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ON THE EXPANSION IN JOINT GENERALIZED
EIGENVECTORS

KrLAus GERO KALB

Let % be a family commuting selfadjoint of (normal)
operators in a complex (not necessarily separable) Hilbert space
H. A natural triplet ¢ C HC ¢’ is described, such that (1) &
possesses a complete system of joint generalized eigenvectors
in ¢/; (2) the joint generalized point spectrum of % essentially
coincides with the joint spectrum of %; (3) the generalized
point spectra, generalized spectra and spectra essentially
coincide for all A €% (4) the simultaneous diagonalization
of % in H by means of its spectral measure extends to ¢'.
Also the multiplicity of the joint generalized eigenvectors
of %7 is discussed.

Let ¢ be a locally convex space, which is embedded densely and
continiously into H, such that Agc¢ and A = Alge F(¢) for all Ae
. Consider the triplet ¢ Cc HC ¢'. A joint generalized eigenvector
of & with respect to the joint generalized eigenvalue (\,) ... €
T14c.. C is a continuous linear form x' €¢” such that

1.1) ##0 and A2 =n,-2 for all Ae.~.

The system & of all joint generalized eigenvectors of .o is called
complete, if (@, ey =0 for all ¢ €@ implies p =0 (peg). For H
separable there is a number of conditions on ¢, under which € is
complete (cf. e.g., [14], [3]), and there also are effective constructions
of ¢ with respect to a given family .27 (cf. [13], [14] for .o count-
able; [15]). The fact that especially in the case of a single normal
operator there generally exist many more joint generalized eigenvalues
and eigennvectors than necessary (and reasonable in physical applica-
tions) has led to recent investigations ([15], [16]; [1]; [2]; [5); [8];
[9]). Let ap(.,%’ ") be the joint generalized point spectrum of .7 (i.e.,
the set of all joint generalized eigenvalues of .%7), let o(.%7) be the
joint spectrum of .97 as defined in Gelfand theory (cf. §2). Let <&
be the (commutative) C*-algebra generated by .o and 1. In the
present work we propose the construction of a natural triplet ¢ C
Hc ¢', by which the following is achieved:

@) 0x(F") Cop(.57") = a(.7);

() op(B)co.(B) = d(B') = o(B) for all Be F;
(¢) the simultaneous diagonalization of <& by means of its
spectral measure can be transferred to .<Z’.
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For H separable we can even attain O'P(..,Q/.’) = 0(.%) and o‘P(B’) =
o(B) for all Be.<# and also have a description of the multiplicity
of the joint generalized eigenvalues.

In the case of a single selfadjoint operator our method reduces to
that of [9] (cf. also [11]) and for .& = <£Z is similar to that of [15]
where for H separable the equation ¢(<#) = ap(gj;’) is realized. The
basic idea of the construction, due to R. A. Hirschfeld [7], is to
choose (by means of an appropriate spectral representation of <#)
the space ¢ as a space of continuous functions with compact support
on a locally compact space R (or as a space of continuous vector
fields, if the theory of R. Godement [6] is used), such that the joint
generalized eigenvectors essentially are the point masses (characters).

2. Simultaneous diagonalization and spectral decomposition.
In this section we summarize the spectral and multiplicity theory
of [17], [18], [19]. Let S be the spectrum of <7, i.e., the set of
all (continuous) homomorphisms of <& onto C, endowed with the
usual topology. Let B(-): S— C, defined by B(s) = s(B) (seS), be
the Gelfand transform of Be.<Z. The application <& 5 B B(-)¢e
C(S) is an isometrical #-isomorphism of .<Z onto C(S). Let E(-) be

the spectral measure of .7: B — S B(s)dE(s) (Be 7). The joint
S

spectrum (cf. [18], p. 150) of .o denoted 0(.%7), is defined by o(.&7) =
{(A(8))scv:8€8}). 0(7)CTl4e . 0(A) is homeomorphic to S under
the application

2.1) £: S2st+—— (A(8))4er €0() .

Choose a decomposition H = @,.; H;, such that <#H,C H; and <7, =
Z |u, possesses a cyclic vector x;, (¢€I). Let S; be the spectrum
of <# (ieI). Then there is a family (m,);.; of positive Borel meas-
ures on S; with support S; inducing a spectral representation H «—
®;.: LS, m;). Thereby H, is transferred in L*(S;, m,), especially «;
in 15, (4€I); an operator Be &Z is converted in the multiplication
by (B(-))ier» Where By(+) (=l§(-)]si if S; is considered as a subset of
S) denotes the Gelfand transform of B|;, (:€I); a spectral projec-
tion E(b), b a Borel subset of S, is transferred in the multiplication
by (Xsns,)icz- Finally we have m(-) = (E(-)x;, ) (t€I). When H
is separable, we can choose I = N and achieve by a normalization
(cf. [17], [10]) that (in an essentially unique manner) m,>m,> ---,
particularly S=S,28S,D---. The (well defined) function

(2.2) my(s) = #{neN:se8S,} (se é)
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is called the Hellinger-Hahn multiplicity function of <Z.

We return to the general case, in which, for the sake of sim-
plification of notation, we formulate the affirmations concerning
spectral decompositions in a somewhat different way (cf. [19]): We
consider the sets S, (1€I) as pairwise disjoint sets S, (¢eI) and
define R = J,.;S;. A set VCR is defined to be open, if for all
ieI the set VNS, (interpreted as a subset of S, is open in S,.
With that R is a locally compact topological Hausdorff space; each
S; is open and compact in B. A function f: R — C belongs to C,(R)
if and only if f|5,€C(S,) for all 1€l and f|5, = 0 for all but finitely
many ¢ €I. Define a Radon measure ¢ on R by

)=\ f-dp=3 7am (recmy.

Then there is a spectral representation H — L*(R, ¢) of <& by which
“# is converted in a subalgebra of the multiplication algebra BC(R)
(:=algebra of bounded continuous numerical functions on RE) on
LX(R, tf): <% 5 B multiplication by B(-) e BC(R), where B(r): = B(\r)
(reR). Here »: R— U;.;S;c S is the natural surjection. Finally
we shall need:

(2.3)  E(-) is concentrated on U S;; particularly U S; = S;
tel

(2.4) IBIl = |1B()les = |B()lsowy  (BeF);
(2.5) o(B) = B(S) = B(R) (Be<#).

(-] denotes the supremum norm.)

3. Expansion in joint generalized eigenvectors, We proceed
now to the construction of the triplet ¢ © HC ¢'. We assume with-
out loss of generality that H = L*R, ¢) — @,.; L*(S,, m;) and & C
CB(R). Let ¢:=C,R). It is easy to see that ¢ is topologically
isomorphic to the locally convex direct sum S‘,ie 1 C(S,) (considered in
[9]). ¢ satisfies with respect to <Z (and .%7) all the prerequisites
listed in the introduction. For ¢ R define ¢'(r) e ¢’ by (@, €'(r)) =

P(r) (p€g).

THEOREM (3.1). (i) Be¢(r) = B@r)-¢(r) (BeZ reR).

(ii) (@, ¥) = SR@, &))<y, €(r)ydu(r) (@, ¥ € ¢) [(1) and (ii) mean
that @ = {e'(r): re R} is a complete system of joint generalized
etgenvectors of Z).

(iii) ox(B) = B(R) (Be ).
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(iv) o(B") = 0,(B') = o(B) (Be ).

Here o(B') denotes the spectrum of B’ in the sense of Waelbroeck
(cf. e.g., [12]) and o,(B') is defined as the set of those zeC, for
which B’ — z is not invertible in &2(¢). Thereby on ¢ always is
considered the strong topology and on &°(¢') the topology of uni-
form convergence on bounded subsets of 4.

Proof. (i), (ii) are direct consequences of our construction. (iii):
Let Be <Z. Because of (i) we only have to show that o,(B)CB(R).
Let ze€0o,(B) and suppose that z¢ B(R). Choose ' €¢ such that
#'#0 and B'2’ =z22'. Let pcg be arbitrary. Then there exists v ¢ ¢
such that @(r) = (B(r) —2)-¥(r) (reR). Hence {(p, a'> = (B(-) —2)-
P (+), ¥y = (g, (B’ — 2)a’> = 0, i.e., #’ = 0. Contradiction. (iv): By
(iii) we have o(B) = B(R) = 0,(B") C o, (B)Ca(B). It remains to
show that 6(B") c B(R): Let z¢ B(R). To demonstrate that z ¢ o(B),
the two cases z = « and zeC have to be treated seperately. Let
2 = oo, Choose C> 0 such that |B(»)]<C (reR). Then U: = {} U
{fweC:|w|=2-C} is a neighborhood of oo, and |(B(r)— w)™*| <1/C
(reR) for we UNC. For we UN C define Qw) € & (¢') by

(@, Qu)r'y = (B(-) — w)™-p(-), @)  (peg,a’eg).

It is clear that Qw)(B' — w) = (B’ — w)Qw) =1 for all weUNC
and easy to see that {Q(w): we UN C} is bounded in #(¢'). Hence
w ¢a(B'). If zeC, choose a neighbourhood V of z such that VN

B(R) = @ and proceed similarity.

We shall show now that the spectral measure FE(-) of <& can
be extended to a spectral measure of <Z’.

THEOREM (8.2). There 1s an (unique) spectral measure P(+) on S
with values in Z(F) such that B = S B(s)-dP(s)(Be &) and
S
P()|z = E(-).

Proof. ¢ is the space of Radon measures on R. Define P(b)x’ =
Vi@ (b a Borel subset of S, o' € ¢), i.e., (p, PO)r'> = Sz_lmgo-dx'

for peg. It is easily chequed that P(-) is a bounded oc-additive
spectral measure in < (¢') and that P(:)|; = E(-). Since ¢’ is com-

plete and barrelled, the integral S B(s)-dP(s) (Be <Z) exists in the
S
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strong sense. An easy calculation shows that <¢, S ﬁ(s)-dP(s)m’> =
S
Ssﬁ(s)d<¢, P(s)x"y={(Bp, &' for all pe g, &’ € ¢, i.e., Ssﬁ(s) -dP(s) = B'.

We now discuss the relations between the joint spectrum and
the joint generalized point spectrum of .o

THEOREM (3.3). 0x(.%") C0p(.¥") = a(.¥).

Proof. For re R we have by Theorem (3.1) (i) that (A(#))4c.. =
(A1) ser €0:(7") (reR). Hence £OR)) = £(Uses S) Cox(7),
where £ is the homeomorphism of (2.1). Because of (2.3) we obtain
() =k(S)Ck(U;e; S)cCop(.57"). It remains to show that (" C
0(.7). Let (W )se.r € op(.,v' "; let o’ €4’ = C.(R) be a joint generalized
eigenvector of .97 i.e., (1.1) holds. Choose % € I such that ;=2|ss,#0.
Consider the triplet ¢, ¢ H C ¢;, where ¢, = C(S,;), H = L¥S;, m;). We
then have (Al;)'x; =, -2; (Ae¥). We shall show that there
exists an (unique) s, €S, such that ), = A(s,) (Ae.¥). For the
sake of simplification of notation we suppress the index 1, i.e., we
consider the case of total multiplicity 1 without loss of generality.
We first extend the function

(3.4) o9 A—— N, eC

to <& such that (1.1) remains valid. To do this, let Z2(.%7) be the
algebra of polynomials in elements of . and 1. The closure of
FP() in L (H) equals &. If p = p(a, -+, @,) is a polynomial in
n variables, we define \; = p(\y, -+, Ny,) for B=p(4, ---, 4,)¢
F(). By (1.1) we conclude that the function

(3.5) P(X)3 Br——> Azl
is well defined, constitutes an extension of (8.4) and satisfies
(3.6) Bz =2 (Be A(Y)).

Observing that A € 0,(B’) C 6(B) (cf. (3.1) (iii), hence |nz| < || B|l,
we obtain that the (linear) function (3.5) is continuous. Hence it
possesses an unique extension as a continuous function on <%, which
we again denote by B\, and which satisfies for reasons of con-
tinuity the relations

(3.7 By =r-x (BeZ).

Using this it is easily chequed that B+ Az is an homomorphism of
& onto C (cf. [15]), i.e., defines an element se S such that \; =
s(B) = B(s) (Be &&).
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The proof shows particularly that a joint generalized eigenvector
of . is automatically one of 7.

4. The multiplicity of the joint generalized eigenvalues. First
we give a supplement to the second part of the proof of Theorem
(3.3):

LeMMA (4.1). 2’ is a multiple of point mass in s.

Proof. Recall that R = S (according to our reduction to the
cyclic case). (3.7) then means that

(B()-p(-), &’y = Bs)-{p, &'y  (peC(S), B(-)eC(3)).

This implies that the support of z’ is contained in {s}. [When @€
C(S) is such that supp (p)c S — {s}, choose B(-)eC(S) such that
B(s) =1 and supp (B(-)c S — supp (p). Then ﬁ(;)@(-) =0 on S,
hence {p, 2") = B(s)-{p, «') = {p, B'2") = (Bop, &) = (B(+)-p(+), ") =0.]
This proves the affirmation (since z' +# 0; cf. [4], p. T0).

The lemma shows that the multiplicity of the joint generalized
eigenvalues of .7 with respect to the triplet ¢ € H C ¢’ constructed
in §3 is given by

4.2) mult ((A(s)),...) = #{ic:seS} (seS).

This formula illustrates the arbitrariness remaining in the selection
of the spectral decomposition. Our construction is only well adapted
to .&7 with respect to the spectra.

When H is separable, we can base the construction of ¢ on the
“canonical” spectral decomposition described in §2. We then obtain:

THEOREM (4.3). (i) 0x(B)=0(B) = o(B) (Be Z).
(ii)  0x(57") = o(.57).
(iii) mult ((A(8))sear) = mu(s) (s€S).

Proof. (i) and (ii) ensue from S=S8,, i.e., \R =S, and the proofs
of (3.1) and (8.3). (iii) is a consequence of formulas (2.2) and (4.2).

If &7 has simple spectrum (i.e., in the separable case: . pos-
sesses a cyclic vector, or, equivalently, m(s) = 1 (s€S)) because of
(4.3) (iii) the following formula holds:

(4.4) mult (Msen) =1 for all (A )sen €0(7") .
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In the nonseparable case we have the following result concerning
multiplicity:

THEOREM (4.5). If &7 = <& 1s maximal Abelian, then (4.4)
holds.

Proof. Then to <# corresponds the full multiplication algebra
CB(R) on L*R, ). As CB(R) separates the points of R = [J,; S.,
we obtain that S;NS; = @ for ¢ # j. Now the affirmation ensues
from (4.2).

The natural extension of the notion “.%7 possesses simple spec-
trum” to the nonseparable case is that the von Neumann algebra
generated by .o and 1 is maximal Abelian (cf. [19]). Theorem (4.5)
says that (4.4) holds, if .o is a von Neumann algebra with simple
spectrum. We conclude by formulating a problem: Let .o be an
arbitrary system with simple spectrum. How “must” the triplet
6 C HC ¢ be constructed to obtain (4.4)?
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