WHEN IS A REPRESENTATION OF A BANACH *-ALGEBRA NAIMARK-RELATED TO A *-REPRESENTATION?

Bruce A. Barnes

Conditions are given which imply that a continuous Banach representation of a Banach *-algebra is Naimark-related to a *-representation of the algebra.

1. Introduction. The representation theory of a Banach algebra necessarily includes the notion of comparing representations to determine when they are essentially the same or related in important ways. Thus, if the algebra is a Banach *-algebra, then two *-representations are considered essentially the same if they are unitarily equivalent. When π is a representation of a Banach algebra on a Banach space X, we denote this Banach representation by the pair (π, X) . A strong notion used to compare Banach representations is that of similarity.

DEFINITION. The Banach representations (π, X) and (φ, Y) of a Banach algebra A are similar if there exists a bicontinuous linear isomorphism V defined on X and mapping onto Y such that

$$\varphi(f)V = V\pi(f) \quad (f \in A)$$
.

If (π, X) and (φ, Y) are similar, then the representation spaces X and Y are bicontinuously isomorphic. Thus the concept of similarity is limited to comparing representations that act on essentially the same Banach space. A notion that has proved useful in comparing representations that act on perhaps different representation spaces is that of Naimark-relatedness.

DEFINITION. Let (π, X) and (φ, Y) be Banach representations of a Banach algebra A. Then π and φ are Naimark-related if there exists a closed densely-defined one-to-one linear operator V defined on X with dense range in Y such that

- (i) the domain of V is π -invariant, and
- (ii) $\varphi(f)V\xi = V\pi(f)\xi$ for all $f \in A$ and all ξ in the domain of V.

The relation of being Naimark-related is in some ways a rather weak way of comparing representations. For this relation is not in general transitive [15, p. 242], and an irreducible representation can be Naimark-related to a reducible one [15, p. 243]. On the positive

side, *-representations that are Naimark-related are unitarily equivalent [15, Prop. 4.3.1.4], and the relation is transitive on certain kinds of irreducible representations [15, p. 232]. Also, the concept has proved useful in comparing Banach representations of the algebra $L^1(G)$ for certain locally compact groups G.

In this paper we are concerned with the question: when is a Banach representation of a Banach *-algebra Naimark-related to a *-representation of the algebra? We are mainly interested in the cases where the algebra is either a B^* -algebra ($\equiv C^*$ -algebra) or $L^{1}(G)$, for these cases occur in the theory of weakly continuous group representations of locally compact groups. Some results on this question are known, a few are classical. In the latter category is a theorem of A. Weil that every continuous finite dimensional representation of $L^{1}(G)$ is similar to a *-representation [8, p. 353]. Another well-known result is that if G is an ammenable locally compact group (in particular if G is abelian or compact), then every continuous representation of $L^{1}(G)$ on Hilbert space is similar to a *-representation [7, Theorem 3.4.1]. R. Gangoli has recently proved that if G is a locally compact motion group, then every continuous topologically completely irreducible Banach representation of $L^{1}(G)$ is Naimark-related to a *-representation [6, Cor. 1.3]. In the case of a B*-algebra, J. Bunce has shown that for a GCR algebra (or more generally, a strongly ammenable algebra), every continuous representation of the algebra on Hilbert space is similar to a *-representation [3, Theorem 1]. The present author proves in [2, Cor. 1] that every continuous irreducible representation of a B^* -algebra on Hilbert space is Naimark-related to a *-representation. Also in [2] conditions are given which imply that such a representation is similar to a *-representation.

In this paper we give conditions on representations of certain Banach *-algebras that imply that the given representation is Naimark-related to a *-representation. The main results are Theorem 3 and its corollaries and Theorem 7. Among the results we prove are: any cyclic representation of a separable B^* -algebra on Hilbert space is Naimark-related to a *-representation [§ 4, Corollary 4]; for unimodular second countable locally compact groups, any weakly continuous bounded irreducible group representation which has a nonzero square integrable coefficient lifts to a representation of $L^1(G)$ which is Naimark-related to a *-representation [§ 4, Corollary 6]; and under very general conditions, a finite dimensionally spanned representation of a Banach *-algebra is Naimark-related to a *-representation [§ 5, Theorem 7].

2. Notation and a basic construction. Throughout this paper

A is a Banach *-algebra. The Gelfand-Naimark pseudonorm γ on A is defined by

$$\gamma(f) = \sup \{ || \varphi(f) || \}$$

where the sup is taken over all *-representations φ of A on Hilbert space. In general $\gamma(f)$ is an algebra pseudonorm with the property that $\gamma(f^*f) = \gamma(f)^2$ for all $f \in A$ [12]. When γ is a norm, then A is called an A^* -algebra. In this case we denote by \overline{A} the completion of A with respect to this norm. Then \overline{A} is a B^* -algebra. We use the standard meanings of state and pure state of A. If α is a state of A, then the left kernel of α is the left ideal

$$K_{\alpha} = \{ f \in A : \alpha(f^*f) = 0 \}$$
.

We use the notions of modular maximal left ideal, primitive ideal, and Jacobson semisimplicity as in C. Rickart's book [14]. If M is a left ideal of A, then A-M is the usual quotient space of A modulo M. We denote the elements of A-M by f+M where $f \in A$. If M is closed, then A-M is a Banach space in the quotient norm

$$||f + M|| = \inf \{ ||f + g|| : g \in M \}$$
.

Let π be a representation of A on a Banach space X. We often designate such a pair by (π, X) . The representation (π, X) is irreducible provided that the only closed π -invariant subspaces of X are $\{0\}$ and X. It is algebraically irreducible provided that the only π -invariant subspaces of X are $\{0\}$ and X. A representation (π, X) is essential if whenever $\xi \in X$, $\xi \neq 0$, then there exists $f \in A$ such that $\pi(f)\xi \neq 0$.

If V is a linear operator with domain and range in given linear spaces, then we use the notation $\mathcal{D}(V)$, $\mathcal{N}(V)$, and $\mathcal{R}(V)$ for the domain of V, null space of V, and the range of V, respectively.

Now we describe a basic construction which occurs frequently in what follows. In (I) and (II) below, (π, X) is a given Banach representation of A, and under the appropriate hypothesis, a *-representation of A is formed which is closely related to π . Then (III) deals with the case where the intertwining operator which is involved has a closure.

(I). Assume $\xi_0 \in X$. If

$$\{f \in A \colon \pi(f)\xi_0 = 0\} = K_{\alpha}$$

for some state α of A, then

$$\langle \pi(f)\xi_0, \pi(g)\xi_0 \rangle = \alpha(g^*f)$$
 $(g, f \in A)$

defines an inner-product on $\pi(A)\xi_0$ with the property that

$$\langle \pi(h)\xi,\,\eta
angle = \langle \xi,\,\pi(h^*)\eta
angle \quad (\xi,\,\eta\in\pi(A)\xi_{\scriptscriptstyle 0},\,h\in A)$$
 .

Proof. Assume that $\pi(f_1)\xi_0=\pi(f_2)\xi_0$ and $\pi(g_1)\xi_0=\pi(g_2)\xi_0$. Then by hypothesis $f_1-f_2\in K_\alpha$ and $g_1-g_2\in K_\alpha$. It follows that $\alpha(g_1^*f_1)=\alpha(g_2^*f_2)$, and therefore the form is well-defined. That the form is an inner product is clear.

Now assume that $h, f, g \in A$. Then

$$egin{aligned} \langle \pi(h)\pi(f)\xi_{\scriptscriptstyle 0},\,\pi(g)\xi_{\scriptscriptstyle 0}
angle &= lpha(g^*hf) \ &= lpha((h^*g)^*f) &= \langle \pi(f)\xi_{\scriptscriptstyle 0},\,\pi(h^*)\pi(g)\xi_{\scriptscriptstyle 0}
angle \; . \end{aligned}$$

(II). Let X_0 be a π -invariant subspace of X with $\langle \cdot, \cdot \rangle$ an inner product on X_0 such that

$$\langle \pi(f)\xi, \eta \rangle = \langle \xi, \pi(f^*)\eta \rangle$$
 $(\xi, \eta \in X_0, f \in A)$.

Let $H_{\scriptscriptstyle 0}$ denote the inner-product space $(X_{\scriptscriptstyle 0},\langle \cdot,\,\cdot \rangle)$, and define $\varphi_{\scriptscriptstyle 0}$ on $H_{\scriptscriptstyle 0}$ by

$$arphi_0(f)\xi=\pi(f)\xi$$
 $(\xi\in H_0,f\in A)$.

Let H be the Hilbert space completion of H_0 . Define a linear operator $U: X \to H$ with $\mathscr{D}(U) = X_0$ by $U\xi = \xi$ for $\xi \in X_0$. Then

- (1) $\varphi_{\scriptscriptstyle 0}$ has a unique extension to a *-representation φ on H, and
 - (2) $\mathscr{D}(U)$ is π -invariant and $\varphi(f)U\xi = U\pi(f)\xi$ ($\xi \in \mathscr{D}(U)$, $f \in A$).

Proof. By definition φ_0 is a *-representation of A on the inner-product space H_0 . Then by a result of T. Palmer $\varphi_0(f)$ is a bounded operator on H_0 for each $f \in A$ and $f \mapsto \varphi_0(f)$ is a continuous map of A into the algebra of bounded linear operators on H_0 [12, Proposition 5]. Thus, (1) holds. Part (2) follows immediately from the definitions given.

(III). Assume that (π, X) and (φ, Y) are continuous Banach representations of A. Assume that $U: X \to Y$ is a linear operator with $\mathcal{D}(U)$ π -invariant and

$$\varphi(f)U\xi = U\pi(f)\xi$$
 $(\xi \in \mathscr{D}(U), f \in A)$.

Furthermore assume that U has closure \bar{U} . Then $\mathscr{D}(\bar{U})$ is $\pi\text{-invariant}$ and

$$arphi(f)ar{U}\xi=ar{U}\pi(f)\xi$$
 $(\xi\in\mathscr{D}(ar{U}),f\in A)$.

Proof. Assume that $\xi \in \mathcal{D}(\bar{U})$. Then by the definition of \bar{U} there exists $\{\xi_n\} \subset \mathcal{D}(U)$ such that $\xi_n \to \xi$ and $U\xi_n \to \bar{U}\xi$. Then $\pi(f)\xi_n \to \pi(f)\xi$ and $U\pi(f)\xi_n = \varphi(f)U\xi_n \to \varphi(f)\bar{U}\xi$. Again, by the definition of \bar{U} we have

$$\pi(f)\xi \in \mathscr{D}(\bar{U})$$
 and $\bar{U}\pi(f)\xi = \varphi(f)\bar{U}\xi$.

3. Symmetry and Naimark-relatedness. In this paper we are basically concerned with conditions that imply that a given Banach representation of A is Naimark-related to a *-representation. In this regard it is natural to ask what Banach algebras have the property that every continuous irreducible Banach representation is Naimark-related to a *-representation? It is known that every irreducible representation of a B*-algebra on Hilbert space is Naimark-related to a *-representation [2, Cor. 1]. The next result shows that if a Banach *-algebra A has the property that every algebraically irreducible Banach representation is Naimark-related to a *-representation, then A must be symmetric. In fact, the symmetry of A can be characterized in this fashion. The symmetry of a Banach *-algebra has other implications for the representation theory of the algebra; see Corollaries 5 and 11.

THEOREM 1. Let A be a Banach *-algebra. The following are equivalent:

- (1) A is symmetric;
- (2) every modular maximal left ideal of A is the left kernel of some state of A (which in this case may be chosen to be a pure state);
- (3) every algebraically irreducible Banach representation of A is Naimark-related to a *-representation of A (which in this case may be chosen to be irreducible).

Proof. By [13, Theorem] (1) and (2) are equivalent.

Assume that (2) holds. Let (π, X) be an algebraically irreducible representation of A. Fix $\xi_0 \in X$, $\xi_0 \neq 0$. A simple algebraic argument verifies that $M = \{f \in A : \pi(f)\xi_0 = 0\}$ is a modular maximal left ideal of A. Therefore by hypothesis there exists a state α of A such that $M = K_{\alpha}$ (and α may be chosen to be a pure state). Define an inner-product $\langle \cdot, \cdot \rangle$ on $X = \pi(A)\xi_0$ as in (I), i.e.,

$$\langle \pi(f)\xi_0, \pi(g)\xi_0 \rangle = \alpha(g^*f)$$
 $(f, g \in A)$.

Let (φ, H) be the *-representation of A, and let U be the intertwining operator constructed as in (II).

Consider the map $\psi: A - M \rightarrow X$ defined by

$$\psi(f+M)=\pi(f)\xi_0 \qquad (f\in A).$$

Clearly ψ is continuous, and therefore bicontinuous by the Open Mapping Theorem. Hence there exists B>0 such that for all $f\in A$

$$\inf \{ ||f + g|| \colon g \in M \} = ||f + M|| \le B ||\pi(f)\xi_0||_X$$
.

If $f \in A$, $g \in M$, then

$$||U\pi(f)\xi_0||_H^2=lpha((f+g)^*(f+g))\leqq\gamma(f+g)^2\leqq||f+g||^2$$
 .

Taking the infimum over all $g \in M$ we have for all $f \in A$

$$||U\pi(f)\xi_0||_X \leq ||f+M|| \leq B||\pi(f)\xi_0||_X$$
.

This proves that $U: X \to H$ is bounded on X and is therefore closed. It follows that π is Naimark-related to φ . This verifies that (2) implies (3).

Conversely, assume that (3) holds. Let M be a modular maximal left ideal of A. Let π be the algebraically irreducible representation of A on A-M given by

$$\pi(f)(g+M)=fg+M \qquad (f,g\in A).$$

By (3) there exists a *-representation (φ, H) of A Naimark-related to π (φ may be chosen to be irreducible). Let U be a closed one-to-one linear operator with π -invariant domain in A-M such that

$$\varphi(f)U\xi = U\pi(f)\xi$$
 $(\xi \in \mathscr{D}(U), f \in A)$.

Since π is algebraically irreducible and $\mathscr{D}(U)$ is π -invariant, we have $\mathscr{D}(U) = A - M$. Fix $u_0 \in A$ such that $fu_0 - f \in M$ for all $f \in A$. Define α on A by

$$\alpha(f) = (\varphi(f)U(u_0 + M), U(u_0 + M)) \qquad (f \in A).$$

Clearly, α is a positive linear functional on A. Also,

$$f \in M \iff f(u_0 + M) = 0$$

$$\iff U\pi(f)(u_0 + M) = 0$$

$$\iff \varphi(f)U(u_0 + M) = 0$$

$$\iff \alpha(f^*f) = 0.$$

Thus, $M = K_{\alpha}$. Finally, some constant multiple of α is a state of A, and if φ is irreducible, then this multiple of α is a pure state.

4. Representations on a Hilbert space. In this section we

investigate a variety of conditions on A and on a representation (π, H) of A, H a Hilbert space, that imply that π is Naimark-related to a *-representation of A. In order to construct a *-representation of A by the methods of (I) and (II), some reasonable hypothesis is necessary to insure that certain closed left ideals of A are left kernels of a state of A. The next lemma provides a useful tool in this regard.

LEMMA 2. Let A be a separable A^* -algebra. Let M be a γ -closed left ideal of A. Then there exists a state α of A such that $M=K_{\alpha}$.

Proof. Let \overline{M} be the closure of M in \overline{A} . Since $\gamma(f) \leq ||f||$ for all $f \in A$, \overline{A} is separable. If there exists a state $\overline{\alpha}$ on \overline{A} such that $\overline{M} = K_{\overline{\alpha}}$, then $M = K_{\alpha}$ where α is the restriction of $\overline{\alpha}$ to A. Thus we may assume that A is a separable B^* -algebra and that M is a closed left ideal of A.

Let \varDelta be the set of all pure states ω of A such that $M \subset K_{\omega}$. Define for all $f + M \in A - M$

$$||f + M||_{\Delta} = \sup \{\omega(f^*f)^{1/2} : \omega \in \Delta\}$$
.

Since for every state ω we have

$$\omega((f+g)^*(f+g))^{1/2} \leq \omega(f^*f)^{1/2} + \omega(g^*g)^{1/2} \qquad (f,g \in A),$$

it follows that

$$||(f+g)+M||_{4} \leq ||f+M||_{4} + ||g+M||_{4} \quad (f,g\in A).$$

Now because A is a B^* -algebra we have $M=\bigcap\{K_\omega\colon\omega\in\varDelta\}$ [5, Théorème 2.9.5]. This fact and the inequality above prove that $\|\cdot\|_{\mathcal{A}}$ is a norm on A-M. Also, $\|f+M\|_{\mathcal{A}}\leq\|f\|$ by [5, Prop. 2.7.1], and therefore A-M is separable in the norm $\|\cdot\|_{\mathcal{A}}$. Choose $\{f_n+M\colon n\ge 1\}$ a countable dense subset of $\{g+M\colon \|g+M\|_{\mathcal{A}}=1\}$. For each $n\ge 1$ choose $\omega_n\in\mathcal{A}$ such that $\omega_n(f_n^*f_n)>1/2$. Suppose there exists $g\in\bigcap_{n\ge 1}K_{\omega_n}$ such that $g\notin M$. We may assume $\|g+M\|_{\mathcal{A}}=1$. Take f_n such that

$$||(g-f_n)+M||_{\it d}<rac{1}{2}$$
 .

Then

$$rac{1}{4} > ||(g-f_{\scriptscriptstyle n}) + M||_4^2 \ge \omega_{\scriptscriptstyle n}((g-f_{\scriptscriptstyle n})^*(g-f_{\scriptscriptstyle n})) = \omega_{\scriptscriptstyle n}(f_{\scriptscriptstyle n}^*f_{\scriptscriptstyle n}) > rac{1}{2}$$
 .

This contradiction proves that $M = \bigcap_{n \ge 1} K_{\omega_n}$. Finally, set $\alpha = \sum_{n=1}^{\infty} (1/2)^n \omega_n$. Then α is a state of A with $K_{\alpha} = M$.

Now we state and prove the main result of this section.

THEOREM 3. Let π be a continuous essential representation of A on a Hilbert space H. Assume that either

- (1) (π, H) is irreducible, and for some $\xi_0 \in H$, $\xi_0 \neq 0$, $\{g \in A : \pi(g)\xi_0 = 0\}$ is the left kernel of a state of A, or
- (2) there exists a dense π -invariant subspace H_0 of H which is the algebraic direct sum of subspaces of the form $\pi(A)\xi$ where $\xi \in H$, and every left ideal of the form $\{g \in A : \pi(g)\eta = 0\}$ is the left kernel of some state of A.

Then (π, H) is Naimark-related to a *-representation (φ, K) of A where K is a closed subspace of H.

Proof. Under either of the hypotheses (1) or (2), we can use (I) to construct an inner-product $\langle \cdot, \cdot \rangle$ defined on a dense π -invariant subspace H_0 with the property that

$$\langle \pi(f)\xi, \eta \rangle = \langle \xi, \pi(f^*)\eta \rangle$$
 $(\xi, \eta \in H, f \in A)$.

In the case of (2), the, inner-product (\cdot, \cdot) is constructed by forming the sum of inner-products defined on the direct summands of H_0 of the form $\pi(A)\xi$. By [10, Theorem 1.27, p. 318, and Theorem 2.23, p. 331] there exists an operator U with $\mathcal{D}(U) = H_0$ and with closure \bar{U} such that

$$\langle \xi, \eta \rangle = (U\xi, U\eta) \qquad (\xi, \eta \in H_0)$$
.

For $f \in A$ define $\varphi_0(f)$ on $K_0 = UH_0$ by

$$arphi_{\scriptscriptstyle 0}(f)U\xi=\,U\pi(f)U^{\scriptscriptstyle -1}\!(\,U\!\hat{\xi})$$
 $(\xi\,{\in}\,H_{\scriptscriptstyle 0})$.

Then

$$arphi_{\scriptscriptstyle 0}(f)U\xi=\,U\pi(f)\xi$$
 $(\xi\in H_{\scriptscriptstyle 0},\,f\in A)$.

Also, for $\xi = U\xi_0$, $\eta = U\eta_0$ where ξ_0 , $\eta_0 \in H_0$, we have

$$egin{aligned} (arphi_0(f)\xi,\,\eta) &= (U\pi(f)\xi_0,\,U\eta_0) \ &= \langle \pi(f)\xi_0,\,\eta_0
angle \ &= \langle \xi_0,\,\pi(f^*)\eta_0
angle \ &= (U\xi_0,\,U\pi(f^*)U^{-1}(U\eta_0)) \ &= (\xi,\,arphi_0(f^*)\eta) \;. \end{aligned}$$

By [12, Prop. 5] there is a unique extension of φ_0 to a *-representation φ of A on K, the closure of K_0 in H. Then by (III) $\mathscr{D}(\bar{U})$ is π -invariant, and

$$\varphi(f)\bar{U}\xi=\bar{U}\pi(f)\xi$$
 $(\xi\in\mathscr{D}(\bar{U}),f\in A)$.

To complete the proof that (π, H) is Naimark-related to (φ, K) it remains to be shown that \overline{U} is one-to-one on $\mathscr{D}(\overline{U})$. Since \overline{U} is closed, $\mathscr{N}(\overline{U})$ is a closed subspace. If $\xi \in \mathscr{N}(\overline{U})$, then $\overline{U}\pi(f)\xi = \varphi(f)\overline{U}\xi = 0$ for all $f \in A$. Therefore $\mathscr{N}(\overline{U})$ is π -invariant. Assume that (1) holds. Then π being irreducible, it follows that $\mathscr{N}(\overline{U}) = \{0\}$.

Now assume that (2) holds. Let \mathscr{I} be the collection of all inner-products $N(\xi, \eta)$ defined on a subspace $\mathscr{D}(N)$ of H such that

- (i) $H_0 \subset \mathcal{D}(N)$,
- (ii) $\mathcal{D}(N)$ is π -invariant, and
- (iii) $N(\pi(f)\xi, \eta) = N(\xi, \pi(f^*)\eta) \ (\xi, \eta \in \mathcal{D}(N), f \in A).$

Partially order the nonempty collection \mathcal{I} by $N_1 \leq N_2$ provided that

$$\mathscr{D}(N_1) \subset \mathscr{D}(N_2)$$
 and $N_1(\xi, \eta) = N_2(\xi, \eta)$ $(\xi, \eta \in \mathscr{D}(N_1))$.

A straightforward Zorn's lemma argument establishes the existence of a maximal element N in \mathscr{T} . Following the argument in the first paragraph of the proof with N replacing $\langle \cdot, \cdot \rangle$ and $\mathscr{D}(N)$ replacing H_0 , we can construct as before an operator U with closure \overline{U} and a *-representation (φ, K) of A such that

$$N(\xi,\,\eta)=(\,U\xi,\,U\eta)\qquad \qquad (\xi,\,\eta\in\mathscr{D}(N))$$
 ,

 $\mathscr{D}(\bar{U})$ is π -invariant, and

$$arphi(f)ar{U}\xi=ar{U}\pi(f)\xi$$
 $(\xi\in\mathscr{D}(ar{U}),f\in A)$.

Suppose that \bar{U} is not one-to-one. Choose $\eta_0 \in \mathcal{N}(\bar{U})$, $\eta_0 \neq 0$. By hypothesis exists a state α of A such that

$$K_{\alpha}=\{g\in A\colon \pi(g)\eta_0=0\}$$
 .

Now $||\bar{U}\xi||^2=N(\xi,\xi)$ for $\xi\in\mathscr{D}(N)$, and therefore \bar{U} is one-to-one on $\mathscr{D}(N)$. Thus, $\mathscr{D}(N)\cap\pi(A)\eta_0=\{0\}$. Also note that $\pi(A)\eta_0\neq\{0\}$ since π is essential. Let

$$\mathscr{D}(M) = \mathscr{D}(N) + \pi(A)\eta_0$$
.

Now by (I)

$$\langle \pi(f)\eta_{\scriptscriptstyle 0},\,\pi(g)\eta_{\scriptscriptstyle 0}
angle = lpha(g^*f) \hspace{1cm} (g,f\!\in\!A)$$

defines an inner-product on $\pi(A)\eta_0$ with properties (i), (ii), (iii) above. For $\xi, \eta \in \mathcal{D}(M)$, $\xi = \xi_1 + \xi_2$ and $\eta = \eta_1 + \eta_2$ where $\xi_1, \eta_1 \in \mathcal{D}(N)$, $\xi_2, \eta_2 \in \pi(A)\eta_0$, define

$$M(\xi, \eta) = N(\xi_1, \eta_1) + \langle \xi_2, \eta_2 \rangle$$
.

Then $M \in \mathcal{I}$, $M \ge N$, and $M \ne N$. This contradicts the maximality

of N. Thus, \bar{U} must be one-to-one.

By Lemma 2 and Theorem 3 we have:

COROLLARY 4. Let A be a separable B^* -algebra. If π is a continuous essential representation of A on a Hilbert space H, and there exists a π -invariant subspace H_0 having the property described in part (2) of Theorem 3 (in particular, if π is cyclic), then π is Naimark-related to a *-representation of A.

COROLLARY 5. Let A be a symmetric Banach *-algebra. If π is a continuous irreducible representation of A on a Hilbert space H, and π acts algebraically irreducibly on some π -invariant subspace $H_0 \subset H$, then π is Naimark-related to a *-representation of A.

Proof. Fix $\xi_0 \in H_0$, $\xi_0 \neq 0$. Since π acts algebraically irreducibly on H_0 , $\{g \in A : \pi(g)\xi_0 = 0\}$ is a modular maximal left ideal of A. By Theorem 1 this left ideal is the left kernel of a state of A. Thus Theorem 3 applies.

COROLLARY 6. Let G be a unimodular locally compact group such that $L^1(G)$ is separable. Assume that π is a bounded weakly continuous irreducible representation of G on a Hilbert space H. Assume that there exist $\xi_0 \neq 0$, $\eta_0 \neq 0$ in H such that $x \mapsto (\pi(x)\xi_0, \eta_0)$ is in $L^2(G)$. Then π is Naimark-related to a unitary representation of G.

Proof. Let W be the subspace consisting of the vectors $\eta \in H$ such that $x \mapsto (\pi(x)\xi_0, \eta) \in L^2(G)$. Note that if $\eta \in W$ and $y \in G$, then

$$x \longrightarrow (\pi(x)\xi_0, \pi(y)^*\eta) = (\pi(yx)\xi_0, \eta) \in L^2(G)$$
.

Therefore W is invariant under the set of operators $\{\pi(y)^*: y \in G\}$. Thus W^{\perp} is π -invariant. It follows that $W^{\perp} = \{0\}$, and hence that W is dense in H.

Now for each $\eta \in W$ let

$$g_{\eta}(y)=(\pi(y^{-1})\xi_0,\,\eta)$$
 $(y\in G)$.

Since G is unimodular, $g_{\eta} \in L^2(G)$ for all $\eta \in W$. Denote again by π the integrated form on $L^1(G)$ of the group representation π , that is, for ξ , $\eta \in H$ and $f \in L^1(G)$,

$$(\pi(f)\xi,\,\eta)=\int_{\mathcal{G}}\!f(x)(\pi(x)\xi,\,\eta)dx$$
 .

Let $K = \{f \in L^1(G) : \pi(f)\xi_0 = 0\}$. The set K is a closed left ideal of $L^1(G)$. We proceed to prove that K is γ -closed. Assume that $\{f_n\} \subset K$ and $\gamma(f_n - f) \longrightarrow 0$. Since for $h \in L^1(G)$ and $g \in L^2(G)$

$$\gamma(h)||g||_2 \ge ||h*g||_2$$
,

we have

(#)
$$(f_n - f) * g \rightarrow 0$$
 in $L^2(G)$ whenever $g \in L^2(G)$.

If h is a function on G and $x \in G$, then we use the notation

$$h_x(y) = h(xy) (y \in G) .$$

For $\eta \in W$ we have by (#) that

$$(f_n - f) * g_{\eta}(x) = \int_G \{f_n(xy) - f(xy)\}(\pi(y)\xi_0, \eta)dy$$

= $(\{\pi((f_n)_x) - \pi(f_x)\}\xi_0, \eta)$
 $\longrightarrow 0$ in $L^2(G)$.

Now K is a closed left ideal of $L^1(G)$ and hence $(f_n)_x \in K$ for all $n \ge 1$ and all $x \in G$. Thus $x \mapsto (\pi(f_x)\xi_0, \eta)$ is 0 a.e. on G. Since this function is continuous on G, $(\pi(f_x)\xi_0, \eta) = 0$ for all $x \in G$. Then $(\pi(f)\xi_0, \eta) = 0$ for all $\eta \in W$, so that $\pi(f)\xi_0 = 0$. This proves that K is γ -closed. Therefore Lemma 2 and Theorem 3 imply the result.

5. Representations containing operators with finite dimensional range. Let (π, X) be a continuous Banach representation of A, let (φ, H) be a continuous *-representation of A, and assume that π is Naimark-related to φ . Then $\ker(\pi) = \ker(\varphi)$, and since φ is γ -continuous, it follows that $\ker(\pi)$ is γ -closed. In this section we prove a converse of this fact in the case where there are sufficiently many operators with finite dimensional range in the image of π . More precisely we hypothesize that π is finite dimensional spanned (FDS) in the sense of [15, p. 231].

THEOREM 7. Let A be an A^* -algebra. Let (π, X) be a continuous Banach representation of A such that π is FDS. If $\ker(\pi)$ is γ -closed, then π is Naimark-related to a direct sum of irreducible *-representations of A.

We begin the proof of Theorem 7 by proving several preliminary results, and also, since the proof depends heavily on results concerning Banach algebras with minimal left ideals, we briefly review the necessary material from that area.

Let A be a Jacobson semisimple (complex) Banach algebra.

Denote the complex number field by C. An element $e \in A$ is a minimal idempotent (abbreviation: m.i.) of A if $eAe = \{\lambda e : \lambda \in C\}$ [14, Cor. (2.1.6)]. Every minimal left ideal L of A has the form L = Ae where e is a m.i. of A [14, Lemma (2.1.5)]. Furthermore, if A has an involution * which is proper $(f^*f = 0 \Rightarrow f = 0)$ then the m.i. e above may be chosen such that $e = e^*$ [14, Lemma (4.10.1)]. The socle of A, denoted $\operatorname{soc}(A)$, is an ideal which is the algebraic sum of all the minimal left ideals of A or $\{0\}$ if A has no minimal left ideals [14, p. 46]. Also, $\operatorname{soc}(A)$ is the direct algebraic sum of minimal ideals of A each of which has the form AeA for some m.i. e of A.

LEMMA 8. Let A be an A*-algebra, and let (π, X) be a continuous Banach representation of A. Assume that e is a m.i. of A with $e = e^*$. Fix $\xi \in \mathscr{R}(\pi(e))$, $\xi \neq 0$. Then

- (1) π acts algebraically irreducibly on $\pi(A)\xi$;
- (2) the form $\langle \cdot, \cdot \rangle$ defined on $\pi(A)\xi$ by the formula

$$\langle \pi(f)\xi, \pi(g)\xi \rangle e = eg^*fe$$
 $(f, g \in A)$

is an inner-product on $\pi(A)\xi$, and

$$\langle \pi(g)\eta, \delta \rangle = \langle \eta, \pi(g^*)\delta \rangle \qquad (\eta, \delta \in \pi(A)\xi, g \in A);$$

- (3) if φ is defined on the Hilbert space completion H of $(\pi(A)\xi, \langle \cdot, \cdot \rangle)$ as in (II), then (φ, H) is an irreducible *-representation of A;
- (4) if $\{\xi_1, \dots, \xi_n\}$ is a basis for $\mathscr{R}(\pi(e))$, then $\pi(AeA)X$ is the algebraic direct sum of the spaces $\{\pi(A)\xi_k: 1 \leq k \leq n\}$.

Proof. Assume that $\pi(f)\xi \neq 0$ and $\pi(g)\xi$ are given. Since Ae is a minimal left ideal [14, Lemma (2.1.8)], there exists $h \in A$ such that ge = hfe. Then $\pi(h)(\pi(f)\xi) = \pi(hfe)\xi = \pi(ge)\xi = \pi(g)\xi$. This proves (1).

Let $J = \{f \in A : \pi(f)\xi = 0\}$. Clearly $A(1-e) \subset J$. Then since A(1-e) is a maximal left ideal, A(1-e) = J. If $\pi(f_1)\xi = \pi(f_2)\xi$ and $\pi(g_1)\xi = \pi(g_2)\xi$, then $f_1 - f_2 \in A(1-e)$ and $g_1 - g_2 \in A(1-e)$. Therefore $f_1e = f_2e$ and $g_1e = g_2e$. It follows that $\langle \cdot, \cdot \rangle$ is well-defined. Now the map $fe \to \pi(f)\xi$ is an isomorphism of Ae onto $\pi(A)\xi$. Given this identification of Ae and $\pi(A)\xi$, the proof of [14, Theorem (4.10.3)] is easily adapted to prove (2).

Let (φ, H) be as in (3). If $\eta \in H$, choose $\{f_n\} \subset A$ such that $||\pi(f_n)\xi - \eta||_H \to 0$. For each n there exists a scalar μ_n such that $ef_n e = \mu_n e$. Then

$$\mu_n \xi = \pi(e) \pi(f_n e) \xi = \varphi(e) \pi(f_n) \xi \longrightarrow \varphi(e) \eta$$
.

Thus, $\varphi(e)\eta = \mu\xi$ for some $\mu \in C$. This proves that

$$\varphi(e)H = \{\lambda \xi \colon \lambda \in C\}$$
.

Let K be a nonzero closed φ -invariant subspace of H. Then either $\varphi(e)K \neq \{0\}$ or $\varphi(e)K^{\perp} \neq \{0\}$. In the former case we have $\xi \in \varphi(e)K$, which implies $\pi(A)\xi \subset K$, so that K = H. In the latter case, $K^{\perp} = H$. This proves that φ is irreducible on H.

To prove (4), we first show that the subspaces $\{\pi(A)\xi_k: 1 \le k \le n\}$ are independent. Assume that $f_k \in A$, $1 \le k \le n$, and

$$\sum_{k=1}^{n} \pi(f_k) \xi_k = 0.$$

Then for all $g \in A$,

$$\sum_{k=1}^{n}\pi(egf_{k}e)\xi_{k}=0$$
 .

Since egf_ke is just a scalar multiple of e and $\{\xi_1, \dots, \xi_n\}$ is an independent set of vectors, we have $egf_ke=0$ for all $g\in A$ and $1\leq k\leq n$. In particular for each k, $ef_k^*f_ke=0$, so that $f_ke=0$ since * is proper. Then finally,

$$\pi(f_k)\xi_k = \pi(f_k e)\xi_k = 0$$
, $1 \le k \le n$.

This proves our first assertion. Now clearly

$$\sum_{k=1}^n \pi(A) \xi_k \subset \pi(A) \pi(e) X \subset \pi(AeA) X$$
 .

Assume $f, g \in A$ and $\xi \in X$. Then $\pi(eg)\xi = \lambda_1\xi_1 + \cdots + \lambda_n\xi_n$ for some scalars $\lambda_1, \dots, \lambda_n$. Then

$$\pi(feg)\xi = \lambda_1\pi(f)\xi_1 + \cdots + \lambda_n\pi(f)\xi_n \subset \sum_{k=1}^n \pi(A)\xi_k$$
.

Therefore $\pi(AeA)X = \sum_{k=1}^n \pi(A)\hat{\xi}_k$.

LEMMA 9. Let A be an A^* -algebra. Assume that I is a γ -closed ideal of A. Then I is a \ast -ideal of A and the quotient algebra A/I is an A^* -algebra where the involution in A/I is defined as usual by

$$(f+I)^* = f^* + I \qquad (f \in A).$$

Proof. Let \overline{I} be the closure of I in \overline{A} . Since I is γ -closed, $I = \overline{I} \cap A$. By [14, Theorem (4.9.2)] \overline{I} , and therefore I, is a *-ideal. Now $\overline{A}/\overline{I}$ is a B^* -algebra [14, Theorem (4.9.2)], and the map $f + I \rightarrow f + \overline{I}$ is a *-isomorphism of A/I onto a *-subalgebra of $\overline{A}/\overline{I}$. Thus

A/I is an A^* -algebra.

Now assume the notation and hypotheses in the statement of Theorem 7. By Lemma 9 $A/\ker(\pi)$ is an A^* -algebra. Thus, the proof of Theorem 7 reduces to the case where $\ker(\pi) = \{0\}$. From this point until the end of the proof of Theorem 7 we make the assumption that $\ker(\pi) = \{0\}$. Let $F = \{g \in A : \pi(g) \text{ has finite dimensional range}\}$.

LEMMA 10. F = soc(A).

Proof. First we prove

(1) if
$$g \in A$$
, $gF = \{0\}$ or $Fg = \{0\}$, then $g = 0$.

Assume that $gF = \{0\}$. Then $\pi(g)\pi(f) = 0$ for all $f \in F$. Since $\bigcup \{\mathscr{R}(\pi(f)): f \in F\}$ is dense in X, we have $\pi(g) = 0$. Therefore g = 0. Suppose $Fg = \{0\}$. Then $(gF)^2 = \{0\}$, so that gF is a nilpotent right ideal of A. An A^* -algebra is Jacobson semisimple [14, Theorem (4.1.19)], and in particular, has no nonzero nilpotent left or right ideals. Therefore $gF = \{0\}$ which implies g = 0. This proves (1).

Let M be a minimal ideal of A in soc(A). Then either $M \cap F = \{0\}$ or $M \subset F$. But in the former case $MF \subset M \cap F = \{0\}$ which is impossible by (1). Then since soc(A) is the algebraic sum of minimal ideals of A, $soc(A) \subset F$.

In order to prove the opposite inclusion we need the technical result:

(2) if
$$f \in F$$
, $f \neq 0$, then there exists a nonzero idempotent $e \in \text{soc } (A)$ such that $\mathscr{R}(\pi(e)) \subset \mathscr{R}(\pi(f))$.

Choose $g \in F$ such that $gf \neq 0$. The algebra fAg is isomorphic to $\pi(f)\pi(A)\pi(g)$, and therefore is finite dimensional. If for some n $(fAg)^n = \{0\}$, then $(Agf)^{n+1} = \{0\}$. This contradicts the fact that A has no nilpotent left ideals. By classical Wedderburn theory [9, pp. 38, 53, 54] there exists a nonzero idempotent $e \in fAg$. Then clearly $\mathscr{R}(\pi(e)) \subset \mathscr{R}(\pi(f))$.

Assume $f \in F$. Choose $g \in \text{soc }(A)$ such that $\mathscr{R}(\pi(f-gf))$ has the smallest possible dimension. Suppose $f-gf \neq 0$. Then by (2) there exists a nonzero idempotent $e \in \text{soc }(A)$ such that $\mathscr{R}(\pi(e)) \subset \mathscr{R}(\pi(f-gf))$. Consider

$$h = (f - gf) - e(f - gf) = f - (g + e - eg)f$$
.

Then $\dim\left(\mathscr{R}(\pi(h))\right)<\dim\left(\mathscr{R}(\pi(f-gf))\right)$ which contradicts the minimal dimension of $\mathscr{R}(\pi(f-gf))$. Therefore $f=gf\in\operatorname{soc}(A)$

Now we complete the proof of Theorem 7. Let $\{M_{\delta} \colon \delta \in \Delta\}$ be the set of all minimal ideals of A in soc (A). For each $\delta \in \Delta$ choose e_{δ} a m.i. of A with $e_{\delta}^* = e_{\delta}$ such that $M_{\delta} = Ae_{\delta}A$. By Lemma 10 each element $e_{\delta} \in F$. Let $n(\delta)$ be the dimension of the range of $\pi(e_{\delta})$. For each $\delta \in \Delta$, choose a basis $\{\xi_{\delta,1}, \dots, \xi_{\delta,n(\delta)}\}$ for the range of $\pi(e_{\delta})$. Form the spaces

$$X_{\delta,k} = \pi(A)\xi_{\delta,k}$$
 $(\delta \in \mathcal{A}, 1 \leq k \leq n(\delta))$.

Note that if δ , $\tau \in \Delta$, $\delta \neq \tau$, then $e_{\delta}Ae_{\tau} \subset M_{\delta} \cap M_{\tau} = \{0\}$. From this fact and part (4) of Lemma 8 it is easy to see that the spaces

$$\{X_{\delta,k}:\delta\in\mathcal{A},\,1\leq k\leq n(\delta)\}$$
 are independent.

Combining the facts that $\pi(F)X$ is dense in X and $F = \operatorname{soc}(A) = \sum_{\delta \in A} Ae_{\delta}A$ with Lemma 8 (4), we have

$$\sum \{X_{\delta,k}: \delta \in A, 1 \leq k \leq n(\delta)\}$$
 is dense in X .

For convenience of notation we index the collection in the sum above by an index set Λ . Set

$$X_0 = \sum \{X_{\lambda} : \lambda \in \Lambda\}$$
.

We have proved that X_0 is the algebraic direct sum of the spaces $\{X_{\lambda}: \lambda \in A\}$ and that X_0 is dense in X.

For each λ let $\langle \cdot, \cdot \rangle_{\lambda}$ be the inner-product defined on $\pi(A)\xi_{\lambda}$ as in Lemma 8 (2). Define an inner-product on X_0 by

$$\langle \xi, \eta \rangle = \sum_{\lambda \in A} \langle \xi_{\lambda}, \eta_{\lambda} \rangle_{\lambda}$$

where $\xi = \sum \xi_{\lambda}$, $\eta = \sum \eta_{\lambda}$, ξ_{λ} , $\eta_{\lambda} \in X_{\lambda}$ for all $\lambda \in \Lambda$. For each $f \in A$ define $\varphi_0(f)$ on X_0 by

$$arphi_{\scriptscriptstyle 0}(f)(\sum_{{\scriptscriptstyle \lambda}\in{\scriptscriptstyle \Lambda}}\pi(g_{\scriptscriptstyle \lambda})\xi_{\scriptscriptstyle \lambda})=\sum_{{\scriptscriptstyle \lambda}\in{\scriptscriptstyle \Lambda}}\pi(fg_{\scriptscriptstyle \lambda})\xi_{\scriptscriptstyle \lambda}$$
 .

Then φ_0 is a *-representation of A on $(X_0, \langle \cdot, \cdot \rangle)$ as in (II). Let H be the Hilbert space completion of $(X_0, \langle \cdot, \cdot \rangle)$, and extend φ_0 to a *-representation of A on H, again as in (II). For each $\lambda \in \Lambda$, let H_{λ} be the closure of X_{λ} in H, and let φ_{λ} be the restriction of φ to the φ -invariant subspace H_{λ} . By Lemma 8 (3) each of the representations $(\varphi_{\lambda}, H_{\lambda})$, $\lambda \in \Lambda$ is an irreducible *-representation of A. If $\xi \in X_{\lambda}$, $\eta \in X_{\mu}$ where $\lambda \neq \mu$, then by definition $\langle \xi, \eta \rangle = 0$. It follows that $H_{\lambda} \perp H_{\mu}$. Since $X_0 \subset \sum \{H_{\lambda}: \lambda \in \Lambda\}$, H is the orthogonal direct sum of $\{H_{\lambda}: \lambda \in \Lambda\}$. Then φ is direct sum of the irreducible *-representations $(\varphi_{\lambda}, H_{\lambda})$, $\lambda \in \Lambda$.

It remains to be shown that (π, X) is Naimark-related to (φ, H) . To begin we establish the technical fact that

(1) if $\psi \in H$, $\psi \neq 0$, then there exists $f \in F$ such that $\varphi(f)\psi \neq 0$.

For $\psi = \sum_{\lambda \in A} \psi_{\lambda}$ where $\psi_{\lambda} \in H_{\lambda}$, $\lambda \in A$. There is some $\mu \in A$ such that $\psi_{\mu} \neq 0$. By the construction of H_{μ} there exists a m.i. e of A such that $\varphi_{\mu}(e) \neq 0$. Also, since φ_{μ} is irreducible, $\varphi(A)\psi_{\mu}$ is dense in H_{μ} . It follows that there exists $g \in A$ such that $\varphi(eg)\psi_{\mu} \neq 0$. Then $eg \in F$ by Lemma 10. This proves (1).

Define a linear operator V with $\mathscr{D}(V) = X_0 \subset X$ and with range in H by $V\eta = \eta$, $\eta \in X_0$. Clearly

$$\varphi(f)\,V\xi = \,V\pi(f)\xi \qquad \qquad (\xi\in X_0,\,f\in A)$$
 .

By Lemma 8 (4) and by construction we have $\operatorname{soc}(A)X \subset X_0$. Thus, given $f \in F = \operatorname{soc}(A)$, the range of $\pi(f)$ is in X_0 . The restriction of V to the finite dimensional subspace $\mathscr{R}(\pi(f))$ is a bounded map from $\mathscr{R}(\pi(f))$ into H. Therefore we have

(2) for every $f \in F$, $V\pi(f)$ is a bounded everywhere defined operator from X to H.

Now we prove that V has a closure \overline{V} and that \overline{V} is one-to-one. Assume that $\{\psi_n\} \subset \mathscr{D}(V) = X_0$, $\psi \in H$, $\|\psi_n\|_X \to 0$, and $\|V\psi_n - \psi\|_H \to 0$. Suppose that $\psi \neq 0$. Then by (1) there exists $f \in F$ such that $\varphi(f)\psi \neq 0$. By (2), $\|V\pi(f)\psi_n\|_H \to 0$. Also, $\|\varphi(f)V\psi_n - \varphi(f)\psi\|_H \to 0$. Since $\varphi(f)V\psi_n = V\pi(f)\psi_n$ for all n, we have $\varphi(f)\psi = 0$. This contradiction proves that $\psi = 0$, and hence, that V has a closure, \overline{V} . Assume that $\xi \in \mathscr{D}(\overline{V})$ and $\overline{V}(\xi) = 0$. Then there exists $\{\xi_n\} \subset \mathscr{D}(V) = X_0$ such that $\|\xi_n - \xi\|_X \to 0$ and $\|V\xi_n\|_H \to 0$. For all $f \in F$ we have by (2) $\|V\pi(f)\xi_n - V\pi(f)\xi\|_H \to 0$. Also, $\|\varphi(f)V\xi_n\|_H \to 0$. Therefore $V\pi(f)\xi = 0$ for all $f \in F$. Thus, $\pi(F)\xi = 0$, and since π is FDS, $\xi = 0$. This proves that \overline{V} is one-to-one. Then (π, X) and (φ, H) are Naimark-related by (III).

COROLLARY 11. Let A be a symmetric A^* -algebra. Then any irreducible Banach representation (π, X) of A that contains a non-zero operator of finite rank in its image is Naimark-related to an irreducible *-representation of A.

Proof. There exists a dense subspace X_0 of X such that π acts algebraically irreducibly on X_0 [15, p. 231]. Thus $\ker(\pi)$ is primitive in this case, and then the symmetry of A implies that $\ker(\pi)$ is γ -closed. Also, π is FDS. Therefore the result follows from Theorem 7.

6. An example. In this section we construct a symmetric

Banach *-algebra A and a continuous irreducible representation π of A on a Hilbert space H with the properties:

- (1) (π, H) is not similar to any *-representation of A, and
- (2) π is not γ -continuous.

The question of whether any continuous irreducible representation of a B^* -algebra on a Hilbert space is similar to a *-representation is open.

Let I = (0, 1], and set $S = I \times I$. If J(x, y) is a bounded function on S, let

$$||J||_{u} = \sup\{|J(x, y)|: (x, y) \in S\}$$
.

Let A be the collection of all complex-valued functions K(x, y) defined on S such that $K(x, y)(xy)^{-1}$ is continuous and bounded on S. Clearly A is a complex linear space with the usual operations. Norm A by

$$||K(x, y)|| = ||K(x, y)(xy)^{-1}||_{u}$$
 $(K \in A)$.

Note that $||K||_u \le ||K||$ for all $K \in A$. It is easy to see that the norm $||\cdot||$ is a complete norm on A. Define multiplication in A by

$$(K \cdot J)(x, y) = \int_{I} K(x, t) J(t, y) dt$$

where $K, J \in A$, $(x, y) \in S$. It is clear that $K \cdot J \in A$ whenever $K, J \in A$, and that A is a complex algebra with respect to this multiplication operation. Furthermore, if $(x, y) \in S$, then

$$|(K \cdot J)(x, y)(xy)^{-1}| \leq \int_{I} |(K(x, t)x^{-1}J(t, y)y^{-1}| dt \leq ||K|| ||J||.$$

Therefore $||K \cdot J|| \le ||K|| \, ||J||$, so that A is a Banach algebra. For $K \in A$, let

$$K^*(x, y) = \overline{K(y, x)}$$
 $(x, y) \in S$.

Then $K \rightarrow K^*$ is an isometric involution on A.

For $K \in A$, let $\tau(K)$ be the Fredholm integral operator on $L^2(I)$ determined by K, that is,

$$au(K)f(x) = \int_I K(x, y)f(y)dy \qquad (x \in I, f \in L^2(I))$$
 .

Then

$$||\tau(K)f||_2 \le ||K||_u ||f||_2 \le ||K|| ||f||_2$$

whenever $f \in L^2(I)$. A standard argument proves that $K \to \tau(K)$ is a faithful continuous *-representation of A on $L^2(I)$. Let D be the set of all complex-valued functions f on I such that $f(x)x^{-1}$ is con-

tinuous and bounded on I. If f_k , $g_k \in D$ for $1 \le k \le n$, then

$$K(x, y) = \sum_{k=1}^{n} f_k(x)g_k(y) \in A$$
.

The set of such kernels is exactly the socle of A, and this set is dense in A. For every kernel K of this form, $\tau(K)$ is an operator with finite dimensional range. Furthermore, $K \to \tau(K)$ acts algebraically irreducibly on the subspace $D \subset L^2(I)$. The fact that a primitive Banach algebra with proper involution and dense socle is symmetric follows from an argument similar to the one used to establish [4, Theorem 3.8]. To summarize:

(IV). A is a primitive symmetric Banach *-algebra with dense socle.

Now we construct a continuous representation of A on $H=L^2(I,\,y^2dy)$ with the properties (1) and (2) stated above. We denote the norm of $f\in H$ by

$$|f|_2 = \left(\int_T |f(y)|^2 y^2 dy\right)^{1/2}$$
 .

For $K \in A$ let

$$\pi(K)f(x) = \int_I K(x, y)f(y)dy$$
 $(x \in I, f \in H)$.

Then for all $K \in A$, $f \in H$, and $x \in I$ we have

$$egin{align} |\pi(K)f(x)| &= \left|\int_I K(x,\,y) y^{-1}(f(y)y) dy
ight| \ &\leq ||K(x,\,y) y^{-1}||_u igg(\int_I |f(y)|^2 y^2 \, dyigg)^{1/2} \ &\leq ||K||\,|f|_2 \;.
onumber \end{aligned}$$

Therefore

$$\int_{I} |\pi(K)f(x)|^2 x^2 dx \leqq \int_{0}^{1} \!\! ||K||^2 |f|_2^2 x^2 dx \leqq ||K||^2 |f|_2^2 \ .$$

Thus

$$|\pi(K)f|_2 \le ||K|| |f|_2$$
 $(f \in H, K \in A)$.

This proves that $K \to \pi(K)$ is a continuous representation of A on H. Using the fact that π acts algebraically irreducibly on $D \subset H$, it is not difficult to verify that (π, H) is irreducible. Suppose that (π, H) is similar to a *-representation of A (which is then necessarily irreducible). It can be shown that an algebra with the properties

listed in (IV) has a unique irreducible *-representation up to unitary equivalence. Therefore in this case τ is the unique irreducible *-representation of A. Thus π must be similar to τ . We show that this is impossible. For assume that there is a bicontinuous linear isomorphism W mapping $L^2(I)$ onto H such that

$$\pi(K)W = W\tau(K) \qquad (K \in A).$$

Assume $h \in D$. Choose $g \in D$, $g \neq 0$. Let $K(x, y) = h(x)\overline{g(y)}(x, y) \in S$. Then $K \in A$. Now $\pi(K)Wg = W(\tau(K)g)$, that is,

$$\int_I h(x) \overline{g(y)} (Wg)(y) dy \, = \, W \Bigl(\int_I h(x) |g(y)|^2 dy \, \Bigr) \; .$$

This equation proves that Wh is a scalar multiple of h. Since D is dense in $L^2(I)$ and W is continuous, Wh is a scalar multiple of h for all $h \in L^2(I)$. But $g(y) = y^{-1} \in H$ and $g \notin L^2(I)$. Thus W can not map onto H. This contradiction proves the assertion (1).

If π is γ -continuous, then π has a continuous extension $\overline{\pi}$ to the B^* -algebra \overline{A} . Then by [1, Cor. 2.3], the representation $\overline{\pi}$, and hence π , is similar to a *-representation. This contradiction proves (2).

7. Some open questions. There are many open questions concerning Naimark-relatedness of representations of Banach *-algebras. In this section we list several interesting questions in the area.

Question 1. Let A be a symmetric Banach *-algebra. Is every continuous essential Banach representation of A with γ -closed kernel Naimark-related to a *-representation?

Question 1 has an affirmative answer if the representation is algebraically irreducible [Theorem 1], if the representation is irreducible and contains in its image an operator with finite dimensional range [Corollary 11], or if the hypotheses of Corollary 5 are satisfied.

Question 2. Is every continuous representation of a B^* -algebra on Hilbert space similar to a *-representation?

J. Bunce has proved that this question has an affirmative answer when the B^* -algebra is strongly ammenable [3]. An affirmative answer is provided by the author if either the representation is algebraically irreducible [1, Prop. 2.2], or if the representation is irreducible and contains in its image a nonzero operator with finite dimensional range [1, Cor. 2.3]. The question can be weakened to ask only that the given representation be Naimark-related to a

*-representation. Corollary 4 and [2, Theorem 3] provide partial answers to this version of the question.

In view of results such as those cited above concerning similarity or Naimark-relatedness of a representation to a *-representation when the given algebra is a B^* -algebra, it is of interest to determine conditions which imply that a representation π of a Banach *-algebra A extends to a continuous representation of \overline{A} (clearly this is the case if and only if π is γ -continuous).

Question 3. Under what conditions is a Banach representation of a Banach *-algebra γ -continuous?

A minimal necessary condition for a representation π to be γ -continuous is that $\ker(\pi)$ be γ -closed. That this condition need not suffice for π to be γ -continuous follows from the example in §6. The work of T. Palmer [11] provides an equivalent condition that π be γ -continuous that may prove useful, namely, that the image under π of the group of unitaries of A (assuming A has an identity) be bounded. In the case that (π, X) is an algebraically irreducible Banach representation of A and X is not a Hilbert space in an equivalent norm, then a result of the author [1, Prop. 2.2] shows that π cannot extend to a continuous representation of \overline{A} .

Finally, we state a general question about which there seems to be little information available.

Question 4. Let A be a Banach *-algebra, and let π be a continuous irreducible Banach representation of A. If $\ker(\pi)$ is the kernel of some *-representation of A, is π Naimark-related to a *-representation of A?

Added in proof. In several places we have used the inequality $\gamma(f) \leq ||f||$ for f in a Banach *-algebra A. This inequality does not hold in general. However, using results in [11] it is not difficult to verify that there exists a constant K>0 such that $\gamma(f) \leq K||f||$ for all $f \in A$. This inequality suffices in all our arguments.

REFERENCES

- 1. B. A. Barnes, Representation of B^* -algebras on Banach spaces, Pacific J. Math., 50 (1974), 7-18.
- 2. ——, The similarity problem for representations of a B*-algebra, Michigan Math. J., 22 (1975), 25-32.
- 3. J. Bunce, Representations of strongly ammenable C*-algebras, Proc. Amer. Math. Soc., 32 (1972), 241-246.
- 4. P. Civin and B. Yood, Involutions on Banach algebras, Pacific J. Math., 9 (1959), 415-436.

- 5. J. Dixmier, Les C*-Algèbres et Leurs Représentations, Cahiers Scientifique, Fasc. 29, Gautier-Villars, Paris, 1964.
- 6. R. Gangoli, On the symmetry of L_1 algebras of locally compact groups and the Weiner Tauberian theorem; preprint.
- 7. F. P. Greenleaf, *Invariant Means on Topological Groups*, Van Nostrand Mathematical Studies #16, Van Nostrand-Reinhold Co., New York, 1969.
- 8. E. Hewitt and K. Ross, Abstract Harmonic Analysis, Vol. 1 Springer-Verlag, Berlin, 1963.
- 9. N. Jacobson, Structure of Rings, Amer. Math. Soc. Colloquium Publ., vol. 37, Amer. Math. Soc., Providence, R.I., 1956.
- 10. T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1966.
- 11. T. W. Palmer, The Gelfand-Naimark pseudo-norm on Banach *-algebras, J. London Math. Soc., (2), 3 (1971), 59-66.
- 12. ——, *-Representations of U^* -algebras, Indiana Univ. Math. J., **20** (1971), 929-933.
- 13. ——, Hermitian Banach *-algebras, Bull. Amer. Math. Soc., 78 (1972), 522-524.
- 14. C. E. Rickart, General Theory of Banach Algebras, Van Nostrand, Princeton, N. J., 1960.
- 15. G. Warner, Harmonic Analysis on Semi-simple Lie Groups, Vol. 1, Springer-Verlag, Berlin, 1972.

Received September 28, 1976. This research was partially supported by NSF grant MCS76-06421.

University of Oregon Eugene, OR 97403