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TANGENT FRAME FIELDS ON SPIN MANIFOLDS

DUANE RANDALL

In this note we prove the following theorems.

THEOREM A. Let M" be a spin manifold with » = 7mod 8
and n > 7. Then M admits at least 8 nonhomotopic tangent
4-frame fields.

THEOREM B. Let M” be a spin manifold with » = 83 mod 8
and » >3. Suppose that w, M =0 and wM-w,_;M = 0.
Then M" admits a tangent 4-frame field iff

Wyo-s M =0 and x,M=0.

1. Introduction. Here M" denotes a closed connected smooth
manifold of dimension n. A tangent k-frame field on M" is an ordered
set of k linearly independent vector fields on M=*. The classical
theorem of Hopf states that M"™ possesses a tangent 1-frame field iff
the Euler characteristic yM = 0. A table of necessary and sufficient
conditions for tangent 2-frame fields on orientable manifolds appears
in [10] while conditions for tangent 3-frame fields are tabulated in
and [3]. In particular, Atiyah and Dupont prove in [1] that any
orientable manifold M"™ with » = 3 mod 4 admits a tangent 3-frame
field. This result is best possible since neither the sphere S*** nor
S? x CP**? admits a tangent 4-frame field.

Recall that an orientable manifold M™ is called a spin manifold
if the Stiefel-Whitney eclass w,M is trivial. The mod 2 semicharac-
teristic y,M" is defined if n = 2s + 1 by

LM = (z dim H(M; Z/2)> mod 2 .

Let oM denote the signature of M" whenever n is divisible by 4.
Finally 6 represents the Bockstein-coboundary operator associated
to the exact coefficient sequence Z — Z — Z/2.

Theorem A is a best possible result for » = Tmod 16. In [8, p.
690] Szczarba constructed certain spin manifolds M™ with » =3 mod 4
as the quotient spaces of free and differentiable actions of generalized
quarternion groups on S*. The span of these spherical space forms
M* with » = Tmod 16 and n > 7 is precisely 4 by Theorem 1.1 of
[2].

An immediate consequence of Theorem A and the result of Thurs-
ton given by [14, Corollary 1] is the following.

COROLLARY. Let M" be a spin manifold with n = Tmod 8 and
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n >T. Then M possesses a C codimension 4 foliation with trivial
normal bdbundle.

We shall derive the following consequence of Theorem A and a
theorem of Atiyah-Dupont given in [1, p. 25].

PROPOSITION. Let M™ be a spin manifold with » = 0 mod 8 and
% > 8. Suppose that H,(M; Z) has no 2-torsion, éw,_M = 0, and u* = 0
for all w in H*(M; Z/2). Then M admits a tangent 5-frame field iff

W, M=0, YM=0, and oM = Omod 16 .

The above proposition was proved by Atiyah-Dupont under the
assumption that M* is 3-connected. Both Theorem A and B were
announced in [7] and generalize Theorem 1.2 of [9]. Indeed, their
proofs are applications of the Postnikov methods developed by Emery
Thomas and applied in [9], [11], [12], [13], [5], and [6]. We thank
Samuel Gitler, James Heitsch, and Joao de Carvalho for helpful con-
versations.

2. Proof of Theorem A. The k-invariants in a modified Pos-
tnikov resolution for the fibration

(2.1) V..— BSpin (n — 4) —— B Spin (n)

through dimension n» where n = 3 mod4 and » > 7 are listed with
their defining relations below.

k= w,_,

k' Sa*Sq'w,_, = 0

K: Sq* + ~w)w,_, =0

k:Sq*k* =0.

(2.2)

(See resolution II of [6, p. 56].) Let
7: M® —— B Spin (n)

classify the tangent bundle of M where » = Tmod8 andn > 7. We
must show that 7 lifts to BSpin(n — 4) in (2.1). Set n =8t + 7.
Since the Wu classes v,M are trivial for ¢ > 4t, the classes w,M are
trivial for 7 > 8¢ by the formula

W =SqV.

The proof of Theorem 1.3 of [11] evaluates k'(r) and k*(z) by secondary
and tertiary operations applied to we. .M = 0 respectively. Thus

k(7) = 0 = K(z)
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because of zero indeterminacy. Let U denote the Thom class of the
Thom complex 7Tz associated to the tangent bundle z. In [9] Thomas
proves that

U-k(7) = ¥(U)

with zero indeterminacy where ++ is a stable secondary operation
associated to the relation in the Steenrod algebra

Sa*Sa**™ + Sq*(Sq*™Sq®) + Sq'(Sa*™Sq® + Sq¥**°Sq!) = 0.
We recall the following facts from [9] and [13]. Let
SMXM—MxM
denote the involution which interchanges factors and let
c:MXx M— Tt

denote the collapsing map associated to an embedding of 7 as a
neighborhood of the diagonal in M x M. Select a basis

(2'3) &y o0y &,

for the graded vector space >3 H'(M; Z/2). Let B, ---, 8, be the
dual basis by Poincaré duality such that

a; 'Bj = aijﬂ

if dega; + deg B; = n. Here p generates H"(M; Z/2) while clearly
r =M. We set

(2.4) Azga@@.

Then ¢*U = A + s*A and A-s*A = L, M(¢r QR ).
Suppose that +(A) is defined. The indeterminacy of +(A4) is
trivial iff w,M = 0 since

Se(v @) =Sqgv Q= v-w M ¢

for any class v in H"*(M; Z/2). We consider the universal example
(E, m, v) for the operation + on classes of dimension 8¢ + 7.

2.5) oC L B2 K(Z2,8t+ 7).

Here p is the principal fibration induced from the path-loop
fibration on

C = K(Z/2, 16t + 11) x K(Z/2, 16t + 13) x K(Z/2, 16t + 14)
by the classifying map K(Z/2, 8t + 7) — C with component operations
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(Sq8t+4, Sq8t+4sq2, Sq8t+4sq3 + Sq8t+ﬂsql)

applied to the fundamental class ¢ of K(Z/2, 8 + 7). Now m denotes
the homotopy-commutative multiplication on E while v in H*(E; Z/2)
represents .
We now exploit a technique of [4] in order to evaluate (U).
Let

A:M x M— E

denote any lifting of the class A in (2.4) under ~the assumption that
4(A) is defined. Then the map (2.6) g = mo(A4, Aos): M Xx M — E
defines a lifting of A + s*A such that

g*v = A*v + s*Av = 0

since s* is the identity on H**(M x M; Z/2).
Let

U:Tr— E

be any lifting of the Thom class U and set f = U-c. Since ¢* is a
monomorphism, 4(U) vanishes if we can show that

cEp(U) = ffo=9g*=0.
Since f and g are liftings of ¢*U, there exists a map
h: M x M— 2C

unique up to homotopy such that f and m(ioh, g) are homotopic. We
identify & with a triple (x, 9, 2) of classes in H*(M X M; Z/2). Thus

2.7 f*v = g*v + Sa*r + Sq’y + Sq'z = Sq*x .

The map ¢oh is invariant under s since both f and ¢ are invariant.
Thus the homotopy class [k] + [hos] lies in the image of

[M x M, K(Z/2, 8t + 6)] — [M x M, 2C] .
Consequently,
(2.8) x + s*xeSq¥ T HS (M X M; Z/[2) .

Note that Sq* is trivial on any class in H'(M; Z/2) ® H*™*(M; Z/2)
with bi-degree (4, 2n — 4 — 1) different from (n — 4, n) and (n, n — 4).

The following lemma implies by (2.8) that the symmetric class
x + s*x contains no nontrivial classes of bi-degree (n — 4, n) or
(m, » —4). Thus « is symmetric in the classes with bi-degree (n, n — 4)
and (» — 4, n). We conclude that
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0 =Sq'z = f*v.
LEMMA. Let M™ be any orientable manifold with n = 45 + 3 and
3> 0.
Let
P: H" M x M; Z|2) — H"*(M; Z/2) ® H*(M; Z/2)

be the projection morphism corresponding to the Kunneth formula.
Then the kernel of P contains

Sq"*HY M X M; Z/2) .

Proof. Let a @B be a class with bi-degree (4,45 +2 — 1) in
H* (M x M; Z/2). By the Cartan formula and dimensionality

Squ‘(a ® IB) = a? ® Sq4j—2IB + Sq"‘la ® Squ-i+1l8 + Sqi—za ® Sq4j~i+2l8 .

The image of Sq“(a ® B) under P is clearly trivial unless ¢ = 2j.
Further,

Sa¥*'8 = Sq'Sq¥8 =0 in
H"(M; Z/2) when ¢ =2j.

To complete the proof of Theorem A, we must justify the assump-
tion that (A) is defined. We leave this verification to the reader,
since we shall make similar calculations in the more complicated
proof of Theorem B. Finally, by [1, Proposition 6.13], the existence
of a tangent 4-frame field on M given by a lifting of = to B Spin (n — 4)
implies the existence of 8 nonhomotopic tangent 4-frame fields.

REMARK. The proof of Theorem A shows that any lifting of =
to any stage in the Postnikov resolution itself lifts to B Spin (n — 4)
since all the k-invariants of 7 are trivial with zero indeterminacy.

3. Proof of Theorem B. Let M™ be a spin manifold with n =
8t + 3 for positive ¢ such that

wM-w,_ sM=0 and w, M=0.
We adopt the notation of §2 freely. We must show that
7. M — B Spin (n)
has a lifting in the fibration (2.1) iff
Wy oM =0 and yM=20.

Suppose the primary obstruction wgM vanishes. For n =11,
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the obstructions k'(z) and k%z) vanish since they lie in the image
of Sq? and a spin-trivial secondary operation respectively. For »>11,
the proof of Theorem 1.8 of [11] establishes the triviality of %'(z)
and %%(z), whenever defined. (Note corrigenda (ii) in {10].)

In [9] Thomas proves that

U-K(t) =I'(U)

with zero indeterminacy where I" is a nonstable secondary operation
associated to the relation

Sq4Sq8t + Sq1<sq8t+zsq1 + qutsq3) + SqZ(SthSqZ) — 0

which holds on mod 2 classes of degree < 8¢ + 4. Let (&, m, v) denote
the universal example for the operation I” on classes of degree 8¢ + 3.
Since I' is nonstable,

m*rv=vR1L+1R v+ p* R p*

in H*(E X E; Z/2). Suppose I'(A) is defined. The map ¢ in (2.6)
associated to any lifting A defines a lifting of ¢*U such that

g*v = A*v + s*A*v + A-s*A = LM 1) .

Let U: Tt — E be any lifting of the Thom class U and set f =
Uoc. The argument in §2 shows that

ffv = g*v.
(Recall that the lemma in §2 was formulated for » = 3 mod 4.) Thus
Uok¥z) = I'(U) = U*v = (), M)U-p
and so by the Thom isomorphism
() = (LM -

The following lemma concludes the proof of Theorem B.

LEMMA. I'(A) is defined.

Proof. Now So**Sq'A = 0 = Sq*Sq®A4 in the spin manifold M x M
since

Sq8t+zsq1 — SqZ(SqStSqI)
S¢*Sq’ = 8¢*(Sq™'Sq*) + Sq'(Sa™Sq’) .

Note that Sq®’A is symmetric since

Sq’A + s*Sq*A = ¢*Sq*U = 0.
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Thus Sq*A contains nonzero summands only of bi-degree (4t + 2, 4¢ + 3)
and (4¢ + 3, 4t +2). Let 8 ® 7 be any class with bi-degree (4t + 1,
4t + 2). Now

Squsqh\/ — Sq2Sq4t—17 + Sq‘Sq‘“’)’ =0
so by the Cartan formula
(3.1) Sq¥Sq’A = 3 8q*Sa’a; ® Sq*B;

where only the summands with degree a; = 4¢ or 4¢ -+ 1 are possibly
nonzero.
Suppose that the Wu class »,, = 0. Then

Sa¥B = B-v, =0

for any B8 in H***(M; Z/2). If v, is nonzero, we are free to choose
v, to be a class in (2.8). Set a; = v,. We consider any summand
in (38.1) with

degree «;, = 4t, degree B, = 4t + 3.
Now Sq*B;, = B;*vy = Bi-a; = 0 for ¢ #= 4. If v = j,
Sq*'Sa’e; = Sq*Sq* v, .
By dimensionality Sq**v,, = ws,_,M. We conclude that
Sq“Sq’*e; = Sq*w,,_ M = w4M cw,_M=20.

But all summands in (3.1) with degree @, = 4t + 1 must vanish by
symmetry so

So¥Sa*4d = 0.
The class Sg*A is symmetric since
Sq¥*A 4 s*Sq¥A = ¢*Sq*U = 0.

Recall that degree «, < 4¢ + 1 for every «; in (2.3). By symmetry
the possibly nonzero summands in Sg¥A are the classes

Sqlt—I—lai ® Sq“—IBi + Sq4tai ® Sq“ﬁi

where a; ® B; has bi-degree (4t + 1, 4t + 2).
We claim that either Sq*e; or Sq*B, is trivial. Choose a basis

LyVsss LVsgy =0y LVs
for v,,H'(M; Z/2). Extend this basis to a basis

&y oy &,
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for H“*'(M; Z/2) with a; =z, for ¢+ < j. Let B, ---, 8, denote
the dual basis for H*"*(M; Z/2). For j < i <+ and any class z in
H'(M; Z[2),

Sq“B;+z = Sq*(Bz) = Bi(zvu) =0.
Thus §q*B;, = 0 for j <4¢. For i1 =g
Sq“(mivu) = xiw‘n-—-sM -+ mf-wﬂ_4M =0.
We conclude by symmetry that Sg*A = 0.
4. Proof of Proposition. Let M" be a spin manifold with

n=0mod8 and n > 8. We assume that H,(M; Z) has no 2-torsion,
ow,_ M =0, and u* = 0 for all u in H*M; Z/2). Let

7. M —— B Spin (n)

classify the tangent bundle of M. The following diagram is the
Moore-Postnikov resolution for the fibration

n: BSpin (n — 5) — B Spin (n)
through dimension n.

BSpin (n — 5)

l

E,

l

B, —s K(Z @ Z/8, n)
“.1) 1
B2 Kz D 72, n — 1)

l

E - K(Z/2, 1 — 2)

|

M —=> B Spin (n) 2% K(Z/2, n — 4) .
Let f: M —— E, be any lifting for . Then

f*eH"(M; ZP Z|8) = ZD Z/8.
Atiyah and Dupont in [1, p. 25] show that

[ =(0,0) if yM=0 and oM = O0Omod16.
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We must show that ¢ lifts to E, iff w,_ M = 0. Assume w,_ M =0
so 7 lifts to H,. -

The following diagram contains the first stage of a modified
Postnikov resolution for the fibration

B Spin (n — 6) —— B Spin (n)

through dimension n — 1.

E,
(4.2) l
BSpin (n) 20Xt g(Z, m — 5) % K(Z)2, n — 4) .
Let h: E, — E, denote the induced map.
Then
L*k* = Sq’y

where y has the defining relation
Sq*(0W,—s) + Sq'Ww,—, = 0.

The map 7 lifts to E, since ow, M = 0 = w,_ M. The indeterminacy
of k'(z) is given by

So*Sq*H**(M; Z|2) = 0.

Now Sq* vanishes on H"*(M; Z/2) iff w* = 0 for all w in H*(M; Z/2)
by Poincaré duality and the Cartan formula. We conclude that
(k') = 0 so 7 lifts to K, in (4.1).

We write ¢*k* = (u, v) where g: M — E, is any lifting of z and
the classes % and v belong to H"Y(M; Z/2). Suppose that g¢g*k* is
nonzero. Then at least one class, say %, is nontrivial. Now

0=0ucH"M; Z)~ Z .

Select any class « in H"'(M; Z) such that p,x =u where p,
denotes reduction mod 2. Next choose a class « in H, ,(M; Z) such
that the evaluation x(e¢) is an odd multiple of a generator for
H(M; Z)~ Z. There exists such a class a because H* '(M; Z) has
no 2-torsion.

Let 4: N— M be the inclusion of an oriented codimension one
submanifold N (not necessarily connected) of M such that

t(ty) = @ .
Here pt; denotes the fundamental homology class of N. Since

w(a) = a(iufey) = @F2)(ty) ,
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it follows that +*u = 0,(4*x) + 0. Note that the lifting
gei: N— E,
of the stable tangent bundle of N does not lift to E, since
(gvov})’kklc2 = (t*u, t*v) # (0, 0) .

The following lemma applied to the connected components of
N yields a contradiction to the assumption that g¢*k* is nonzero.
Thus 7 lifts to E, and the proposition is proved.

LEMMA. Let N be any codimension 1, closed, connected, orientable
submantfold of M with tnclusion denoted by . Then any lifting of

7o4: N —— B Spin (n)

to any space E; in the resolution (4.1) further lifts to B Spin (n — 5).

Proof. The normal bundle to N in M is trivial by orientability.
So N is a spin manifold whose stable tangent bundle is classified by
the composite to¢. The Moore-Postnikov resolution in (4.1) is essen-
tially a modified Postnikov resolution through dimension #» — 1. One
component of the class k* is the image of a class z in H" '(&,; Z/2)
with defining relation

Sq* + rw)w,_, = 0.

The corresponding spaces in the modified Postnikov resolution (2.1)
for the fibration

BSpin (n — 5) —— BSpin(n — 1)

clearly map into E, and E, in (4.1). The map of resolutions begins
with the inclusion

B Spin (n — 1) — B Spin (%) .

With respect to the induced maps, the class z goes to % in (2.1)
while the other component of k* in (4.1) maps to k* in (2.1). The
proof of Theorem A shows that any lifting of 7(N) to any stage in
the modified Postnikov resolution (2.1) for the fibration

B Spin(n — 5) — BSpin(n — 1)

itself lifts to BSpin(n — 5). (See the remark in §2.) Thus the
same property holds for any lifting of the stable tangent bundle in
the resolution (4.1).
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