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REALIZING PARTIAL ORDERINGS BY CLASSES
OF CO-SIMPLE SETS

J. B. REMMEL

We show that we can embed any countable partial ordering
into a class of co-r.e. bi-dense subsets of the rationale, each
subset of a fixed nonzero r.e. Turing degree, under an order
induced by recursive similarity transformations. Also, we
show that we can embed any countable partial ordering into
the co-simple isols under either the order induced by addition
of isols or the order induced by recursive injections.

0* Introduction* Let C denote the continuum, Q denote the
rationale, and N denote the natural numbers. We let c denote the
cardinality of C and y$0 denote the cardinality of N. Given two linear
orderings H and G, we say (i) H is embeddable in G, H< G, if there
is an order preserving map from H into G and (ii) H is similar to G
if there is an order preserving map from H onto G. H is said to
be bi-dense in G if H £ G and both H and G — H are dense in G.

Let π be an effective one-one correspondence between Q and the
natural numbers. We shall consider π to be an effective Godel num-
bering and thus we will identify an element or subset of Q with its
image under π. We let <; or < refer to the usual ordering on N
and © or © refer to the usual ordering on Q. Given a, β ζZ Q, we
say a is recursively embeddable in β, a < c β, if there is a partial
recursive function φ such that a Q δφ, the domain of φ, and the
restriction of φ to α:, φ \ a, is an order preserving map from a into /S.

In [5], Hay, Manaster, and Rosenstein show that complements
of recursively enumerable bi-dense subsets of Q of any fixed nonzero
r.e. degree under < c bear a strong resemblance to bi-dense subsets
of C of cardinality c under <. The main result of this paper answers
a question raised by Laver. Based on the results of [5], Laver asked
whether or not the following theorem is true.

THEOREM A. Let β be any recursively enumerable set which is
not recursive and let P be any countable partial ordering. Then
there is a collection of co-recursively enumerable bi-dense subsets of
Q, each Turing equivalent to β, such that, under < e, this collection
is order isomorphic to P.

(A set A £ N is co-recursively enumerable if N — A is recursively
enumerable.) In §2 of this paper, we prove Theorem A using methods
that Sack's [8] developed to prove that any countable partial ordering
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can be embedded in the r.e. Turing degrees under the order induced
by Turing reducibility. Theorem A extends Theorems 7 and 8 of
[5], where Hay, Manaster, and Rosenstein proved the analogues of
Theorem A if the countable partial ordering P in the statement of
Theorem A is replaced either by any countable linear ordering or
by any finite partial ordering.

The proof of Theorem A will also give a result on the class of
co-r.e. isols which have been studied by Hay [3], [4], Ellentuck [2],
and others. We will show that one can embed any countable partial
ordering P into the class of co-simple isols under either the order
induced by addition of isols (due to Ellentuck [2]) or the order
induced by recursive injections. (See §1 for the definitions of the
co-simple isols and the two orderings.)

1Φ Preliminaries* Given B £ N, we write B for the complement
of B in N. We write A <*τ B if A is Turing reducible to B and
A ==τ B if A 5 Γ̂ B and B ^τ A. Let <p0, <pί9 be an effective list
of all partial recursive functions where φn is the function computed
by the nth Turing machine. We write φl{x)\ if the wth Turing
machine started on x gives an output in s or less steps. We let
IQ, Iί9 be an effective list of all intervals of Q of the form [p, q] =
{x e QI p (§) X φ q) for p, qeQ.

Given a partial ordering P, we say P is an )&0-universal partial
ordering if any countable partial ordering can be embedded in P,
that is, if S < P for all countable partial orderings S. The rest of
this section will be devoted to defining three partial orderings. The
fact that each of the three partial orderings is y^-universal will
follow easily from the main construction of §2.

Given a, β g=Q, we define a ~ cβ iff a <cβ and β <ca. It is
clear that ~~0 is an equivalence relation. Let a be any nonzero r.e,
Turing degree. We let B(a, Q) = {a: a is a co-r.e. bi-dense subset
of Q of degree a} and B(a, Q) = B(a, Q)/~β. Given equivalence classes,
[α], [β] 6 B(a, Q), we define [a]^c[β] iff there exists ae[a] and
βe[β] such that a<cβ. It is easy to check that ^ c is a well
defined partial order on B(a, Q). Thus, Theorem A is equivalent
to saying that (B(a, Q), ^c> is an y$0-universal partial ordering for
any nonzero r.e. degree α.

Given a, β ξZ N, we say a is recursively equivalent to β if there
is a 1 — 1 partial recursive function p such that a £ δp and p [ a
maps a onto β. The recursive equivalence type or RET of a, denoted
by <α>, is the class of all β recursively equivalent to a. A set
a £ N is immune if a is infinite and a has no infinite r.e. subset.
A r.e. set β £ N is simple if β is immune. A set a £ N is isolated
if a is either finite or immune. The RETs of isolated sets are called



REALIZING PARTIAL ORDERINGS 171

isols and their collection is denoted by A. The elements of A can be
considered as an "effective" analogue of the Dedekind finite cardinals
and have been extensively studied by Dekker, Manaster, Myhill,
Nerode, and others. Isols (a) of sets a such that a is co-r.e. are
called co-simple isols and their collection is denoted by Λz. We shall
define two distinct partial orders on Az. Addition of RETs is defined
by (a) + </3> = ({2x\xea} U {2x + l\xeβ}). The partial ordering
^ is defined on the RETs by i ^ ΰ i f f 3C(A + C' = B). Given sets
a, β Q N, we define a <€ β iff a Q β and there are disjoint r.e. sets
W1 and W2 such that Wx Π β = a and W2 Π £ = /3 - α. It is proved
in [1], that for RETs (a) and </S>, <α> ̂ 4 </S> iff there exists cΐ e (a)
and β' e (β) such that a! <i β'. Given sets a, β ςz N, we define a <e β
iff there is a partial recursive function p such that a: £ dp and p ϊ α
is a 1 — 1 map from a into β. Given RETs (a) and </3>, we define
<α>^e</3> iff there exists a! e (a) and /3'e</3> such that α < e / 3 .
It is easy to check that ^ e is a well defined partial order on the
class of RETs.

In §2, we shall prove that <5(α, Q), ^ c >, (Λz, ^€>, and <4, ^e>
are all fc^-universal partial orderings. We shall discuss the differences
between <c, <if and <e on the class of co-r.e. sets and the differences
between <£t and ^e on Λz in §3.

2* The main construction^ In [5], Hay, Manaster, and Ro-
senstein constructed a set a Q Q with the following property.

(.^) If cp is a partial recursive function such that a £ δφ and
^ f α is a 1 - 1 map from a into α, then {aea\φ(a) Φ a} is finite.
If a has property 0> then a is isolated. For if a contains an
infinite r.e. set, then a contains an infinite recursive set R —
{α0 < ax < a2 < }. Let φ be the recursive function defined by

φ(x) =

if x = a,i and i is even

if x = at and i is odd

otherwise .

9 t ̂  thus would be a 1 — 1 map from a into <% such that R —
{aea\a Φ φ(a)} contradicting property ^ . If a is isolated, then a
has the property that for no proper subset β of a is a < c β. For
if β c a and a <cβ, then let <p be the partial recursive function such
that a Q dφ and φ \ a is an order isomorphism from a into β. Let
xea — β. Thus either # © 9>(aj) or <p(#) ©x. If & © <p(#), then {x©
φ(a?) ©φ(φ(x)) © φ(φ(φ(x))) © •} is an infinite r.e. subset of a and if
φ(x) © a?, then {x © 90(05) © φ(φ(x)) © } is an infinite r.e. subset of a
contradicting the fact that a is isolated. All sets a we construct in
this section will have property & so that we will always have <α> e A.
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The proof that <J5(α, Q), ^ c >, <ΛZ, ̂ > , and <4, =Se> are No-
universal ordering will proceed in two steps in the same manner as
Sack's proof [8] of the fact that the r.e. degrees under Turing
reducibility is an No-universal partial ordering. The first step is to
construct an infinite sequence of 'incomparable' elements.

THEOREM 1. Let β be a nonrecursίve r.e. set. There is a recursive
sequence of co-τ.e. subsets of Q, a0, aQ, , suck that

(a) For each ί, cti is bi-dense in Q,
(b) For each recursive set R Q N, \JieB^i has property &*,
(c) For each i, at Π \JiΦ3 oLj = 0 and moreover at < e

A \JiΦ3 a, , and
(d) For each i, α< ΞΞΓ β.

Proof. Let / b e a 1 — 1 recursive function whose range is β
and let β8 = {y\lx(x ^ s & f(x) = y)}. Let fc: N x ΛΓ—> iVbe a 1 - 1,
onto, recursive function. Let r and c be recursive functions such
that k(i, j) — n iff c{n) = i and r(w) = i . Moreover, we assume k
is chosen so that for each i, Nt = {y\ lx(k(ί, x) = ̂ /)} is a bi-dense
recursive subset of Q. We shall give a procedure to enumerate a
r.e. set A in stages such that if at = A Π -IVi, then α0, α:̂  is the
recursive sequence of sets required by the theorem. Each at is co-
r.e. since α̂  = (A Π iV̂ ) U Ui^i Λ^ a n ( i clearly the sets α0, aί9 are
pairwise disjoint.

A convenient picture for the construction of A will be to imagine
an infinite sequence of infinite columns of windows

.

α
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D

D

D

D

•

D

D

D

•

D

D
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At the end of stage s, the windows in the ith column will be occupied
consecutively from the bottom up by bs

i>Q <bs

ifl < where

and A8 is the set of elements enumerated into A by the end of stage
Thus the windows give us a picture of the complement of A8 ats.

the end of stage s. Then during stage s + 1, certain elements from
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the columns will be put into As+1 and the elements left in each column
will drop down to fill in any vacant windows. We shall ensure that
for each stage s > 0, As Π Nt will be finite so that a\ will be infinite
and every window will be occupied. For s > 0, As will always be
an infinite recursive set.

We will meet three sets of requirements in the course of the
construction. To ensure that each α, is bi-dense, we must meet the
following, requirements.

D(i9 n): at Π In Φ 0 .

We will employ a set of markers Δ(i, n). At stage s, Δ(i, n) will rest
on an x e a\ n In- Then for the sake of requirement D(i, n) we will
try to keep the element marked by Δ(i, n) out of A. If we are
successful for all i and n, then each at will be dense in Q and hence
each at will be bi-dense in Q since α̂  2 U**i Nό.

To ensure that condition (b) is satisfied by the α/s, we will meet
the following set of requirements.

Q(n): φn ϊ A is a 1 — 1 map from A into A only if {a e A \ a Φ φ(a)}
is finite. Suppose there is a recursive set R £ N and a partial
recursive function φe such that φe \\JieR<Xi is a 1 — 1 map from
\JieBai ίn^° \JitRai a n d {ct>€\JiεRai\a Φ ψeWi is infinite. Let <pn be
the recursive function defined by

'<pe(x) if x G U Nt and x e δ̂ >e
ϊei2

x ' if x e U ^ = U N,
ίe R ίe —

undefined otherwise .

Then φw would violate requirement Q(w). Thus if we meet all the
requirements Q(n), condition (b) will automatically follow.

The strategy to meet requirement Q(ri) at stage s + 1 will be
to try to find an xeAs such that φl{x)\ and φn(jx) Φ x and then put
φjx) into A8+1, put a marker X(n) on x, and then try to keep x out
of A. If x G A, then x will witness that <£>W(A) g£ A. However, there
may be two reasons why we cannot put φn(x) into As+1. The first
reason is that φn{x) may already have another marker on it which
means we want to keep φn(x) out of A for the sake of some other
requirement. Thus, we must put a priority ranking on our list of
requirements. We shall ensure that requirements with higher priority
than Q(n) restrict only finitely many elements from being put into
A so that if φn \ A is 1 — 1 and {a e A | a Φ φn(ά)} is really infinite,
we will be able to find a pair (x, φn(x)) for which φn(x) is never
restricted by higher priority requirements. Then we will be able
to put φn{x) into A and keep x out of A. The second reason is that



174 J. B. REMMEL

to ensure each α̂  ̂ τ β, we use a Yates permitting argument which
puts some restrictions on which bs

i>n can be put into As+1. Thus it
is also possible that φn(x) is not 'permitted' to be put into As+1. In
such a case, we shall place a X(n) marker on x and try to keep x
out of A in the hope that sometime later we will be permitted to
put ψn{x) into A. We say requirement Q(n) is satisfied at stage s
if there is an xeAs with a X(n) marker on it such that φl(x)\ and
φί(x) e A8.

To ensure that each at has property (c), we must meet the
following set of requirements.

R(i, n): If at c: δφn and <pn \ a{ is 1 — 1, then φn(at) ξ£ \J aά .

The requirements R(i, n) have basically the same character as the
requirements Q{ri). The strategy to meet requirement R(i, ri) at
stage s + 1 is to try to find an xea\ such that φ8

n(x)\ and x Φ φl{x)
and either we can put φn(x) into As+1 or φn(x) e iV*. Then we put
φn(x) into As+1, if possible, and place a Γ(i, w) marker on x and try
to keep x out of A. If x e A, then x e ^ and x will witness that
φjoti) §=Ξ Ui^i α i Again the same type of restrictions as described
above can restrict us from placing φn(x) into As+1. We say that
requirement R(i, n) is satisfied at stage s if there is an x e As with
a Γ(i, n) marker on it such that φl(x)\ and φn(x)eAs U Nt.

It is clear that at^τA for each i. Thus to ensure that each
cCi^τβ, we shall ensure that A<*τβ, using a Yates permitting
argument where b\yn is allowed to be put into As only if max (i, n) ^
/(s). Finally to force at ^τ β, we shall use a coding argument where
at each stage s either δξ,/(s) or δ;,/(β)+i will be put into As+1 for each
i. Thus at each stage s > 0, As will be an infinite but recursive set.

We make the following priority ranking of requirements:

D(c(0), r(0)), Q(0), R(c(0),

(That is, D(c(0), r(0)) has highest priority, Q(0) has the second highest
priority, and so on.)

Only finitely many markers will be placed on elements at any
given stage s. We assume we have infinitely many J(if n), X(n), and
Γ(i, n) markers at our disposal and if at stage s + 1 we place a
marker Φ o n a n a e i 8 such that at stage s, x was unmarked or had
a marker different form Φ on it, then Φ has never been used at any
previous stage. If an x 6 A8 drops to a lower window at stage s + 1,
the marker on x, if any, will stay with x unless specifically stated
otherwise. If an x e A8 is put into As+1, then we automatically remove
any marker on x. We say a marker Φ is active at stage s if it rests
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on an x e A8 and Φ is inactive otherwise. For simplicity, each x will
have at most one marker on it at any stage s. It will be possible
for several markers of the same type to be active at a stage s. We
say a marker Φλ has higher 'priority than marker Φ2 if Φt corresponds
to a higher priority requirement than Φ2 does. Finally, we define
£ί?(A(if n)f s) = {x I x has a marker Φ on it at stage s and Φ has higher
priority than A(i, n)}. έ%f(X(ri)y s) and gέf(Γ(i, n), s) are defined
similarly.

Construction.

Stage 0. Let A0 = 0 . Put a marker J(c(0), r(0)) on the least
a in JVc(0) Π /,«».

Stage s + 1. Assume that As is recursive and that at stage s
(a) As Π JVi is finite for each i,
(b) only finitely many markers are active and noxeA 8 has more

than one marker on it,
(c) for all j <L s, exactly one A(c{j), r(j)) marker is active and

it rests on an x e Nc{j) Π Ir<i),
(d) a X(n) marker rests on x only if <ps

n(x)[ and x Φ φn(x) and
a Γ(i, n) marker rests on x only if φs

n(x)\, x Φ <pn(x), and xeas

if

(e) if requirement Q(j)(R(j, n)) is satisfied, then exactly one
X(j)(Γ(j, n)) marker is active.

Look for a i ^ s + 1 such that at stage s either
(1) QU) is n °t satisfied and there is an x ^ s + 1 such that

x e A8 - <§er(X(j)f β), <PT\X)\, x Φ <PJ(X), and ei ther x $ {bs

i)fU), bs

ίifis)+1}

for any i or if x e {6;,/(.,, & f/(β)+i}, then y e {&;,/(.,, ί>l,/(s)+i} - {x} implies
y £ £έf(xU)> β)f and moreover either

(1A) <pd(x) ί {δJfΛ I max (i, Λ) < /(s)} U <2T(λ(i), s) or
(IB) <ps(x) 6 {δj,. I max (ί, w) < /(β)} - &f(\{j), s) and if b\,n = φό{x),

then for all b'βtk = 9>y(i/), where /̂ has a λ(tι) marker on it, max (i, w) >
max (e, fc) + 1,

( 2) Condition (1) fails and R{c{j), r(j)) is not satisfied and there
is an x ^ s + 1 such that α? g Xs - <3έ*(Γ(c(j), r(j)), s), ^^(a?) ! , α: ^
9>r(i)(*)» and either a; ί {68

ί>/(s), δ;,/(,,+1} for any i or if x e {bs

i)fis), bs

iff{s)+1}9

then y e {bs

i}f{s), b8

i)f{s)+ί} - {x} implies y & Sίf{Γ{c{j), r(j)), s), and more-
over either

(2A) φrU)(x) ί [{δ;,n I max (if w) < /(β)} U ^T(Γ(c(i), r(i)), β)] - iVc(i)

or
(2B) φrU](x) e {b\,n I max (i, n) < /(β)} - {£ί?{Γ(c(j\ r(j), «)) U iVβ(i))

and if δ;,Λ = φru)(x), then for all δs

e,fc = 9\.(ί ,(#) where y has a Γ(c(j),
r(j)) marker on it, max (i, n) > max (e, Λ) + 1.
If there is no such i, go to Case 0. If there is such a j , let β(s + l)
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be the least such j and go to Case 1 if e(s + 1) satisfies condition
(1) and go to Case 2 otherwise.

Case 0. For each i, consider the pair xi = δj t/(β) and yt = b8

i>f{s)+1

and the markers that currently rest on xi and yif if any. If xi is
not marked, put xt into A9+1. If xt is marked and yt is not marked,
put yt into A8+1. Otherwise, suppose marker Φx rests on xt and
marker Φz rests on yim If Φ2 has higher priority than Φlf put xi into
As+1 and if Φx has higher priority than Φ2, put y, into As+1. If ΦL

and Φ2 have the same priority, then Φi and Φ2 must either be X(n)
markers or Γ(i, n) markers for some n. In such a case, let δ*,m =
<pn(xt) and b8

c>k = <pn(yt). Put &< into A8+1 if 9>Λ(α?0 is in

and ^nd/i) is not and put yi in As+1 if φn{yι) is in

i, n), s))

and ^ ( α j is not. Finally, if φn(xt), φn(Vi) e Jg^(λ(^), s)(^f(Γ(i9 n), s))
or ^ ( ^ ) , ^(i/i) 0 ^ ( λ ( 4 s)(^T(Γ(ί, ^), s)), put x, into As+1 if
max (a, m) ^ max (c, k) and put ?/i into As+1 if max (α, m) > max (c, fc).

1. Let e = e(s + 1) and z be the least x corresponding to
e such that φe(x) satisfies condition (1A) if there is a pair (y, φe{y))
satisfying condition (1A) or φβ(x) satisfies condition (IB) if there is
no pair (y, φ£y)) satisfying condition (1A).

(A) If <p£z) satisfies condition (1A), place a new λ(β) marker on
z and remove any marker that was on z at stage s and all λ(β)
markers that were active at stage s. Then put φe(z) into As+1 if it
is not already in As. For each i, also put either 6jt/(β) or bs

itfi8)+1

into As+1 according to the instructions in Case 0. (Note: our choice
of z ensures that z g A8+1 so that requirement Qn will be satisfied at
stage s + 1.)

(B) If φe(z) satisfies condition (IB), place a new λ(e) marker on
z and remove any marker that was on z at stage s. Then, for each
i, put either bs

i)f(s) or bs

i}f{s)+ι into As+1 according to the instructions
in case 0.

Case 2. Let e = e(s + 1) and let z be the least x corresponding
to e such that φru)(χ) satisfies condition (2A) if there is pair
(V> ψriAv)) satisfying condition (2A) or φr{β){x) satisfies condition (2B)
if there is no pair (y9 φrie)(y)) satisfying condition (2A).

(A) If φr{e)(z) satisfies condition (2A), place a new Γ(c(e), r(e))
marker on z and remove any marker that was on z at stage s and
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all Γ{c{e), r(e)) markers that were active at stage s. Then put <pe(z)
into As+1 if φβ(z)e<βέ?(Γ(c(e), r(e), s))\jNc{e) U A8. For each i, put
either &ί,/(8) or &J,/(β,+1 into As+ί according to the instructions in Case
0. (Note: our choice of z ensures that z ί AB+1- so that requirement
R(c(e), r(e)) will be satisfied at stage s + 1.)

(B) If φrω(z) satisfies condition (2B), place a new Γ(c(e), r(e))
marker on z and remove any marker that was on z at stage s. Then
for each i, put either bs

i)f{s) or 6|,/(s)+ι into As+ι according to the in-
structions in case 0.

This completes the definition of A*+1. It is possible that for some
j and n, requirement Q(ri)(R(j, ri)) was not satisfied at stage s but
there is now some x e As+ι with a X(n)(Γ(j, ri)) marker on it and
<pn(x) e As+1 because φn(x) e (J* {δί,/<β), δ;,/<β)+1} and φn(x) was forced into
A8+1. In such a case, we keep the X(n)(Γ(j, ri)) marker on the least
such x and remove all other X(n)(Γ(j, ri)) markers that were active
at stage s. Finally, some of the Δ(c(i), r(i)) markers for i <; s may
have been removed. Inductively we place new 4(c(i), r(i)) markers
for i ^ 8 + 1 as follows: having placed A(c{j), r(j)) markers for j < ί,
place Δ(c(ϊ), r(i)) on the least x e a8^ n Jr«) which is unmarked if
Δ(c(ϊ)9 r(ί)) was removed during stage s + 1 and otherwise leave
J(c(ί), r(ΐ)) where it is. (This is possible since As+1 n NcH) is finite
and Neu) is dense in Q.)

This completes the description of stage s + 1. It is easy to check
that each stage is completely effective and that conditions (a)-(e)
hold at each stage. We let A — \JS A

8 so that A is r.e. We now
prove a sequence of lemmas that will complete the proof of the
theorem.

LEMMA 1. For all i and n9 lim s b8

i>n exists.

Proof. bs

i>n Φ 6-+1 only if f(s) ^ max (i, ri). Since f(s) ^ max (i, ri)
only finitely often, lims b

s

i>n exists.

LEMMA 2. A<LT β.

Proof. It follows from our construction that for all x, x = 6{fΛ

and x = δ ffc1 only if i = j and k ^ n. Thus to decide if x e A, first
find i and n such that x = bo

ί)%. Then recursively in /?, find a stage
t such that Vs (s ̂  t -> /(s) > max (ΐ, %)). Since for any i and fc, 6; >Λ ^
δ +fc1 only if f(s) ^ max (j, k), it follows that VkVs (k ̂  n & β ̂  t ->
δj,fc - δ4ffc). Thus a? e A iff α e {6*,0, , b\J = {δ<>0, , δ<iΛ}. Therefore,
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Since for each i, at = Af) Nt t£τ A, we have that at^τβ. Thus
to prove that for each i, at Ξ= T β, we need only show that for each
if β ^ τ at.

LEMMA 3. For each i, β ^τθct.

Proof. We note t h a t for each i, at = {6<>0, 6<fl, •} and 6<f0 <

6<fl < ••• since for all s, bs

i)0 < 6{fl < ••• . To decide if xeβ, first

find, recursively in ai9 a s tage t such t h a t Vfc (fc <; a? + 1 —• δ* ,fc = buk).

Since for any pair (j, n) and s tage s, bs

j>n Φ 65+ί only if there is a

fc ̂  w such t h a t 6}>fc 6 A8+1, it follows t h a t VsVfc ( & ^ # + l & s ^ £ ^

δί.fc = &t,fc) Since a t each s tage s + 1, we p u t ei ther 6;,/(β) or 6j,/(e)+1

into A8 + 1, i t follows t h a t Vs (s ^ t -» /(s) > a). Thus, x e / 3 if α? e /S*

and hence α, "2>τ β.

LEMMA 4. i^or eαcΛ, n, the requirements D(c(ri), r{ri)), Q(n), and
R(c(ri), r(n)) are met.

Proof. We proceed by induction. Fix n ^ 0 and assume that
for all ί < n, the requirements D(c(i), r(i)), Q(i)9 and R(c(i), r{i)) are
met and there is a stage ί > n and an integer p such that: (a) For
all 8 ̂  t and i < n, no new A(c{j)9 r(j)), λ(i), or Γ(c(j), r(j)) marker
becomes active or old Λ(c(j), r(j)), λ(i), or Γ(c(j), r(j)) marker is
removed at stage s, (b) If 6*,̂  e <%f(A{c(ri), r(n)), t), then max (i, fc) <
p, (c) Vs (s ̂  ί -> /(s) > p), and (d) Vs(s ̂  ί -> e(s) ̂  w). Thus by
stage t all Λ(c(i), r(ί)), λ(ΐ), and Γ(c(ϊ), r(i)) markers with i < n rest
on elements that never move after stage t.

First, we consider the requirement D(c(n), r(n)). Suppose that
at stage t + 1, A{c{n), r(n)) rests on xealfn) Π !,.(»)• We claim that
for all s ^ ί + 1, A(c(ri), r(n)) rests on # and thus x eac{n) n /r(«)- For
assume s ^ ί + 1, & = 6;(»)fJ- for some i, and Λ(c(n), r{n)) rests on α?
at stage s. Then at stage s + 1, if e(s + 1) is defined, e(s + ϊ) }£ n
so that x Φ z, x Φ 9>β<β+i)0δ) for » as defined in Case 1 and x Φ z,
x φ 9>r(β(8+D)(«) for z as defined in Case 2. Thus the only way x could
be put into As+1 is if j e {f(s), /(s) + 1}. By our choice of t, f(s) > p
and thus the y e{b8

c{nhf{s), b8

cU))fω+1} - {x} is not in β^(Δ(c(n),r{n)), s).

Hence A(c{n), r{n)) must have a higher priority than the marker
on y, if any, and hence y and not x would be placed into As+1.
It follows that after stage t + 1 no new Δ(c(n), r{n)) marker is
ever introduced so that Vs (s ̂  t + 1 -• ̂ (λ(%), s) = <^(λ(w), s + 1)).
Let a = 6β(»),jb and choose ^ > ί and p t > p such that max (c(ri), k) < pλ

and Vs (s ̂  tx -> /(s) ^ px).
Now consider the requirement Q(n). First we show that if Q(n)

is ever satisfied for some s > t19 then requirement Q(n) is met and
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there is a stage t2 and an integer p2 such that (α') for all s ^ t2,
ί <; n, and j < n, no new A(c{i), r(i)), λ(i), or Γ(c(j), r(j)) marker
becomes active or old Δ(c(i), r(i)), λ(i), or Γ(c(j), r(j)) marker is removed
at stage s, (b') if δfo e £{f{Γ{c(n\ r{n)\ t2), then max (£, fc) < pa, (c')
Vs (β ̂  t2 -» /(s) > p2), and (d') Vs (s ̂  t2 -> e(s) > w V (e(s) = w and we
are in Case 2 at stage «)).

Suppose u> tx and Q(w) is satisfied at stage w. Thus there is
an xeAu with a λ(w) marker on it such that φl{x)\ and φn(x)eAu.
We claim that x can never be put into A and the marker \(n) is
never removed from x so that Q(w) remains satisfied for all s ^ u.
For suppose s ^ % , a j e ϊ , and x has α λ(w) marker on it so that Q(n)
is satisfied at stage s. If e(s + 1) is defined, then either e(s + 1) > n
or e(s + ϊ) — n and we are in Case 2 at stage 8 + 1. Hence marker
λ(w) is not removed from x for the sake of a higher priority require-
ment and thus the only way x can be put into As+1 is if x = b'tk for
some k e {/(s), /(s) + 1}. By our choice of s ^ u > tu f(s) > p1 and
thus the y e {bl>f{s), δ ,/(β)+1} — {x} is not in <%*(\(n), s). Thus \(n)
must have a higher priority than the marker on y, if any, and hence
y and not x would be placed into As+ί. Thus it follows that after
stage u, no new x(n) marker is ever introduced so that Vs(s ̂  u —•
<%r(Γ(c(n), r(n)\ s) = ̂ ίf{Γ{p{n\ r(n)\ u). We have also shown that
a? 6 A so that if a? = 6ί)fc we need only choose p2 > max (pί9 ί, k) and
t27>u such that Vs (s ̂  ί2 —> /(s) ^ ^ and δ?jfc = biίk) and then p2 and
t2 will satisfy conditions (a')-(d').

Now consider the case where there is no stage s ^ t : such that
Q(w) is satisfied at stage s. We claim that under this assumption,
there are only finitely many s ^ ίx such that e(s) = w and we are in
Case 1 at stage s. For suppose there are infinitely many such s; we
will show that β is recursive, contradicting our choice of β. First
we shall prove by induction that if u ^ ίx and there is an sc e Au

with a λ(w) marker on it at stage u such that φn(x) = δ?>fc g ̂ g^(λ(^), %),
then for all s ^ u, there is a ye A? with a λ(» marker on it at
stage s such that <pn(y) = δj,z g Jg^(λ(w), s) and max (j, I) ̂  max (i, k).
Let s ^ % and assume there is a y with the properties above. Now
either y £ {δ;,/(β)> δ;,/(β)+1} for any i or if y e {δ?,/(β), δίl/(β)+1}, then since
/(β) > ί>i th e 2/' e {δί,/(β,, δ ,/{β)+1} — {y} does not have a higher priority
marker than X(n) on it. Thus at stage 8 + 1, it cannot be that
/(s) ^ max (i, I) because then (y, φn{y)) would be a pair which could
satisfy Q{n) and hence our choice of s ^ u > tt would imply that
e(s + 1) = n and that we are in Case 1 at stage s + 1. In such a
case, Q(n) would be satisfied at stage s + 1 which we assumed is
not the case. Thus /(*) > max (i, I) and φn(y) = 6^ = δj^1. Since
e(s + 1) ̂  n, it follows that if e(s + 1) is defined, then y Φ z, y Φ
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<Pei8+i)(z) if we are in Case 1 and y Φ z, y Φ φr^a+1)){z) if we are in
Case 2 at stage s + 1. Thus the only way y could be put into As+1

is if y 6 {&;,/(.„ &ίf/(.)+i} for some i.
Since f(s) > pί9 X(n) is the highest priority marker that could

rest on either b*itf{8) or blf(s)+1. Thus the only way y could be put
into As+ι is if the y' e {&?,/(s), b

s

itfis)+1} — {y} also has a X(ri) marker on
it and φn(y') = bs

a>m$ £έf(X(ri), s) and max {a, m) ^ max (j, I). Moreover,
it must be the case that f(s) > max (α, m) and hence 6*,m = δĵ t.
Thus either 2/ or yf is in As+1 and has a λ(w) marker on it at stage
s + 1. Since <£έ?(X(n), s) — 3$f(X(n), s + 1), we can conclude that
<Pn(y)f φΛvΊzAr^1 — £έ?{X{n), s + 1) and hence either (y, φn{y)) or
(y'f ψn{yf)) satisfies the required properties at stage s + 1.

We define Is = max ({max (j, k) \ ly(y e A$ and y has a X(n) marker
on it at stage 8 and φn(y) = bs

jyk & J%^(X(n), s)}). The immediately
preceding induction proved that if s ^ tt and Is is defined, then f(s) > Is

and ls+1 is defined and Γ+1 ^ Is. Thus if s ^ tγ and is is defined, then
Vu (u*£ 8 -» /'(u) > Zw ̂  ϊs) Now suppose sx ^ έ, β(sx) = n, and we
are in Case 1 at stage slm If z is defined as in Case 1, then φΛ(z)
must satisfy clause (IB) of the definition of e(sx) so that φn(z) ί
^(Mn), 8i — 1) = ^(λ(w), 8X). Thus ίSl must be defined. If s2 > sL

and e(8a) = w and we are in Case 1 at s2, then let z* denote the z
defined in Case 1 at stage s2. We know i82"1 is defined, lS2Γl ̂  I'1, and
φn(z*) must satisfy clause (IB) of the definition of β(s2); thus φn{z*) —
bs

a,m ί <^(λ(w), s2 - 1) and max (α, m) > ϊ52"1 + 1. Then z* has a X(n)
marker on it at stage s2 and φn(z*) = δ j^ where max (e, g) > ί32"1 since
no more than one element is removed from any one column. Thus
1*2 > is2-\ it follows that if there are infinitely many s ^ tx such
that e(s) — n and we are in Case 1 at stage s, then we can find a
recursive sequence of stages tt <; s1 < s2 < such that lSl < lH < .
But the existence of such a sequence would imply that β is recursive.
For to decide if xeβ, we need only find a stage S; such that ZSί ̂  sc
and then we know xeβ iff xeβH since Vs (s > 8< -> f(s) > ϊSi)

Thus we have shown that if Q(n) is never satisfied at any stage
s ^ tlf then e(s) = -̂  and we are in Case 1 at stage s for only finitely
many s ^ ί2. Since new X(n) markers can be introduced only at stage
β' where e(s) = n and we are in Case 1 at stage s, it follows that
there are t2 and p2 which satisfy conditions (a')-(d'). However we
must still check that if Q(n) is never satisfied for any s ^ tlf then
requirement Q(n) is met. Suppose requirement Q(n) fails. Thus
A Q δφn and φn \ A is a 1 — 1 map from A into itself and
{a e AI a Φ φn(a)} is infinite. We have shown the existence of a stage
ί8 such that for all s ^ ί2 either e(s) > n or β(s) = ^ and we are in
Case 2 at stage s. But consider stage t2. Since <5^(λ(w), s) =
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for all s ^ tlf there must be an x e A such that x Φ φn(x) and φn{x) =
bj,k i <%?(X(ri), t2) and if V2 is defined, then max (i, k) > V2 + 1. Now
suppose s > t2 is a stage such that 9>i(α;)i Then φi(a?) = 6}>m for some
m> k and either a? ί {δ ,/(s), 6?,/{s)+i} for any i or if xe{bs

iΛs), &J,/(s)+i},
then since /(s) > p^ the 7/ e {δj,/(β>, δί>/(β)+1} — {#} does not have a higher
priority marker than x(n) on it. Thus the pair (x, φn{x)) would be
candidates to satisfy Case 1 of the definition of e(s) for n unless
ls~λ is defined and max (j, m) < I8'1 + 1. Therefore, since our choice
of t2 precludes us from being in Case 1 with e(s) = n at stage s, it
must be the case that max (j, m) <ζ ls~ι + 1. Now if V2 was defined,
then ls~ι > V2. Thus we must conclude there is a stage sf ^ t2 such
that either Z8'"1 was undefined and Is' is defined or ϊ8'"1 is defined
and Zs' > ϊ '"1. But both of these cases imply that we are in Case
1 with e(sr) — n a stage s' which contradicts our choice of t2. Thus
requirement Q(n) must be met.

We have shown requirement Q(n) must have been met and there
are t2 and p2 satisfying conditions (a')-(d'). The argument for require-
ment R(c(n), r(n)) is almost exactly the same as the one for requirement
Q(n). Namely, we can show that if there is an s ^ t2 such that
R(c(n), r(n)) is satisfied at stage s, then requirement R(c(n), r(n)) is
met and there is a stage ts and an integer p3 such that (a") for all
s ^ t3 and j ^ n, no new j(c(j), r(j)), X(j), or Γ(c(j), τ{j)) marker
becomes active or old A(c(j), r(j)), X(j), or Γ(c(j), r(j)) marker is
removed at stage s, (b") if b\% e 3έf(Δ{c(n + 1), r(n + 1)), ί3), then
max (i, k) < p3, (c") Vs(s ^ έ3 -> /0) > P8), and (d") Vs(s ^t3-> e(s) ^
^ + 1). If there is no stage s ^ t3 such that R(e(n), r(n)) is satisfied
at stage s, then we can argue that the assumption that there are
infinitely many s ^ t3 such that we are in Case 2 with e(s) = w at
stage s leads to the contradiction that β is recursive. Hence there
can be only finitely many s such that we are in Case 2 with e(s) = n
at stage s and thus there are t3 and p3 satisfying conditions (a")-(d")
Finally, we can argue that existence of t3 and p3 implies that require-
ment R(c(n), r{n)) is met. These arguments complete the induction
step for n.

THEOREM 2. Let β be any recursively enumerable set which is
not recursive and let P— (N, ^S*) be a recursive partial ordering.
Then there is a collection co-r.e. bi-dense subsets ofQ with property
&*, each Turing equivalent to β, such that under <c, <if <e9 this
collection is order isomorphic to P.

Proof. SinceP is a recursive partial ordering, i^ = {j eN\i^** j}
is a recursive set for each i. Let M be a map from N into the set
of all subsets of N defined by M(i) = KJje^ ctj It easily follows that
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for each ΐ, M(i) is a co-r.e. bi-dense subset of Q which has property
& and is Turing equivalent to β. We shall prove that M is an
order preserving map from (N, ^*) onto {M(i)\ieN} under either
<i, <o <e First we show M is 1 — 1. If M(i) = M(k)f then it
must be the case that R{ = Rk. Thus i eRk = {j eN\j ^ * k) and
hence i ^ * k. Similarly k ^ * i so that k = i. Now suppose i ^* k
and i ^ k; we show that Λf(i) <t M(k), M(i) <cM(k), and M(ϊ) <eM(k).
Ri is strictly contained in Rk since keRk — Ri. Thus ΛΓ(i) c Λf(fc).
Moreover if W= Uie^iV, and TΓ= Uie^JV,- where JV} are the sets
defined in Theorem 1, then W and W are recursive sets. Also

'eRkccj = n3;Ri^j = M(i) and ^ ( 1 ^ ( ^ = ^ 0 1 1 / 6 ^ ^ =
fc - Λί(i)- Thus TΓ and T7 witness that M(i) <iM(k).

It follows immediately from the definitions of <tf <e, and <e that
ya9 βQQ(a <iβ-^a <cβ-^a<eβ). Thus we also have M(i)<cM(k)
and M(i) < e M(k). Now suppose i S *k Thus ί<£Rkso that αέ Π Λf(A?) =
«< Π Uieβfc «i = 0 . We claim that M(i) <e M{k). For if M(i) <e M{k).
then there is a partial recursive function φ such that M(i) £ δ̂> and
φ \ M{i) is a 1 — 1 map from M(i) into M{k). But then at £ Λf(i)
and M(k) £ Ui#ΐ α i imply that φ\ai is a 1 — 1 map from at int o
U J V Ϊ ^ and thus a{ <e\JjΦi€Cj. But our construction in Theorem 1
ensured at <0\JjΦiat. Thus M(i)<eM(k) and hence M(i)<cM(k)
and Λf(i) <tM(k). Thus l ί is an order preserving map as claimed.

COROLLARY 2.1. Let β be any recursively enumerable set which
is not recursive and let P be any countable partial ordering. Then
there is a collection of co»r.e. bi-dense subsets of Q with property
&y each Turing equivalent to β, such that under <ef <i9 or <ef

this collection is order isomorphic to P.

Proof. It is a well known result of Mostowski [7] that there
is an ^-universal recursive partial ordering on N. Thus assume
that (N, ^ *> is an y$0-universal recursive partial ordering on N and
let P = <^, 5̂ **> be any countable partial ordering. If / : <g* -> N
be an order preserving map from P to (N, ^*>, then M°f is an
order preserving map from P to {M{i)\ieN} under either <i9 <c,
or < e . Thus {M(i) \ i e N} is a collection which satisfies the properties
required by the corollary.

COROLLARY 2.2. Let a be any nonzero r.e. degree. Then
(β(a, Q), ^ c >, (Λz, 5^>, and (Λz, ^ e > are all ^-universal partial
orderings.

Proof <JV, ^*} be as in the proof of Corollary 2.1. Since i Φ j
implies either i iL* j or j ^ * i , it follows that either M{i) <eM(j) or
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M(j) <eM(ί). Thus i Φ j implies M{i) and M(j) are in distinct equiva-
lence classes mod~e and that the recursive equivalence types <Λf(i)>
and (M(j)} are distinct. Also, since each M(i) has property ^ ,
each M(i) is isolated and thus M(i) G Λz.

3* Differences between the partial orderings* First we briefly
discuss the differences between <if < c, and <e on the co-r.e. subsets
of Q. We noted earlier that Vα, βQQ (α <ίyS—>α >c/9->α<e/3). We
show that none of the reverse implications hold. Let N= {0, ϊ , 2, •}
denote the natural numbers as they sit inside of Q. Since N is a
recursive subset of Q, there is a 1 — 1 recursive function from Q
onto N. Thus Q <eN but it is clearly the case that Q <CN. Next
consider the recursive sets E = {0, 2, 4, •} and D = {1, 3, 5, •}.
Clearly E <CD but E <,D since E^D.

Finally, we give an example to show that <*t and <;e do not
agree on Λz. We start with a few definitions. A set a £ N is cohesive
(r-cohesive) if α is infinite and there is no r.e. (recursive) set W such
that W Π OL and PF n α are both infinite. (Note: it follows immediately
that if a is cohesive or r-cohesive, then a is isolated.) A r.e. set
β is maximal (r-maximal) if β is cohesive (r-cohesive). Given r.e.
sets B £ A we say B is a major subset of A if A — 5 is infinite
and for any r.e. set W such that W{J A = N, N- (W\J B) is finite.
Lachlan proves in [6] that every nonrecursive r.e. set has a major
subset and that a major subset of a maximal set is an r-maximal
set. So let A be a maximal set and B be a major subset of A. Let
a — A and β = B. Thus a is cohesive and β is r-cohesive so that
<<%>, </S> eΛβ. Also α S / 5 so the identity map shows that a<eβ
and hence <α>^e</S>. We shall show that <α>^<</8>. Suppose
<<*> ^ t </S>. Then there are sets a' e(a} and /3'e</3> such that
α' <i β'. Thus α' £ /3' and there are r.e. sets W1 and W2 such that
W^Γiβ' = a' and W2 ΓΊ βf = βf - α'. Also since a' e (a) and βf e </S>,
there are 1 — 1 partial recursive functions q and p such that a! Q δq
and g \ a! is a 1 — 1 map from a! onto a and /3' C δp and p \ βf is a
1 — 1 map from /9' onto /9. It must be the case that β' — a! is infinite.
For suppose βr — a' is finite. If a" = p(αθ> ^ e n /̂  "~ a" ^s finite
and hence A n <̂ " and A Π CL" are infinite since Af]β and A Π /S are
infinite. Now qop-1 {a" is a 1 — 1 map from α" onto α. Let ?7 be
the r.e. set AΓ\δqop~ι. Then qop^iU) is a r.e. set such that

qop~\U)Γ\a^qo v~\UΠ a") and q°p-\U) Π α 2 g°P"X 17"Π α). Thus
g o p~\ U) Π α and g © p-1( [/) η <χ are both infinite which violates the
fact that a is cohesive. Next, consider the r.e. sets Uι=W1Ci δp
and U2 = W2f] δp. Then p{U,) and p{U2) are r.e. sets and p{U^ΠβΏ

Π /3') - p(α') and p(U2) n /5 2 p(?72 Π /S') = ?>(/3' - α'). Thus
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p{Ut) n β and p(U2) Π β are both infinite. Now let V,^ Bϋ p(U,)
and V2 = Bl) p{U2). Note that Ux U U2 2 δp 2 /S' and hence ^(ί/J U
p(U2)^β — N — B which implies F x U V2 = JV. From the enumerations
of T7! and V2ί we can construct recursive sets Rι and J?2 as follows.
We put x in R1 if # is enumerated in Vι before it is enumerated in
V2 and put x in R2 otherwise. Then Rt = i22 and ^ η iS = F x Π iδ =
p(Uj) ίΊ /3 and R2 f] β = V2 f] β = p(U2) f] β. Thus ^ violates the fact
that β is r-cohesive. Thus (a) iL% (β) and we have proved the
following.

THEOREM 3. 5^ and :ge do not agree on Λz.

We wish to thank A. B. Manaster for introducing us to this
problem and for helpful conversations.
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