ON THE EXPANSION IN JOINT GENERALIZED EIGENVECTORS

KLAUS GERO KALB

Let \mathscr{A} be a family commuting selfadjoint of (normal) operators in a complex (not necessarily separable) Hilbert space H. A natural triplet $\phi \subset H \subset \phi'$ is described, such that (1) \mathscr{A} possesses a complete system of joint generalized eigenvectors in ϕ' ; (2) the joint generalized point spectrum of \mathscr{A} essentially coincides with the joint spectrum of \mathscr{A} ; (3) the generalized point spectra, generalized spectra and spectra essentially coincide for all $A \in \mathscr{A}$; (4) the simultaneous diagonalization of \mathscr{A} in H by means of its spectral measure extends to ϕ' . Also the multiplicity of the joint generalized eigenvectors of \mathscr{A} is discussed.

Let ϕ be a locally convex space, which is embedded densely and continiously into H, such that $A\phi \subset \phi$ and $\dot{A} = A \mid \phi \in \mathscr{L}(\phi)$ for all $A \in \mathscr{L}$. Consider the triplet $\phi \subset H \subset \phi'$. A joint generalized eigenvector of \mathscr{L} with respect to the joint generalized eigenvalue $(\lambda_A)_{A\in\mathscr{L}} \in \prod_{A\in\mathscr{L}} C$ is a continuous linear form $x' \in \phi'$ such that

$$(1.1) x' \neq 0 and \dot{A}'x' = \lambda_A \cdot x' for all A \in \mathscr{A}.$$

The system & of all joint generalized eigenvectors of M is called complete, if $\langle \varphi, e' \rangle = 0$ for all $e' \in \mathfrak{C}$ implies $\varphi = 0$ $(\varphi \in \phi)$. For H separable there is a number of conditions on ϕ , under which \mathfrak{E} is complete (cf. e.g., [14], [3]), and there also are effective constructions of ϕ with respect to a given family \mathscr{A} (cf. [13], [14] for \mathscr{A} countable: [15]). The fact that especially in the case of a single normal operator there generally exist many more joint generalized eigenvalues and eigennvectors than necessary (and reasonable in physical applications) has led to recent investigations ([15], [16]; [1]; [2]; [5]; [8], [9]). Let $\sigma_P(\mathscr{A}')$ be the joint generalized point spectrum of \mathscr{A} (i.e., the set of all joint generalized eigenvalues of \mathcal{A}), let $\sigma(\mathcal{A})$ be the joint spectrum of M as defined in Gelfand theory (cf. § 2). Let A be the (commutative) C^* -algebra generated by \mathscr{A} and 1. In the present work we propose the construction of a natural triplet $\phi \subset$ $H \subset \phi'$, by which the following is achieved:

- (a) $\sigma_P(\mathscr{N}') \subset \overline{\sigma_P(\mathscr{N}')} = \sigma(\mathscr{N});$
- (b) $\sigma_P(\dot{B}') \subset \overline{\sigma_P(\dot{B}')} = \sigma(\dot{B}') = \sigma(B) \text{ for all } B \in \mathscr{B};$
- (c) the simultaneous diagonalization of \mathscr{B} by means of its spectral measure can be transferred to \mathscr{B}' .

For H separable we can even attain $\sigma_P(\mathscr{A}') = \sigma(\mathscr{A})$ and $\sigma_P(\dot{B}') = \sigma(B)$ for all $B \in \mathscr{B}$, and also have a description of the multiplicity of the joint generalized eigenvalues.

In the case of a single selfadjoint operator our method reduces to that of [9] (cf. also [11]) and for $\mathscr{A} = \mathscr{B}$ is similar to that of [15] where for H separable the equation $\sigma(\mathscr{B}) = \sigma_{P}(\mathscr{B}')$ is realized. The basic idea of the construction, due to R. A. Hirschfeld [7], is to choose (by means of an appropriate spectral representation of \mathscr{B}) the space ϕ as a space of continuous functions with compact support on a locally compact space R (or as a space of continuous vector fields, if the theory of R. Godement [6] is used), such that the joint generalized eigenvectors essentially are the point masses (characters).

2. Simultaneous diagonalization and spectral decomposition. In this section we summarize the spectral and multiplicity theory of [17], [18], [19]. Let S be the spectrum of \mathscr{B} , i.e., the set of all (continuous) homomorphisms of \mathscr{B} onto C, endowed with the usual topology. Let $\hat{B}(\cdot)\colon S\to C$, defined by $\hat{B}(s)=s(B)$ $(s\in S)$, be the Gelfand transform of $B\in\mathscr{B}$. The application $\mathscr{B}\ni B\mapsto \hat{B}(\cdot)\in C(S)$ is an isometrical *-isomorphism of \mathscr{B} onto C(S). Let $E(\cdot)$ be the spectral measure of $\mathscr{B}\colon B=\int_S \hat{B}(s)dE(s)$ $(B\in\mathscr{B})$. The joint spectrum (cf. [18], p. 150) of \mathscr{A} , denoted $\sigma(\mathscr{A})$, is defined by $\sigma(\mathscr{A})=\{(\hat{A}(s))_{A\in\mathscr{A}}\colon s\in S\}$. $\sigma(\mathscr{A})\subset \prod_{A\in\mathscr{A}}\sigma(A)$ is homeomorphic to S under the application

(2.1)
$$\kappa \colon S \ni s \longmapsto (A(s))_{A \in \mathscr{A}} \in \sigma(\mathscr{A}).$$

Choose a decomposition $H=\bigoplus_{i\in I}H_i$, such that $\mathscr{B}H_i\subset H_i$ and $\mathscr{B}_i=\mathscr{B}|_{H_i}$ possesses a cyclic vector x_i $(i\in I)$. Let S_i be the spectrum of \mathscr{B}_i $(i\in I)$. Then there is a family $(m_i)_{i\in I}$ of positive Borel measures on S_i with support S_i inducing a spectral representation $H\hookrightarrow\bigoplus_{i\in I}L^2(S_i,m_i)$. Thereby H_i is transferred in $L^2(S_i,m_i)$, especially x_i in 1_{S_i} $(i\in I)$; an operator $B\in\mathscr{B}$ is converted in the multiplication by $(\hat{B}_i(\cdot))_{i\in I}$, where $\hat{B}_i(\cdot)$ $(=\hat{B}(\cdot)|_{S_i}$ if S_i is considered as a subset of S_i 0 denotes the Gelfand transform of $B|_{H_i}$ $(i\in I)$; a spectral projection E(b), b a Borel subset of S_i 0, is transferred in the multiplication by $(\chi_{b\cap S_i})_{i\in I}$. Finally we have $m_i(\cdot)=(E(\cdot)x_i,x_i)$ $(i\in I)$. When H is separable, we can choose I=N and achieve by a normalization (cf. [17], [10]) that (in an essentially unique manner) $m_1>m_2>\cdots$, particularly $S=S_1\supset S_2\supset\cdots$. The (well defined) function

(2.2)
$$m_H(s) = \#\{n \in \mathbb{N}: s \in S_n\} \ (s \in S)$$

is called the Hellinger-Hahn multiplicity function of A.

We return to the general case, in which, for the sake of simplification of notation, we formulate the affirmations concerning spectral decompositions in a somewhat different way (cf. [19]): We consider the sets S_i $(i \in I)$ as pairwise disjoint sets \widetilde{S}_i $(i \in I)$ and define $R = \bigcup_{i \in I} \widetilde{S}_i$. A set $V \subset R$ is defined to be open, if for all $i \in I$ the set $V \cap \widetilde{S}_i$ (interpreted as a subset of S_i) is open in S_i . With that R is a locally compact topological Hausdorff space; each S_i is open and compact in R. A function $f: R \to C$ belongs to $C_i(R)$ if and only if $f|_{\widetilde{S}_i} \in C(S_i)$ for all $i \in I$ and $f|_{\overline{S}_i} = 0$ for all but finitely many $i \in I$. Define a Radon measure μ on R by

$$\mu(f) = \int_R f \cdot d\mu = \sum_{i \in I} \int_{S_i} f \cdot dm_i \quad (f \in C_c(R))$$
 .

Then there is a spectral representation $H \leftarrow L^2(R, \mu)$ of \mathscr{B} by which \mathscr{B} is converted in a subalgebra of the multiplication algebra BC(R) (:=algebra of bounded continuous numerical functions on R) on $L^2(R, \mu)$: $\mathscr{B} \ni B \mapsto \text{multiplication by } \widetilde{B}(\cdot) \in BC(R)$, where $\widetilde{B}(r) := \widehat{B}(\lambda r)$ $(r \in R)$. Here $\lambda : R \to \bigcup_{i \in I} S_i \subset S$ is the natural surjection. Finally we shall need:

(2.3)
$$E(\cdot)$$
 is concentrated on $\bigcup_{i\in I} S_i$; particularly $\overline{\bigcup_{i\in I} S_i} = S$;

(2.4)
$$||B|| = |\hat{B}(\cdot)|_{\mathcal{C}(S)} = |\tilde{B}(\cdot)|_{B\mathcal{C}(R)}$$
 $(B \in \mathscr{B});$

(2.5)
$$\sigma(B) = \widehat{B}(S) = \overline{\widetilde{B}(R)} \qquad (B \in \mathscr{B}).$$

 $(|\cdot| \text{ denotes the supremum norm.})$

3. Expansion in joint generalized eigenvectors. We proceed now to the construction of the triplet $\phi \subset H \subset \phi'$. We assume without loss of generality that $H = L^2(R, \mu) \hookrightarrow \bigoplus_{i \in I} L^2(S_i, m_i)$ and $\mathscr{B} \subset CB(R)$. Let $\phi := C_c(R)$. It is easy to see that ϕ is topologically isomorphic to the locally convex direct sum $\dot{\Sigma}_{i \in I} C(S_i)$ (considered in [9]). ϕ satisfies with respect to \mathscr{B} (and \mathscr{M}) all the prerequisites listed in the introduction. For $r \in R$ define $e'(r) \in \phi'$ by $\langle \varphi, e'(r) \rangle = \varphi(r)$ ($\varphi \in \phi$).

Theorem (3.1). (i) $\dot{B}'e'(r) = \widetilde{B}(r) \cdot e'(r) \ (B \in \mathscr{B}, r \in R)$.

(ii) $(\varphi, \psi) = \int_{\mathbb{R}} \langle \varphi, e'(r) \rangle \overline{\langle \psi, e'(r) \rangle} d\mu(r) \ (\varphi, \psi \in \phi)$ [(i) and (ii) mean that $\mathfrak{E} = \{e'(r): r \in R\}$ is a complete system of joint generalized eigenvectors of \mathscr{B}].

(iii)
$$\sigma_P(\dot{B}') = \tilde{B}(R) \ (B \in \mathscr{B}).$$

(iv)
$$\sigma(\dot{B}') = \overline{\sigma_{c1}(\dot{B}')} = \sigma(B) \ (B \in \mathscr{B}).$$

Here $\sigma(\dot{B}')$ denotes the spectrum of \dot{B}' in the sense of Waelbroeck (cf. e.g., [12]) and $\sigma_{cl}(\dot{B}')$ is defined as the set of those $z \in C$, for which $\dot{B}' - z$ is not invertible in $\mathcal{L}(\phi')$. Thereby on ϕ' always is considered the strong topology and on $\mathcal{L}(\phi')$ the topology of uniform convergence on bounded subsets of ϕ .

Proof. (i), (ii) are direct consequences of our construction. (iii): Let $B \in \mathscr{B}$. Because of (i) we only have to show that $\sigma_P(\dot{B}') \subset \widetilde{B}(R)$. Let $z \in \sigma_P(\dot{B}')$ and suppose that $z \notin \widetilde{B}(R)$. Choose $x' \in \phi'$ such that $x' \neq 0$ and $\dot{B}'x' = zx'$. Let $\varphi \in \phi$ be arbitrary. Then there exists $\psi \in \phi$ such that $\varphi(r) = (\widetilde{B}(r) - z) \cdot \psi(r)$ $(r \in R)$. Hence $\langle \varphi, x' \rangle = \langle (\widetilde{B}(\cdot) - z) \cdot \psi(\cdot), x' \rangle = \langle \psi, (\dot{B}' - z)x' \rangle = 0$, i.e., x' = 0. Contradiction. (iv): By (iii) we have $\sigma(B) = \widetilde{B}(R) = \sigma_P(\dot{B}') \subset \sigma_{c1}(\dot{B}') \subset \sigma(\dot{B}')$. It remains to show that $\sigma(\dot{B}') \subset \widetilde{B}(R)$: Let $z \notin \widetilde{B}(R)$. To demonstrate that $z \notin \sigma(\dot{B}')$, the two cases $z = \infty$ and $z \in C$ have to be treated separately. Let $z \in S$. Choose $S \in S$ such that $|\widetilde{B}(r)| \leq C$ $|S \in S| \cup S$ is a neighborhood of $S \in S$, and $|S \in S| \cup S$ $|S \in S| \cup S$ for $S \in S$ for $S \in S$. For $S \in S$ define $S \in S$ define $S \in S$ by

$$\langle \varphi, Q(w)x' \rangle = \langle (\widetilde{B}(\boldsymbol{\cdot}) - w)^{-1} \boldsymbol{\cdot} \varphi(\boldsymbol{\cdot}), x' \rangle \qquad (\varphi \in \phi, x' \in \phi').$$

It is clear that $Q(w)(\dot{B}'-w)=(\dot{B}'-w)Q(w)=1$ for all $w\in U\cap C$ and easy to see that $\{Q(w)\colon w\in U\cap C\}$ is bounded in $\mathscr{L}(\phi')$. Hence $\infty\not\in\sigma(\dot{B}')$. If $z\in C$, choose a neighbourhood V of z such that $\bar{V}\cap \overline{\tilde{B}(R)}=\varnothing$ and proceed similarity.

We shall show now that the spectral measure $E(\cdot)$ of \mathscr{B} can be extended to a spectral measure of \mathscr{B}' .

THEOREM (3.2). There is an (unique) spectral measure $P(\cdot)$ on S with values in $\mathscr{L}(\phi')$ such that $\dot{B}' = \int_{S} \hat{B}(s) \cdot dP(s) (B \in \mathscr{B})$ and $P(\cdot)|_{H} = E(\cdot)$.

Proof. ϕ' is the space of Radon measures on R. Define $P(\mathfrak{b})x' = \chi_{\lambda^{-1}(\mathfrak{b})} \cdot x'$ (\mathfrak{b} a Borel subset of S, $x' \in \phi'$), i.e., $\langle \varphi, P(\mathfrak{b})x' \rangle = \int_{\lambda^{-1}(\mathfrak{b})} \varphi \cdot dx'$ for $\varphi \in \phi$. It is easily chequed that $P(\cdot)$ is a bounded σ -additive spectral measure in $\mathscr{L}(\phi')$ and that $P(\cdot)|_{H} = E(\cdot)$. Since ϕ' is complete and barrelled, the integral $\int_{S} \hat{B}(s) \cdot dP(s)$ ($B \in \mathscr{B}$) exists in the

strong sense. An easy calculation shows that $\left\langle \varphi, \int_{\mathcal{S}} \widehat{B}(s) \cdot dP(s) x' \right\rangle = \int_{\mathcal{S}} \widehat{B}(s) d\langle \varphi, P(s) x' \rangle = \langle B\varphi, x' \rangle$ for all $\varphi \in \phi$, $x' \in \phi'$, i.e., $\int_{\mathcal{S}} \widehat{B}(s) \cdot dP(s) = \dot{B}'$.

We now discuss the relations between the joint spectrum and the joint generalized point spectrum of \mathcal{A} :

Theorem (3.3).
$$\sigma_P(\mathscr{A}') \subset \overline{\sigma_P(\mathscr{A}')} = \sigma(\mathscr{A}).$$

Proof. For $r \in R$ we have by Theorem (3.1) (i) that $(\widetilde{A}(r))_{A \in \mathscr{S}} = (\widehat{A}(\lambda r))_{A \in \mathscr{S}} \in \sigma_P(\mathscr{S}')$ $(r \in R)$. Hence $\kappa(\lambda(R)) = \kappa(\bigcup_{i \in I} S_i) \subset \sigma_P(\mathscr{S}')$, where κ is the homeomorphism of (2.1). Because of (2.3) we obtain $\sigma(\mathscr{S}) = \kappa(S) \subset \kappa(\bigcup_{i \in I} S_i) \subset \sigma_P(\mathscr{S}')$. It remains to show that $\sigma_P(\mathscr{S}') \subset \sigma(\mathscr{S})$. Let $(\lambda_A)_{A \in \mathscr{S}} \in \sigma_P(\mathscr{S}')$; let $x' \in \phi' = C'_c(R)$ be a joint generalized eigenvector of \mathscr{S} , i.e., (1.1) holds. Choose $i \in I$ such that $x'_i = x'|_{\sigma(S_i)} \neq 0$. Consider the triplet $\phi_i \subset H \subset \phi'_i$, where $\phi_i = C(S_i)$, $H = L^2(S_i, m_i)$. We then have $(A|_{\phi_i})'x'_i = \lambda_A \cdot x'_i$ $(A \in \mathscr{S})$. We shall show that there exists an (unique) $s_i \in S_i$, such that $\lambda_A = \widehat{A}(s_i)$ $(A \in \mathscr{S})$. For the sake of simplification of notation we suppress the index i, i.e., we consider the case of total multiplicity 1 without loss of generality. We first extend the function

$$(3.4) \mathcal{A} \mapsto \lambda_A \in C$$

to \mathscr{B} such that (1.1) remains valid. To do this, let $\mathscr{P}(\mathscr{A})$ be the algebra of polynomials in elements of \mathscr{A} and 1. The closure of $\mathscr{P}(\mathscr{A})$ in $\mathscr{L}(H)$ equals \mathscr{B} . If $p=p(\alpha_1,\cdots,\alpha_n)$ is a polynomial in n variables, we define $\lambda_B=p(\lambda_{A_1},\cdots,\lambda_{A_n})$ for $B=p(A_1,\cdots,A_n)\in\mathscr{P}(\mathscr{A})$. By (1.1) we conclude that the function

$$(3.5) \mathscr{S}(\mathscr{A}) \ni B \longmapsto \lambda_B \in C$$

is well defined, constitutes an extension of (3.4) and satisfies

$$\dot{B}'x' = \lambda_B \cdot x' \qquad (B \in \mathscr{S}(\mathscr{A})).$$

Observing that $\lambda_B \in \sigma_P(\dot{B}') \subset \sigma(B)$ (cf. (3.1) (iii), hence $|\lambda_B| \leq ||B||$, we obtain that the (linear) function (3.5) is continuous. Hence it possesses an unique extension as a continuous function on \mathscr{B} , which we again denote by $B \mapsto \lambda_B$ and which satisfies for reasons of continuity the relations

$$\dot{B}'x' = \lambda_B \cdot x' \qquad (B \in \mathscr{B}).$$

Using this it is easily chequed that $B \mapsto \lambda_B$ is an homomorphism of \mathscr{B} onto C (cf. [15]), i.e., defines an element $s \in S$ such that $\lambda_B = s(B) = \hat{B}(s)$ $(B \in \mathscr{B})$.

The proof shows particularly that a joint generalized eigenvector of \mathscr{A} is automatically one of \mathscr{B} .

4. The multiplicity of the joint generalized eigenvalues. First we give a supplement to the second part of the proof of Theorem (3.3):

LEMMA (4.1). x' is a multiple of point mass in s.

Proof. Recall that R=S (according to our reduction to the cyclic case). (3.7) then means that

$$\langle \hat{B}(\boldsymbol{\cdot}) \cdot \varphi(\boldsymbol{\cdot}), x' \rangle = \hat{B}(s) \cdot \langle \varphi, x' \rangle \qquad (\varphi \in C(S), \hat{B}(\boldsymbol{\cdot}) \in C(S))$$
.

This implies that the support of x' is contained in $\{s\}$. [When $\varphi \in C(S)$ is such that $\sup (\varphi) \subset S - \{s\}$, choose $\hat{B}(\cdot) \in C(S)$ such that $\hat{B}(s) = 1$ and $\sup (\hat{B}(\cdot)) \subset S - \sup (\varphi)$. Then $\hat{B}(\cdot) \varphi(\cdot) \equiv 0$ on S, hence $\langle \varphi, x' \rangle = \hat{B}(s) \cdot \langle \varphi, x' \rangle = \langle \varphi, \dot{B}'x' \rangle = \langle B\varphi, x' \rangle = \langle \hat{B}(\cdot) \cdot \varphi(\cdot), x' \rangle = 0$.] This proves the affirmation (since $x' \neq 0$; cf. [4], p. 70).

The lemma shows that the multiplicity of the joint generalized eigenvalues of $\mathscr M$ with respect to the triplet $\phi \subset H \subset \phi'$ constructed in § 3 is given by

(4.2)
$$\operatorname{mult}((\hat{A}(s))_{A \in \mathcal{A}}) = \#\{i \in I: s \in S_i\} \quad (s \in S).$$

This formula illustrates the arbitrariness remaining in the selection of the spectral decomposition. Our construction is only well adapted to $\mathscr M$ with respect to the spectra.

When H is separable, we can base the construction of ϕ on the "canonical" spectral decomposition described in §2. We then obtain:

Theorem (4.3). (i)
$$\sigma_P(\dot{B}') = \sigma(\dot{B}') = \sigma(B) \ (B \in \mathscr{B}).$$

- (ii) $\sigma_P(\mathcal{A}') = \sigma(\mathcal{A}).$
- (iii) $\operatorname{mult}((A(s))_{A\in\mathscr{A}})=m_H(s)\ (s\in S).$

Proof. (i) and (ii) ensue from $S = S_1$, i.e., $\lambda R = S_1$, and the proofs of (3.1) and (3.3). (iii) is a consequence of formulas (2.2) and (4.2).

If $\mathscr M$ has simple spectrum (i.e., in the separable case: $\mathscr M$ possesses a cyclic vector, or, equivalently, $m_H(s)=1$ $(s\in S)$) because of (4.3) (iii) the following formula holds:

(4.4)
$$\operatorname{mult}((\lambda_A)_{A\in\mathscr{A}}) = 1 \text{ for all } (\lambda_A)_{A\in\mathscr{A}} \in \sigma_P(\mathscr{A}').$$

In the nonseparable case we have the following result concerning multiplicity:

Theorem (4.5). If $\mathcal{A} = \mathcal{B}$ is maximal Abelian, then (4.4) holds.

Proof. Then to \mathscr{D} corresponds the full multiplication algebra CB(R) on $L^2(R,\mu)$. As CB(R) separates the points of $R=\bigcup_{i\in I}\widetilde{S}_i$, we obtain that $S_i\cap S_j=\varnothing$ for $i\neq j$. Now the affirmation ensues from (4.2).

The natural extension of the notion " \mathscr{M} possesses simple spectrum" to the nonseparable case is that the von Neumann algebra generated by \mathscr{M} and 1 is maximal Abelian (cf. [19]). Theorem (4.5) says that (4.4) holds, if \mathscr{M} is a von Neumann algebra with simple spectrum. We conclude by formulating a problem: Let \mathscr{M} be an arbitrary system with simple spectrum. How "must" the triplet $\phi \subset H \subset \phi'$ be constructed to obtain (4.4)?

REFERENCES

- 1. D.Babbit, Rigged Hilbert spaces and one particle Schroedinger operators, Rep. Math. Phys., 3 (1972), 37-42.
- H. Baumgärtel, Resonanzen und Gelfandsche Raumtripel, Math. Nachr., 72 (1976), 93-107.
- 3. Yu. M. Berezanskii, Expansion in eigenfunctions of self-adjoint operators, Providence, R. I.: Amer. Math. Soc., 1968.
- 4. N. Bourbaki, Elements de mathématique, Livre VI. Intégration. Paris: Hermann, 1965
- 5. W. G. Farris, Perturbations and nonnormalizable eigenvectors, Helvetica Phys. Acta, 44 (1971), 930-936.
- 6. R. Godement, Sur la théorie des représentations unitaires, Ann of Math., 53 (1951), 68-124.
- 7. R. A. Hirschfeld, Expansions in eigenfunctionals, Nederl. Akad. Wetensch. Proc. Ser., A 68 (1965), 512-520.
- 8. K. Kalb, Spectrale Invarianz bei verallgemeinerten Eigenfunktionsentwicklungen, Manuscripta Math., 7 (1972), 271-297.
- 9. ——, Die Vielfachheit nach Hellinger und die geometrische Vielfachheit der verallgemeinerten Eigenwerte, Archiv Math. (Basel), 25 (1974), 290-296.
- 10. ——, Teorema y funciones de multiplicidad espectral, Rev. Col. Mat., 10 (1976), 1-37.
- 11. ———, Selbstadjungierte Operatoren als "dual rein atomare" Skalaroperatoren, Math. Ann., 232 (1978), 121-130.
- 12. F. Maeda, Remarks on spectra of operators on locally convex spaces, Proc. National Acad. Sci., USA, 47 (1961), 1052-1055.
- 13. K. Maurin, Eine Bemerkung zu allgemeinen Eigenfunktionsentwicklungen, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys., 8 (1960), 381-384.
- 14. ——, General eigenfunction expansions and unitary representation of topological groups, Warszawa: PWN, 1968.
- 15. K. Napiórkowski, On generalized eigenfunctions of operators in a Hilbert space,

Studia Math., 46 (1973), 79-82.

- K. Napiórkowski, On good and bad generalized eigenvectors, I, II, Bull. Acad. Polon.
 Sci. Sér. Sci. Math. Astr. Phys., 22 (1974), 1215-1218; 23 (1975), 251-252.
- 17. E. Nelson, Topics in dynamics. I: Flows, Math. Notes Princeton, Princeton: University Press, 1969.
- 18. Ch. E. Rickart, General Theory of Banach Algebras, Princeton: Van Nostrand, 1960. 19. I. E. Segal and R. A. Kunze, Integrals and Operators, New York: McGraw-Hill, 1968.

Received April 21, 1977.

JOHANNES GUTENBERG-UNIVERSITÄT D6500 MAINZ GERMANY