geA) .

Now because A is a 2?*-algebra we have M = Γ\{Kω: ωeΔ} [5,
Theoreme 2.9.5]. This fact and the inequality above prove that
H IIJ is a norm on A - M. Also, | | / + M\\Δ ̂  | | / | | by [5, Prop.
2.7.1], and therefore A — M is separable in the norm || | | j . Choose
{fn + M: n ^ 1} a countable dense subset of {# + M: \\g + Jkf||j = 1}.
For each n ^ 1 choose <#„ e J such that (on(f*fn) > 1/2. Suppose there
exists g e f)n^ Kω% such that g &M. We may assume \\g + M\\Δ — 1.
Take /Λ such that

Then

-Λ)

This contradiction proves that M = Π^^i -K«w Finally, set a =
Σ»=i (l/2) α)Λ. Then α is a state of A with iΓα = M.
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Now we state and prove the main result of this section.

THEOREM 3. Let π be a continuous essential representation of
A on a Hilbert space H. Assume that either

(1) (π, H) is irreducible, and for some ξ0 eH, ξ0^ 0, {g e A:
π(g)ξ0 = 0} is the left kernel of a state of A, or

(2) there exists a dense π-invariant subspace Ho of H which
is the algebraic direct sum of subspaces of the form π(A)ξ where
ζsH, and every left ideal of the form {g e A: τc{g)Ύ] = 0} is the left
kernel of some state of A.

Then (TΓ, H) is Naimark-related to a *-representation (φ, K) of
A where K is a closed subspace of H.

Proof. Under either of the hypotheses (1) or (2), we can use
(I) to construct an inner-product < , > defined on a dense 7r-invariant
subspace Ho with the property that

<*(/)ft V) = <ξ, *(f*)V> (ft veH,feA).

In the case of (2), the, inner-product ( , •> is constructed by forming
the sum of inner-products defined on the direct summands of Ho of
the form π(A)ζ. By [10, Theorem 1.27, p. 318, and Theorem 2.23,
p. 331] there exists an operator U with S$( U) = Ho and with closure
U such that

ξ, Uη) (ft

For fe A define φo(f) on Ko = UH0 by

φlf) Uξ = Uπ(f) U-\ Uξ) (f e Ho) .

Then

= Uπ{f)ζ (ξeHQ,feA).

Also, for ξ = Uξ0, V = uVo where ξ0, η0 e Ho, we have

(9>o(/)ft ?) = W / ) f t , Uη0)

= <f0,

= (^fw Uπ(f*)U-\UηQ))

- (ft <Po(f*)V)

By [12, Prop. 5] there is a unique extension of φQ to a ^representa-
tion φ of A on K, the closure of Ko in H. Then by (III) &(U) is
7Γ-invariant, and

φ{f) ϋξ - ϋπ(f)ξ (ί e &( ϋ), feA).
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To complete the proof that (π, H) is Naimark-related to (φ9 K) it
remains to be shown that ί?is one-to-one on 3f(jj). Since ί7is closed,
Λ^(U) is a closed subspace. If ξ_e^Γ(U), then Uπ(f)ξ = φ(f)Uξ = 0
for all feA. Therefore ^/K{U) is 7r-invariant. Assume that (1)
holds. Then π being irreducible, it follows that ^Γ(U) = {0}.

Now assume that (2) holds. Let J7~ be the collection of all
inner-products N(ξ, η) defined on a subspace £&(N) of H such that

( i ) HQ<z3r(N),
(ii) &{N) is π-invariant, and
(iii) N(π(f)ξ, V) = N(ζ, π(f*)η) (f, y e &(N), feA).

Partially order the nonempty collection ^ by Nt ^ N2 provided that

and N,(ξ, η) = Nt(ξ, η) (f, V

A straightforward Zorn's lemma argument establishes the existence
of a maximal element N in ^~. Following the argument in the first
paragraph of the proof with N replacing < , •> and &(N) replacing
Ho, we can construct as before an operator U with closure U and
a *-representation (<p, K) of A such that

N(ξ, V) = (Uξ, Uη) (ξ, V 6

U is 7r-invariant, and

φ(f) ϋξ = ϋπ(f)ξ ( ξ U

Suppose that U is not one-to-one. Choose rjoe^K(U)f y0 ^ 0. By
hypothesis exists a state a of A such that

Ka = {ge A: π(g)τj0 = 0} .

Now 11 £7$ ||2 = N(ξ, ξ) for ξe&(N), and therefore U is one-to-one on
&(N). Thus, ^(iSΓ) Π π{A)η0 = {0}. Also note that π(A)% ^ {0}
since π is essential. Let

Now by (I)

defines an inner-product on ττ(A) 0̂ with properties (i), (ii), (iii) above.
For ξ,7je Sf{M), ζ = ξ1 + ξ% and η = η, + % where ξlf rj, e
ξ2J Ύ]2 6 π(A)7]0, define

M(ξ, V) = 2SΓ(flf %) + <f2, %> .

Then M e ^] M ^ N, and M Φ N. This contradicts the maximality
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of N. Thus, U must be one-to-one.

By Lemma 2 and Theorem 3 we have:

COROLLARY 4. Let A be a separable B*-algebra. If π is a con-
tinuous essential representation of A on a Hilbert space H, and
there exists a π-invariant subspace Ho having the property described
in part (2) of Theorem 3 (in particular, if π is cyclic), then π is
Naimark-related to a *-representation of A.

COROLLARY 5. Let A be a symmetric Banach *-algebra. If π
is a continuous irreducible representation of A on a Hilbert space
H, and π acts algebraically irreducibly on some π-invariant sub-
space Ho c H, then π is Naimark-related to a *-representation of A.

Proof. Fix ζ0 e H09 ξ0 Φ 0. Since π acts algebraically irreducibly
on ϋΓ0, {g e A: π(g)ξQ = 0} is a modular maximal left ideal of A. By
Theorem 1 this left ideal is the left kernel of a state of A. Thus
Theorem 3 applies.

COROLLARY 6. Let G be a unimodular locally compact group
such that L\G) is separable. Assume that π is a bounded weakly
continuous irreducible representation of G on a Hilbert space H.
Assume that there exist ξQΦ 0, η0Φ 0 in H such that x —> (π(x)ξQf %)
is in L\G). Then π is Naimark-related to a unitary representation
ofG.

Proof. Let W be the subspace consisting of the vectors ηeH
such that x —• (π(x)ξOf η) e L\G). Note that if η e W and y e G, then

x > (π(x)ξ0, π{y)*η) = (π(yx)ξ0, η) e L\G) .

Therefore W is invariant under the set of operators {π(y)*:yeG}.
Thus W1 is 7Γ-invariant. It follows that W1 = {0}, and hence that
W is dense in H.

Now for each η e W let

Since G is unimodular, gv e L\G) for all η e W. Denote again by π
the integrated form on L\G) of the group representation π, that is,
for ξ, ηeH and feL\G)f

• * > = • „
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Let K = {feL\G): π(f)ξ0 = 0}. The set if is a closed left ideal of
L\G). We proceed to prove that K is 7-closed. Assume that
{/.} c K and τr(/. - /) -* 0. Since for ft, e L\G) and g e L\G)

we have

(#) (/. - /) * 9 — 0 in L\G) whenever g e L\G).

If h is a function on G and xeG, then we use the notation

Kiv) =

For 37 β ΐF we have by (#) that

(Λ - /)*sΦ0 = (ifJw) - f(w)Kπ(v)ξ» V)dy

= (W(/f).) - *(/.)}&, 7)
> 0 in L2(G) .

Now i ί is a closed left ideal of L\G) and hence (fn)xeK for all
n ^ 1 and all α? 6 G. Thus a? —> (̂ (Λ)ίo» ^) i s ° a e o n ^ Since this
function is continuous on G, (π(fx)ξ0,57) = 0 for all a? 6 G. Then
(π(/)fo, >?) = 0 for all ΎJ e IF, so that π(/)£0 = 0. This proves that K
is T-closed. Therefore Lemma 2 and Theorem 3 imply the result.

5* Representations containing operators with finite dimen-
sional range* Let (TΓ, X) be a continuous Banach representation of
A, let (φ, H) be a continuous ^-representation of A, and assume
that π is Naimark-related to <p. Then ker (π) = ker (φ), and since 9
is 7-continuous, it follows that ker (π) is 7-closed. In this section we
prove a converse of this fact in the case where there are sufficiently
many operators with finite dimensional range in the image of π.
More precisely we hypothesize that π is finite dimensional spanned
(FDS) in the sense of [15, p. 231].

THEOREM 7. Let A be an A*-algebra. Let (TΓ, X) be a con-
tinuous Banach representation of A such that π is FDS. If ker (π)
is 7-closed, then π is Naimark-related to a direct sum of irreducible
*-representations of A.

We begin the proof of Theorem 7 by proving several preliminary
results, and also, since the proof depends heavily on results con-
cerning Banach algebras with minimal left ideals, we briefly review
the necessary material from that area.

Let 4 be. a Jacobson semisimple (complex) Banach algebra.
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Denote the complex number field by C. An element e e A is a mini-
mal idempotent (abbreviation: m.i.) of A if eAe = {Xe: λeC} [14,
Cor. (2.1.6)]. Every minimal left ideal L of A has the form L — Ae
where e is a m.i. of A [14, Lemma (2.1.5)]. Furthermore, if A has
an involution * which is proper (/*/ = 0 => / = 0) then the m.i. e
above may be chosen such that e — e* [14, Lemma (4.10.1)]. The
socle of A, denoted soc (A), is an ideal which is the algebraic sum
of all the minimal left ideals of A or {0} if A has no minimal left
ideals [14, p. 46]. Also, soc (A) is the direct algebraic sum of mini-
mal ideals of A each of which has the form AeA for some m.i. e
of A.

LEMMA 8. Let A be an A*-algebra, and let (π, X) be a con-
tinuous Banach representation of A. Assume that e is a m.i. of
A with e = e*. Fix fe^(π(β)), ξ Φ 0. Then

(1) π acts algebraically irreducibly on π(A)ξ;

(2) the form < , ) defined on π(A)ξ by the formula

(π(f)ζ, π(g)ξ)e = eg*fe (/, ^€4)

is an inner-product on τc(A)ξ, and

$> (V, $ e π(A)ξ, g e A);
(3) if φ is defined on the Hilbert space completion H of

(π(A)ζ, < , •>) as in (Π), then (φ, H) is an irreducible ^-representa-
tion of A;

(4) if {ξlf •••,£«} is a basis for &(π(e))f then π(AeA)X is the
algebraic direct sum of the spaces {π(A)ξk: 1 ^ k ^ n}.

Proof. Assume that π(f)ζ Φ 0 and π(g)ζ are given. Since Ae
is a minimal left ideal [14, Lemma (2.1.8)], there exists he A such
that ge = hfe. Then π(h)(π(f)ξ) = ττ(Λ/β)£ = ττ(flrβ)f = ττ(̂ )f. This
proves (1).

Let J= {feA: π{f)ξ = 0}. Clearly A(l - e)aJ. Then since
A(l — e) is a maximal left ideal, A(l — e) = J. If ^(/Jf = ττ(/2)£
and πίflfjf = π(g2)ξ, then Λ - / 26 A(l - e) and g1 - g2e A(l - e).
Therefore fxe—fφ and gte = g2e. It follows that < , •> is well-
defined. Now the map fe-+π(f)ξ is an isomorphism of Ae onto
π(A)ζ. Given this identification of Ae and π(A)ζ, the proof of [14,
Theorem (4.10.3)] is easily adapted to prove (2).

Let (φf H) be as in (3). If ηeH, choose {fn} c A such that
11 #(/»)£ -" ̂ llfl- —*0 For each % there exists a scalar /£n such that
e/ne = jtίne. Then

μuξ = π(e)π(fne)ξ = φ(e)π(fn)ξ > ?>(β)ί? .
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Thus, φ(e)r] = μξ for some μeC. This proves that

φ(e)H = {Xζ:XeC} .

Let K be a nonzero closed ^-invariant subspace of ΈL. Then either
φ(e)K Φ {0} or φ{e)KL Φ {0}. In the former case we have ζ e <p(e)K,
which implies π(A)ζ c K, so that K = H. In the latter case, KL = H.
This proves that φ is irreducible on H.

To prove (4), we first show that the subspaces {π(A)ζk: 1 <; k ̂  n}
are independent. Assume that fkeA, 1 <ί k <L n, and

Then for all g e A,

Σ π(egfke)ξk = 0 .
fc=l

Since e^/feβ is just a scalar multiple of e and {£„ •••,£»} is an inde-
pendent set of vectors, we have egfke = 0 for all g 6 A and 1 ̂
k H n. In particular for each k, ef*fhe = 0, so that /fce = 0 since *
is proper. Then finally,

π(fk)ζk = π(fke)ζk = 0 , 1 ̂  & ̂  n .

This proves our first assertion. Now clearly

%, π(A)ζk c π(A)ττ(e)Xc π(AeA)X .

Assume f, geA and f G X. Then 7r(e#)f = λxft + + XJn for some
scalars λx, , λn. Then

c Σ π(A)ζk

Therefore π(AeA)X = Σ*=i

LEMMA 9. Lβέ A be an A*-algebra. Assume that I is a 7-
closed ideal of A. Then I is a *-ideal of A and the quotient algebra
A/I is an A*-algebra where the involution in A/I is defined as
usual by

(/+/)*=/* + I (feA).

Proof. Let I be the closure of I in A. Since I is 7-closed,
I = ϊ Π A. By [14, Theorem (4.9.2)] I, and therefore /, is a "-ideal.
Now_A/J is a B*-algebra [14, Theorem (4.9.2)], and the m a p _ / + / - -
/ + J is a ^-isomorphism of A/I onto a *-subalgebra of A//. Thus
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A/1 is an A*-algebra.

Now assume the notation and hypotheses in the statement of
Theorem 7. By Lemma 9 A/ker (π) is an A*-algebra. Thus, the
proof of Theorem 7 reduces to the case where ker (TΓ) = {0}. From this
point until the end of the proof of Theorem 7 we make the assumption
that ker( τ) = {0}. Let F'= {geA:π(g) has finite dimensional range}.

LEMMA 10. F = soc (A).

Proof. First we prove

(1) if g e A, gF = {0} or Fg = {0}, then g = 0.

Assume that gF = {0}. Then π(g)π(f) = 0 for all feF. Since
U {^(π(/)) fe F} is dense in X, we have π(g) = 0. Therefore g = 0.
Suppose ify = {0}. Then (gF)2 = {0}, so that #F is a nilpotent right
ideal of A. An A*-algebra is Jacobson semisimple [14, Theorem
(4.1.19)], and in particular, has no nonzero nilpotent left or right
ideals. Therefore gF = {0} which implies g = 0. This proves (1).

Let M be a minimal ideal of A in soc (A). Then either Λf fl
F = {0} o r l c ί 7 . But in the former case MFaM f] F = {0} which
is impossible by (1). Then since soc (A) is the algebraic sum of
minimal ideals of A, soc (A) c F.

In order to prove the opposite inclusion we need the technical
result:

(2) if feF, f Φ 0, then there exists a nonzero

idempotent e 6 soc (A) such that

Choose g e F such that gf Φ 0. The algebra fAg is isomorphic to
π(f)π(A)π(g), and therefore is finite dimensional. If for some n
(fAg)n = {0}, then (Agf)n+' = {0}. This contradicts the fact that A
has no nilpotent left ideals. By classical Wedderburn theory [9,
pp. 38, 53, 54] there exists a nonzero idempotent eefAg. Then
clearly &(π(e)) c &(π(f)).

Assume feF. Choose gesoc(A) such that &(π(f — gf)) has
the smallest possible dimension. Suppose / — gf Φ 0. Then by (2)
there exists a nonzero idempotent e e soc (A) such that &(π(e)) c

Consider

= ( / - af) - β ( / - gf) =f- (g + β - eg)f.

Then dim (^(τr(A))) < dim (&(π(f — gf))) which contradicts the mini-
mal dimension of &(π(f — gf)). Therefore / = #/esoc(A)
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Now we complete the proof of Theorem 7. Let {Mδ: δ e Δ) be
the set of all minimal ideals of A in soc (A). For each δ e Δ choose
eδ a m.i. of A with e* = eδ such that Mδ = AeδA. By Lemma 10
each element eδ e F. Let n(δ) be the dimension of the range of π(eδ).
For each δe Δ, choose a basis {ξδtl, •••, ξδ,n{δ)} for the range of π(eδ).
Form the spaces

XδΛ = τr(A)6,fc (<? e 4 1 £ fc ^ w(δ)).

Note that if δ,τeΔ, δ Φ τ, then eδAeτ aMδΓ\ Mτ = {0}. From this
fact and part (4) of Lemma 8 it is easy to see that the spaces

{Xδ,k: δ 6 Δ, 1 <Ξ k <̂  n(δ)} are independent.

Combining the facts that π(F)X is dense in X and JP = soc (A) =
Σ*eΔAeδA with Lemma 8 (4), we have

Σ {-X*,*: δ e J, 1 ^ & ̂  w(S)} is dense in X.

For convenience of notation we index the collection in the sum above
"by an index set Λ. Set

We have proved that Xo is the algebraic direct sum of the spaces
{Xx:XeΛ} and that Xo is dense in X.

For each λ let < , •>* be the inner-product defined on π(A)ζx as
in Lemma 8 (2). Define an inner-product on Xo by

<f, V> - Σ <&, %>A

where ζ = Σ ί^ V = Σ %> ί̂ > % e -Xi f o r all λ e /ί. For each / e i
define φo(f) on Xo by

Then φ0 is a ^-representation of A on (Xo> <•> •» a s ίn (Π). Let H
be the Hubert space completion of (Xo, < , •», and extend φ0 to a
^-representation of A on Jϊ, again as in (II). For each XeΛ, let
Hx be the closure of Xλ in H, and let ^ be the restriction of φ to
the ^-invariant subspace Hλ. By Lemma 8 (3) each of the represen-
tations (φχ, Hχ)f XeΛ is an irreducible ^representation of A. If
ξ e Xλ, ηeXμ where λ Φ μ, then by definition (ξ, η) = 0. It follows
that Hλ 1 Hμ. Since Xo c Σ {fli: λ e Λ}, J ϊ is the orthogonal direct
sum of {Hχi λ e Λ}. Then 9> is direct sum of the irreducible ^rep-
resentations (φλ, Hλ), XeΛ.

It remains to be shown that (π, X) is Naimark-related to (φ, H).
To begin we establish the technical fact that
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(1) if ψ e H, ψ Φ 0, then there exists

feF such that φ{f)f Φ 0.

For ψ = ΣλeΛψλ where ψxeHx, XeΛ. There is some μeΛ such
that ψu Φ 0. By the construction of Hu there exists a m.i. e of A
such that φμ{e) Φ 0. Also, since φμ is irreducible, φ(A)ψμ is dense
in Hμ. It follows that there exists g e A such that φ{eg)ψμ Φ 0.
Then eg eF by Lemma 10. This proves (1).

Define a linear operator V with 3ί{V) — XQ(zX and with range
in if by Vη = η, ηe Xo. Clearly

φ(f)Vξ= Vπ(f)ξ (ζeX0,feA).

By Lemma 8 (4) and by construction we have s o c ( 4 ) J c J o . Thus,
given / e ί 7 = soc (A), the range of π(f) is in Xo. The restriction
of V to the finite dimensional subspace ^?(rc(/)) is a bounded map
from &(π(f)) into H. Therefore we have

(2) for every feF, Vπ(f) is a bounded everywhere

defined operator from X to H.

Now we prove that V has a closure V and that V is one-to-one.
Assume that {ψn}<z&(V) = Xo, ψeH, \\φn\\x-+0, and \\Vψn-f\\H-+0.
Suppose that ψ Φ 0. Then by (1) there exists feF such that
φ(f)fΦ0. By (2), \\Vπ(f)ψn\\H~>0. Also, \\φ(f)Vψn -φ(f)γ|U-0.
Since φ(f)Vψn — Vπ(f)ψn for all w, we have φ(f)ψ = 0. This con-
tradiction proves that ψ̂  = 0, and hence, that V has a closure, V.
Assume that ξe^r(V) and V(ξ) = 0. Then there exists {ίw} c ^ ( F ) =
Xo such that |[fΛ - ξ\\x-+0 and | |Ff n |U-^0. For all feF we have
by (2) \\Vπ{f)ξn- Vπ(f)ξ\\H~+0. Also, \\<p(f)Vξn\\H->0. Therefore
Vπ(f)ξ = 0 for all / e F . Thus, π(F)f = 0, and since π is FDS, ξ = 0.
This proves that F is one-to-one. Then (π, X) and (φ, H) are
Naimark-related by (III).

COROLLARY 11. Let A be a symmetric A*-algebra. Then any
irreducible Banach representation (π, X) of A that contains a non-
zero operator of finite rank in its image is Naimark-related to an
irreducible *-representation of A.

Proof. There exists a dense subspace Xo of X such that π acts
algebraically irreducibly on Xo [15, p. 231]. Thus ker(τr) is primi-
tive in this case, and then the symmetry of A implies that ker(ττ)
is 7-closed. Also, π is FDS. Therefore the result follows from
Theorem 7.

6* An example* In this section we construct a symmetric
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Banach *-algebra A and a continuous irreducible representation π of
A on a Hubert space H with the properties:

(1) (π, H) is not similar to any ^representation of A, and
(2) π is not 7-continuous.

The question of whether any continuous irreducible representation
of a 2?*-aIgebra on a Hubert space is similar to a ^representation
is open.

Let / = (0,1], and set S = I x /. If J(x, y) is a bounded func-
tion on S, let

Let A be the collection of all complex-valued functions K(x, y) de-
fined on S such that K(x, y)(xy)~ι is continuous and bounded on S.
Clearly A is a complex linear space with the usual operations. Norm
A by

\\K(x, y)\\ = || JΓ(a, i/X^ΓΊL ( # e A),

Note that \\K\\% ^ ||J5Γ|| for all Ke A. It is easy to see that the
norm || || is a complete norm on A. Define multiplication in A by

where K, Je A, (x, y) eS. It is clear that K-Je A whenever K, Je
A, and that A is a complex algebra with respect to this multiplica-
tion operation. Furthermore, if (x, y) e S, then

\{K.J)(x, y){xy)~ι\ S \\&(x, t)χ-'J{t, y)y-1\dt £ \\K\\ \\ J\\ .

Therefore \\K-J\\ £ | | iΓ| | | |J | | , so that A is a Banach algebra. For
KeA, let

K*(x, y) = K(yf x) (x,y)eS.

Then K—+K* is an isometric involution on A.
For KeA, let τ(K) be the Fredholm integral operator on L\I)

determined by K, that is,

τ(K)f{x) = \κ(x, y)f{y)dy (xel,fe L\I)).

Then

whenever /e L\I). A standard argument proves that K—+τ(K) is
a faithful continuous ^-representation of A on L\I). Let D be the
set of all complex-valued functions f on I such that f(x)x~1 is con-
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tinuous and bounded on /. If fk, gkeD for 1 ^ k ^ n, then

K(x,y)==±fk(x)gk(y)eA.

The set of such kernels is exactly the socle of A, and this set is
dense in A. For every kernel K of this form, τ(K) is an operator
with finite dimensional range. Furthermore, K—*τ(K) acts algebra-
ically irreducibly on the subspace D c L\I). The fact that a primi-
tive Banach algebra with proper involution and dense socle is sym-
metric follows from an argument similar to the one used to establish
[4, Theorem 3.8]. To summarize:

(IV). A is a primitive symmetric Banach *-algebra with dense
socle.

Now we construct a continuous representation of A on H =
L\I, y2dy) with the properties (1) and (2) stated above. We denote
the norm of feH by

For KeA let

π{K)f(x) = \κ(x, y)f{y)dy (x e I, fe H) .

Then for all KeA,feH, and x e l we have

\π(K)f(x)\ = \\iK{xyy)y-\f{y)y)dy

Therefore

( \π(Kmx)\Vdx ^ [\\K\\>\f\lx>dx <ί \\K\\*\f\t.
Ji Jo

Thus

/| 2 (feH, KeA).

This proves that K—>π(K) is a continuous representation of A on
H. Using the fact that π acts algebraically irreducibly on DcH,
it is not difficult to verify that (π, H) is irreducible. Suppose that
(π, H) is similar to a ^representation of A (which is then necessarily
irreducible). It can be shown that an algebra with the properties
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listed in (IV) has a unique irreducible *-representation up to unitary
equivalence. Therefore in this case τ is the unique irreducible ^rep-
resentation of A. Thus π must be similar to τ. We show that
this is impossible. For assume that there is a bicontinuous linear
isomorphism W mapping L\I) onto H such that

π(K)W= Wτ{K) (KeA).

Assume h e D. Choose geD, g Φ 0. Let K(%, y) = h(x)g(y) (x, y) e S.
Then KeA. Now π(K)Wg = W(τ(K)g), that is,

This equation proves that Wh is a scalar multiple of h. Since D is
dense in L\I) and W is continuous, Wh is a scalar multiple of h
for all heU(I). But g(y) = y^eH and g$L\I). Thus T7 can not
map onto H. This contradiction proves the assertion (1).

If π is 7-continuous, then π has a continuous extension π to the
JB*-algebra A. Then by [1, Cor. 2.3], the representation π, and
hence π9 is similar to a ^-representation. This contradiction proves
(2).

7* Some open questions* There are many open questions con-
cerning Naimark-relatedness of representations of Banach *-algebras.
In this section we list several interesting questions in the area.

Question 1. Let A be a symmetric Banach *-algebra. Is every
continuous essential Banach representation of A with 7-cIosed kernel
Naimark-related to a ^representation?

Question 1 has an affirmative answer if the representation is
algebraically irreducible [Theorem 1], if the representation is irre-
ducible and contains in its image an operator with finite dimensional
range [Corollary 11], or if the hypotheses of Corollary 5 are satisfied.

Question 2. Is every continuous representation of a i?*-algebra
on Hubert space similar to a ^representation?

J. Bunce has proved that this question has an affirmative answer
when the 2?*-algebra is strongly ammenable [3]. An affirmative
answer is provided by the author if either the representation is
algebraically irreducible [1, Prop. 2.2], or if the representation is
irreducible and contains in its image a nonzero operator with finite
dimensional range [1, Cor. 2.3]. The question can be weakened to
ask only that the given representation be Naimark-related to a
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^representation. Corollary 4 and [2, Theorem 3] provide partial
answers to this version of the question.

In view of results such as those cited above concerning similarity
or Naimark-relatedness of a representation to a ^-representation
when the given algebra is a J3*-algebra, it is of interest to determine
conditions which imply that a representation π of a Banach *-algebra
A extends to a continuous representation of A (clearly this is the
case if and only if π is 7-continuous).

Question 3. Under what conditions is a Banach representation
of a Banach *-algebra 7-continuous?

A minimal necessary condition for a representation π to be 7-
continuous is that ker (π) be 7-closed. That this condition need not
suffice for π to be 7-continuous follows from the example in § 6. The
work of T. Palmer [11] provides an equivalent condition that π be
7-continuous that may prove useful, namely, that the image under
π of the group of unitaries of A (assuming A has an identity) be
bounded. In the case that (π, X) is an algebraically irreducible
Banach representation of A and X is not a Hubert space in an
equivalent norm, then a result of the author [1, Prop. 2.2] shows
that π cannot extend to a continuous representation of A.

Finally, we state a general question about which there seems to
be little information available.

Question 4. Let A be a Banach *-algebra, and let π be a con-
tinuous irreducible Banach representation of A. If ker (π) is the
kernel of some ^representation of A, is π Naimark-related to a
^-representation of At

Added in proof. In several places we have used the inequality
y(f)ύ 11/11 f° r / i n a Banach *-algebra A. This inequality does not
hold in general. However, using results in [11] it is not difficult to
verify that there exists a constant K>0 such that 7 ( / ) ^ J S L | | / | | for
all feA. This inequality suffices in all our arguments.
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