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GENERATING O(n) WITH REFLECTIONS

MORRIS L. EATON AND MICHAEL PERLMAN

For reC, = {zlxc R*, ||z|| =1}, let S, =I,—2rr’ where r
is a column vector. O(n) denotes the orthogonal group on E*.
If RS C,, let #2={S,|rc R} and let G be the smallest closed
subgroup of O(n) which contains “. G is reducible if there
is a nontrivial subspace M S R* such that gM < M for all
g€ G. Otherwise, G is irreducible.

THEOREM. If G is infinite and irreducible, then G =

O(n).

In what follows, R" denotes Euclidean n-space with the standard
inner product, O(n) is the orthogonal group of R*, and C, = {z|x € R",
||| = 1}. If U is a subset of O(n), {U) denotes the group generated
algebraically by U and (U) denotes the closure of (U). Thus, (T
is the smallest closed subgroup of O(n) containing U. For an integer
k,1 <k <n, M, denotes a k-dimensional linear subspace of R". If
reC,, let S, = I — 2rr'" where 7 is a column vector. Thus S, is a
reflection through r-henceforth called a reflection.

Suppose R < C, and let .&Z = {S,|rcR}. Set G = (#). The
group G is reducible if there is an M, such that gM, & M, for all
g € G; otherwise, G is irreducible. The main result of this note is
the following.

THEOREM 1. If G is infinite and irreducible, then G = O(n).

Proof of Theorem 1. First note that if S,e.<# and ge @G, then
9S,97'=S8,,€G. Let 4= {gr|geG, reR}. Thus, te4 implies that
S.eG. Since G is infinite, 4 must be infinite (see Benson and Grove
(1971), Proposition 4.1.3). Since every I" in O(n) is a product of a
finite number of reflections, to show that G = O(n), it suffices to
show that G is transitive on C, (if G is transitive on C,, then 4=C,
so every reflection is an element of G and hence G = O(n)).

The proof that G is transitive on C, follows. By Lemma 1
(below), there is a subgroup K,=G and a subspace M,Z R" such that
kx=x« if xe My and ke K, and K, is transitive on D,=M,NC,. Since
G is irreducible, there is an 7, € R such that 7, ¢ M, and 7, ¢ M}. Let
M, = span {r,, M,} and let K, = ({K,, S,,}) > = G. With D, = M,nC,,
Lemma 3 (below) implies that kx = x for all x € M; and ke K,, and
K, is transitive on D,. Again, since G is irreducible, there is an
r,€ R such that r,¢ M, and »r,¢ M;. With M, = span {r;, M,}, let
K,={K,S,})><Gand let D,=MNC, By Lemma 3 (below)
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kx = x for x e M} and ke K, and K, is transitive on D,. Applying
this argument (n — 2) times, we obtain K, £ G and K, is transitive
on D, =C,. Thus, G is transitive on C, and the proof is complete.

To fill in the gaps in the above argument, it remains to prove
Lemmas 1, 2, and 8. Lemma 1 provides the starting point for the
stepwise argument used in the proof of Theorem 1.

LEMMA 1. If G is irreducible and imfinite, there is a subspace
M, and a subgroup K, S G such that kx = x for xe My, ke K, and
K, acts transitively on D, = M, N C,.

Proof. As noted in the proof of Theorem 1, the set 4 = {gr|r € R,
g € G} is infinite. Thus, there is a point d,€ C, such that every
neighborhood of 6, contains infinitely many points in 4. Thus we
can select a sequence of pairs (r, t,), 7, ;€ 4, such that », and ¢, are
linearly independent and 1 — 1/ < 7it;, < ript, <1l for 1=1,2, ---.
For 0 =< 7 < 2x, set

(1) mm:( 008 7 Si’”’)eo<2>.

—sin”y cos?®
Define 6, by cosf, =71, 0=6,<m so 0,~—0 as 1— . Let
I',€O(n) have first row ¢; and second row
(r; — t;’riti),/H/ri - t;"'iti H .

Then an easy calculation shows that

r26,) 0
(26.) )11., ;

=12 -
0 I,

(2) 8.8, = r;(

where I, , is an (n — 2) X (n — 2) identity matrix. Setting H, =
(T(260,)y < O(2), it is clear that

h 0
(3) {r;(o . )ri

heHi};G, 1=1,2 ---.

By selecting an appropriate subsequence, we can assume without
loss of generality that I';,— I, € O(n), as 7 — oo,
If ¥'(y) is given by (1), we now claim that

ré(?lf(v) 0

(4) o I,

)FoeG.

Since G is closed and (3) holds, to establish (4), it suffices to show
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there is a subsequence %; and h;; € H;; such that h;; —¥(7) as 1;— co.
However, the existence of such a sequence is assured since 6, — 0 as
t— oo, Thus (4) holds. Hence we see that

5) K=F’h OF
( 2"{ °(0 I) ’

where H* is the full rotation group of R:.

To complete the proof of Lemma 1, let M, be the span of the
first two columns of Iy, With D, = M,NC,, it is easy to check
that kx = z for all xe M}, ke K, and that K, acts transitively on
D,. This completes the proof.

heH*};G

The following result is used in the proof of Lemma 3.

LEMMA 2. For wu,€(0, 1], define a function f:]0, 11— [0, 1] by

0 of 0= u=<u,
1—[Vuu, +vV3E —w){d —ugpf if v, <u=<1.

Let v, = fQ1) and define v, = f(v,_,) for 1=2,8, ---. Then, there
exists an tndex i, such that v, = 0 for i = 1,

(6) f(u) =

Proof. It is not hard to verify that f is a continuous convex
function. Since 0 < v, <1, v,= f(v,) = fF(L — )0 + v1) S v, f(Q) = vk
Proceeding by induction, v, < v{ so lim,,.,v, = 0. Since f is 0 in
the interval [0, u,], there is an index %, such that », = 0 for © = 1,.
This completes the proof.

After establishing Lemma 1, the key to Theorem 1 is Lemma 3.
Although the proof of Lemma 3 is quite long, the geometric idea
behind the proof is fairly simple. Consider R® and let D, = {x|x € R?,
2, =0,22 + 2= 1}). Also, let H = {(g (1)>lk is any rotation of RZ}.
Thus H acts transitively on D,. Consider a fixed vector te R® with
[lt]l = 1 such that ¢ is not in the (zx, x,) plane and ¢ is not in the
x,-line. Let S, = I-2tt" be the reflection across the plane {t}* and let
H be the group generated by S, and H. The claim is that H is
transitive on D, = {z|ze R’ ||x|| = 1}. For example, suppose the
angle between ¢ and the (x,, z,) plane is 45°. Geometrically, it is

clear that the set H(S,(D,)) = {x|x = hS,u for some k€ H, and some
0

u € D,} is just D,—that is, S,(D,) is a circle passing through { 1 | and
0

the transitivity of H implies that H moves the set S,(D,) everywhere
onto D, (picture this on the surface of a basketball). Thus, given
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v, vy€ D, v, = h;Su;, for h;e H and u,e€ D, for + = 1, 2. Since u, =
hou, for some h, € H, it follows that v, = h,S.k,S.hi'v, so H is transitive
on D,. For other t-vectors, D, does not get covered by one application
of HS, to D,, but D, is covered by a finite number of applications
of HS, to D,—that is, D, = (H(S,(---)H)S,)(D,) for some finite string
HS,HS, --+- HS,. Again, this implies the transitivity of H on D..
Lemma 3 and its proof make all of the above precise.

LEMMA 3. Consider a subspace M, = R*, 2 < m < n, and suppose
that K s a subgroup of O(n) such that
{kx = for all xeM; keK

7
() K s transitive on D, = M, N C, .

Let tcC, be such that t ¢ M,, and t ¢ Ms. With M,,., = span {¢t, M,},
let D,,,= M,,,NC, Then the group K* < O(n) generated by K and
S, = I — 2tt’ satisfies

(8) {lcx:x for all xeMj,., ke K*

K* s transitive on D,,., .

Proof. That kx = x for all xe M., and ke K* is not hard to
verify. To establish the transitivity of K* on D,,,,, define a set B, by
(9) B,= K(S/(D,)) ={x|x = kS,u for some u € D,,, some ke K}
and then define B, inductively by

(10) B; = K(S(B._,) = {z|x = kS,u for some u € B,_,, some kc K}

for all v. The remainder of the proof is devoted to showing that
there is an index 4, such that B, = D,.,,, because this implies the
transitivity of K* on D,,,.

©1=2,8,.--. Since K(S,(D,..) < D,,,, it follows that B, < D,.,

Claim 1. If B, = D,.,, then K* is transitive on D,.,.

Proof of Claim 1. Consider z,, z,€D,.,. If B, = D,,,, then
K(S(K(S; +++ (Dy)))) = Dy, -

N R
to-terms

Thus, there exists k, -+, k; €K and g, ++-, g,, € K such that

_— [1} (kjs,)]ui = hyu,

and
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i
2y = [;].__[zl (gjst)i|uz = hyu,

for some u,, u,€D,. Since K is transitive on D,, there exists a
k,€ K such that ku, = u,. Thus, 2, = hk.h'2, which shows that K*
is transitive on D,., as hkh*e K*. This completes the proof of
Claim 1.

We now continue with the proof. Let P denote the orthogonal
projection onto M, and define Z,0=<c¢ <1 by
(11) Z, = {x|5€Dyy, || Px|* = ¢} .
Note that Z, = D,, and Z, = D,,.,.

REMARK. Geometrically, Z, is an equatorial zone (with equator
D,) which partially covers D,,,. Smaller values of ¢ correspond to

more of D,,,, being covered.
Define @ on [0, 1] by

(12) p(c) = ianHPStxHZ, 0=c=1,
and let
13) b, = ian | Px|]? .

Since each k€ K commutes with P, we have

(14) b, =inf inf || PkSall =

% €Dy, z

inf || PS,z||* = inf || PS.x | = (1) .
€D, xeZy
Claim 2. B, = Z,,.

Proof of Claim 2. 1If x€ B, ||Pz|® = b, which implies that x € Z;,.
Conversely, consider x € Z;, and let @ denote the orthogonal projection
onto the one-dimensional subspace My N M,,, which is spanned by
the vector t* = (I — P)t/||(I — P)t||. Since Z, is compact and arcwise
connected, the continuous function w — ||PSu||*(v € Z,) takes on all
values between 1 and ¢(c). As x€Z,,

IPolF 2 b, = p(1) = inf || PSulf .

Hence, there exists a u € D,, such that ||PS,u|* = || Px|]>. Thus, 1=
[ Px|l® + [|Qz|f = || PSewl|® + [|@Su|P, so [[QSx|® = [|Qz|f. Since @
is a projection onto a one-dimensional subspace, u can be chosen (by
changing to —wu if necessary) such that Qx = QS,u. The transitivity
of K on D, implies there is a ke K such that kPS,u = Px. Thus,
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kS,u = EPS;u + kQS,u = Px + kQS,u = Px + QS,u = Px + Qx = x, so
2 = kS,u € B,. This completes the proof of Claim 2.

Using Claim 2, B, = K(S,(B,)) = K(S(Z,)). Consider
(15) b, = inf || Px|[? .
ze By

Using (15) and the fact that each k¢ K commutes with P, we have

(16) b, = inf || Px|P = inf inf || PkSz|® = inf | PS,z | = o(b,) .
z € By z€Zy keK €Zy

Claim 3. B, = Z,,

Proof of Claim 3. If zeB, then zeD,,, and ||Pz|®= b, so
x € Z,,. Conversely, consider zeZ,. As u varies over Z,, the
function u — ||PS,u||* takes on all values between 1 and b,. Since
[| Px||* = b,, there is a € Z, such that [|PS,u|f* = || Px|[’. As in the
proof of Claim 2, 1 = || Pz | + ||Qz|* = || PSu|* + ||@Su|fso || Qx| =
[|Q@Su|]?, and we can choose # such that @z = QS,u. The transitivity
of K implies that there is a k€ K such that kPS,u = Px. Thus, z=
Py + Qx = kEPS;u+QSu = kPSu +kQSu = kES,u € B, since u € Z, = B..
The proof of Claim 3 is complete.

Arguing as in the proof of Claim 3, it is an easy matter to
show that B; = Z;, and b, = @(b;,_,) where
an b, = inf || Px|? 1=38,4, ---.
zeB;
As noted earlier, the proof of Lemma 3 will be complete if we can
show there is an index 4, such that B, = Z, = D,,,. To establish

the existence of an 4, we will explicitly calculate the function ¢
defined in (12) and then apply Lemma 2. Define z,¢€ D,,,, by

(18) 2y = Stt*
where ¢* = (I — P)t/||(I — P)t||. Then,
(| Pay | = [PS(I — Pyl _ || P — 264)I — P)t|*

I — PP (I — Pel|®

4 PeIPE — P 41 prirl — || PEIP)
(T = PP I PtIPQ — || Pt]]®)

Since t¢ M, and t¢ M:, 0 < ||Pt|P<1s0o0<a=1.

a =

(19)

I

Claim 4. The function ¢ is given by
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0 if 0=5c=a

(20) 7’<°‘)={1_[1/a+1/m><1——c>12 if a<c=s1.

Proof of Claim 4. Since Q = t*t*’ (see the proof of Claim 2),
for each x e R, ||QS.x|]* = 2’S,QS,x = 2’S,;t*t*'S,x = (2¢)’. Thus,

(21) @) = ian | PS,x|* = inf 1 — || QS,xz||*) = 1 — sup (z,x)® .

zeZ, zeZ, zeZ,
If @ =1, then 2,€D, S Z,, S0 sup,ez, (2)* =1 and o(c) =0 for all
celo, 1].

Now, consider a<€(0,1). For z€Z,, let v = | Px|*=c. Then,
by the Cauchy-Schwarz inequality, we have

2 = 2. Px + 2:Qx = (Pz,)'Px + (Qz,)Qx
< || Pz || Px]| + ||Q%]| Qx| =V eV 7 + V1 —aV1—7.

Further, there is equality in the above inequality for x = x, where

(22)

(23) 2, = VYaPz, + V1 — 7|1 — a)Qz .
Clearly, ||Px,|* =7 = ¢ so z,€ Z,. Thus,
(24) plc) =1 — sup [Var + VT —a)d — 7.

If ¢c<a, then Y=ac]e, 1] and ¢(¢c) = 0. If ¢ > a, then the sup in
(24) is achieved at ¥ = ¢. Thus ¢ is given by (20) and the proof
of Claim 4 is complete.

Now, by Lemma 2, there is an index 4, such that b, = 0 since
b, = ¢(1) and b; = o(b;-,). Thus, B, = Z, = D,,, and by Claim 1, K*
is transitive on D,,,. This completes the proof of Lemma 3.

The following is an immediate consequence of Theorem 1.

COROLLARY 1. Let G, = (&) where & = {S,|reR}. If G, is
wnfinite and irreducible, then the closure of G, is O(n). Also, for
each xeC,, {gx|g€G,} is dense in C,.

REMARK. The assumption that G is generated by reflections
cannot be removed since O*(n), n = 2 is infinite, closed and irreducible
but O*(n) # O(n). Our interest in Theorem 1 arose in connection
with results for G-monotone functions when G is generated by reflec-
tions (see Eaton and Perlman (1976)).
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