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NEIGHBORNETS

HEIKKI J. K. JUNNILA

By a "neighbornet" of a topological space X we mean a
binary relation F o n I such that for each x e X, V{x} is a
neighborhood of x; thus a neighbornet is, in effect, an as-
signment of neighborhoods to the points of X. Such neigh-
borhood assignments and the corresponding relations have
been in use since the beginning of the study of general
topology, at first in the theory of metric spaces and later
in the theory of uniform spaces; in the last twenty or thirty
years they have been used in connection with spaces defined
by covering axioms and with various generalizations of metric
and uniform spaces. Even though the concept of a neigh-
bornet is not new, neighbornets have mostly been considered
as tools, not as objects of intrinsic interest. With this
paper we hope to show that neighbornets deserve to be
studied also on their own. We shall show, for example,
that from simple properties of neighbornets of semi-strati-
fiable spaces the solution follows easily to J. Ceder's problem,
whether all M3-spaces are ikΓ2-spaces.

I* Preliminaries*

NOTATION. The set {1, 2, •} of the natural numbers is denoted
by N. (xn) denotes the sequence whose nth. term is xn (for neN).

Let A be a set and JΣf a family of subsets of A. We denote
by \JSf and ΐ\£f the sets {J{L\Le£?} and Π{L\Le^f}f re-
spectively (note that, in general, \J ̂  is not the same as U*ei=S^);
in case the family & is empty, we let U £f — 0 and (\£f = A.
The family {A - L\Le£f) is denoted by ~<Sf and when ae A, the
family {LeSf \aeL} is denoted by (£f)a.

The word "iff" is an abbreviation of "if and only if". To avoid
unnecessary repetition of the words "a topological space" in the
following, we let the symbol X stand throughout for a topological
space. For each xeX, ηx denotes the neighborhood filter of x.

For the meaning of notation and terminology used without def-
inition in this paper, see [18].

Relations. All relations considered below are binary. Let B be
a set. Relations on B are usually identified with subsets of B x B.
However, as this can be done in two different ways and as there
is disagreement among mathematicians as to which of these ways
is the "right" one (see e.g., [20], p. 24-26), we do not adopt here
any specific convention. For our purposes, it is enough to know that
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relations can be represented as sets in such a way that if R and S
are relations on B, then (R U S){b} = R{b) U S{6} and (R Π S){b} =
i?{δ} Π £{δ} for each b e B. We use relations mainly as abbreviations
for certain indexed families of sets and we usually define a relation
R on B by defining subsets R{b), beB, of B (these sets R{b} are
often denoted by R(b) but we use the notation R(b), or Rb, only
if R{b} is a singleton set; Rb is then defined by the equation {Rb} =

Let J? be a relation on B. For each CczB, we denote the set
eC} by RC (or by 22(C)). When S is a relation on B, we

define a relation SoR on B by setting (S°#){&} = S(R{b}) for each
δe J5. We let R1 = R and Rn+1 = RoR* for weiV; further, we let
R°° — \JneNRn* It is easily seen that R°° is a transitive relation and
that we have T = Γ°° if Γ is a transitive relation. We define a rela-
tion ϋΓ1 on B by requiring that for all aeB and beB, aeR^ib} iff
δ €#{&}. For each &eiVU{^}, we abbreviate (βk)~ι to JJ-*; note
that we have R~n~ι = j?"1 o iΓ* for each n e N.

When R is a relation on B and , ^ = {iV6\beB} a family of
subsets of B, indexed by the elements of B, we say that R and <yΓ
are associated with each other if R{b] = iV*, for each 5 6 5. For an
indexed family Λ* = {Nb\beB} of subsets of B, we denote by A^~
the relation associated with Λ" (using one of the standard repre-
sentations of relations as sets, one has AΛ^ = U W x {b}\beB} or

{{&} x iV6i6GJ5». For a relation i? on B, we denote by
the indexed family associated with R; clearly, J^fR={R{b}\b e B}.

We have established a one-to-one correspondence between rela-
tions on a set and certain indexed families of subsets of the set.
Now we show that some special relations can be characterized in
terms of arbitrary (that is, possibly unindexed) families of sets. Let
jδf be a family of subsets of B. We denote by SSf and Ό& the
relations associated with the indexed families {\J (£f)h\b e B] and

\beB), respectively.

LEMMA 1.1. Let R be a relation on a set of B. Then
( i ) R is symmetric iffR = SSf for some family £f of subsets

of B.
(ii) R is transitive and reflexive iff R = DJZf for some family

^f of subsets of B.

Proof. Sufficiency. Let i f be a family of subsets of B. Then
the relation SLSf is obviously symmetric. The relation ΌSf is tran-
sitive since for all aeB and beB, we have f\ {Sf\ c fl (^)α if
beΠ(£f)a. Since f\{£e\ - B is (J^) 6 - 0 , we see that IλSf is
reflexive.
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Necessity. If R is symmetric, let Sf consist of all sets {a, b}aB,
where a e R{b}. If R is transitive, let £f

For a family £f of subsets of B, we have D^f = IλSf', where
£f — £f U {B}; hence in (ii) above, we can choose £f to be a cover
of 5.

Let i f be a family of subsets of JS and let keNΌ {so}. We
abbreviate (βSf)h to S\S .̂ In the usual notation for star-sets, we
have that SkSfC = St\C, £f) for each C c B ; in particular SSf{b) =
\J (£f)h = St(6, i f ) for each 6 e B. Since JλSf is reflexive and tran-
sitive, we have (ZλSf)* = 2λS^ For all aeB and 6eB, we have
α 6 Π {Sf\ iff 6 6 Γl (ΓSf)a\ if follows that (DSf)'1 =

REMARK. TO help to abbreviate expressions involving relations,
we adopt the convention that in such an expression, unless indicated
otherwise by parenthesis, operations involving relations are to be
performed before those involving subsets of the domain of the rela-
tions (for example, when R and S are relations on B and C and D
subsets of B, S Π RC - D is to be interpreted as ((S Π R)C) - D).

2+ Definitions and basic properties*

DEFINITION 2.1. A relation 7 on I is a neighbornet of X if
V{x) is a neighborhood of x for each xeX.

When R is a relation on X, we denote by R the relation as-
sociated with the indexed family {lntR{x}\xeX} (note that, in
general, R is different from R\ the interior of R in the product
space X x X). With this notation, neighbornets can be characterized
as follows: a relation 7 on I is a neighbornet iff the relation V is
reflexive.

A relation R on X is said to be open if all the sets R{x}9 xeX,
are open. For a neighbornet 7 of I , V is an open neighbornet
contained in V.

Neighbornets can be regarded as generalizations of relations of
the form S%f, where ^ is an open cover. One advantage of this
generalization is that it allows us to study the dual properties of
relations and their inverses; the relations S^ are always symmetric
so that this duality does not appear in connection with them (the
need to overcome the restriction to symmetric relations has been
observed e.g., in [8]). The duality between neighbornets and their
inverses is a special case of the duality between openness and
closedness and it will be very clearly illustrated in connection with
transitive neighbornets (Theorem 3.14); at this point we just give a
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general characterization of the inverses of neighbornets.

DEFINITION 2.2. A relation R on X is cushioned if we have
AaRA for every 4 c l

LEMMA 2.3. A relation V on X is a neighbornet iff the relation
V~ι is cushioned.

Proof. Sufficiency. Suppose that V~ι is cushioned and let x e X.
We have x £ V~\X ~ V{x}) and it follows by the cushionedness of
V~ι that x ί X ~ V{x}, in other words, that x e Int V{x}.

Necessity. Assume that V is a neighbornet and let A c X. For
every xeA, the neighborhood V{x} of x intersects the set A; it
follows that A c V~ιA.

We see thus that neighbornets coincide with what might be
called "co-cushioned" relations.

It is obvious that if ^ is an open cover of X and, for each
x 6 X, Ux an element of the family (^)x, then the relation A^ as-
sociated with the indexed family έ? = {Ux\xeX} is a neighbornet.
Relations associated with indexed families of sets chosen in a similar
manner from closed covers generally fail to be cushioned, but it is
easily seen that the following holds: when ^ is a closure-preserving
and closed cover of X and for each x e X, Fx an element of the
family {^)x, then the relation A{Fx\xeX} is cushioned.

The following lemma gives a useful property of open neigh-
bornets:

LEMMA 2.4. Let V be an open neighbornet of X and let AcX.
Then the set {x eXlV'^x] c A} is closed.

Proof. The set in question is the complement of the open set
V(X - A).

3* Special neighbornets* In this section we study symmetric,
unsymmetric and transitive neighbornets and indicate their relation-
ship to some families of sets frequently encountered in topological
investigations.

(a) Symmetric and cushioned neighbornets.

DEFINITION 3.1. A cover £f of X is semi-open if the set St(x,
is a neighborhood of x for each xeX.
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In an implicit form, semi-open covers have often appeared in
topological studies (see e.g., [9] and [1]).

A cover Sf is semi-open iff the relation SSf is a neighbornet;
as SSf is symmetric, it follows by Lemma 2.3 that a cover Sf is
semi-open iff we have A c St(A, £f) for each A c X. It follows
that, in addition to all open covers, also all closure-preserving closed
covers are semi-open.

By using Lemma 1.1, we get the following characterization of
symmetric neighbornets.

LEMMA 3.2. A relation V on X is a symmetric neighbornet iff
we have V = SSf for some semi-open cover £f of X.

From Lemma 2.3 it follows that each symmetric neighbornet is
cushioned. Conversely, when 7 is a cushioned neighbornet, it fol-
lows by using the same lemma that the symmetric relation Vf\ V~ι

is a neighbornet. Thus we have the following result.

LEMMA 3.3. A neighbornet is cushioned iff it contains a sym-
metric neighbornet.

As the name suggests, there is a close connection between
cushioned relations and cushioned refinements (see [17] or [18] for
the definition of the latter term). This connection is made clear by
the following result.

LEMMA 3.4. A cover SϊΓ of X has a cushioned refinement iff
there exists a cushioned relation R on X such that SzfR c 3ίΓ.

Proof. Sufficiency. Assume that there is a cushioned relation
R on X such that we have JzfRczST. For every KeSΓ, let Cκ =
{xeX\R{x} = K}. Then the family {Cκ\KeK} covers X and we
have RCκaK for each Ke<sΓ. By using the cushionedness of R,
it follows that we have

\J{Cκ\KeJt"} cR(U {CκiK6

for each J T ' C X The family {Cκ\Ke^Γ} is thus a cushioned
refinement of J%Γ.

Necessity. Let {Fκ\Ke^Γ} be a cushioned refinement of 3ίΓ.
For each xeX, let K(x) e 5ίΓ be such that x e Fκ{x). When we denote
by R the relation associated with the indexed family {K(x) \ x e X},
we have j^Rcz,%/ί The relation R is cushioned, because for
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each BaX we have Ba\J {Fκ{b)\beB} and thus further, B e
\J{K(b)\beB} = RB.

If the cover 3ίΓ in the preceding lemma is open, the relation R
appearing in the lemma is a neighbornet. Thus by using Lemmas
3.3 and 3.2, we get the following result:

COROLLARY 3.5. An open cover of X has a cushioned refinement
iff the cover has a semi-open point-star refinement.

The result of Lemma 3.4 is essentially due to E. Michael (Prop-
osition 2.1 of [17]; note that cushioned neighbornets are the same
as the relations that are called semi-neighborhoods of the diagonal
in [17]).

(b) Unsymmetric and antisymmetric neighbornets.

DEFINITION 3.6. A relation J? on a set A is unsymmetric provided
that R is reflexive and for all ae A and b e A, if aeR{b] and δ 6
R{a}, then R{a} = R{b}.

We note that a relation R is unsymmetric iff we have Rf\R~ι{a} —
{b 6 AI R{b} = R{a}} for each a e A, whereas R is antisymmetric iff
we have R Π R~x{a) — {a} for each aeA. Thus every antisymmetric
relation is unsymmetric.

LEMMA 3.7. Let ^ be a cover of A. Then there is an unsym-
metric relation R on A such that

Proof. Well-order ^ and for each aeA, let Ca be the least
member of (^) α . Then it is easily seen that the relation associated
with the indexed family {Ca\aeA} is unsymmetric.

COROLLARY 3.8. (i) When "2/ is an open cover of X, there is
an unsymmetric neighbornet V of X such that J^fVa^.

(ii) When <3Γ is a closure-preserving and closed cover of X,
there is an unsymmetric cushioned relation S on X such that

The first part of the corollary shows that, in a sense, unsym-
metric neighbornets are no more special objects than open covers.
In contrast to this, we will see in §4 that the existence of an anti-
symmetric neighbornet is a rather stringent condition for a topological
space. Let us note, however, that many nontrivial spaces (as for
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example all spaces with a half-interval topology) do have antisym-
metric neighbornets.

Let R be an unsymmetric relation. Then it follows by the re-
mark made after Definition 3.6 that the relation R Π Br1 is an equiva-
lence relation. For neighbornets with this last-mentioned property,
we have the following result.

LEMMA 3.9. Let U be a neighbornet of X such that U Π U~1 is
an equivalence relation and let V be an open neighbornet contained
in U. Denote by H the set [x eXlV'^x} c U{x}} and denote by R
the relation UdU"1. Then the family [H Π R{x)\x 6 X} is closed
and discrete.

Proof. We will show first that if x and y are points of X such
t h a t V{y} Γ\HΓ) R{x) Φ 0 , t h e n R{y) = R { x ) . L e t x e X a n d y e X
be such that set V{y} Π H fϊ R{%} is nonempty and let 2 be a point
of this set. Then y e V7λ{z} and since z e H, ye U{x}. On the other
hand, we have that z e V{y) c U{y}. It follows that zeR{y}; thus
we have R{y} Π R{x} Φ <2. As R is an equivalence relation, it fol-
lows that R{y} = R{x}.

From the foregoing it follows that for each y e X, the neighbor-
hood V{y} of y can intersect at most one set of the family
{H f) R{x}\x e l } ; this family is thus discrete. It remains to show
that the sets Hn R{x], xeX, are closed. Let x be a point of X
and let u be a point of the set H Π R{x}. Then V{u} Π H Π R{x} Φ 0
so that R{u} = R{x}; thus we have ueR{x}. To show that ueH,
let v be a point of the set V~ι{u). Then the set V{v} is a neighbor-
hood of u. By the foregoing we have that u 6 H Π R{u] and it fol-
lows that the neighborhood V{v} of u intersects the set H Π R{u};
from this it follows by the first part of the proof that we have
R{v} = R{u). As the set R{u) is contained in the set U{u), we see
that v 6 U{u}. We have shown that V~ι{u) c U{u}, in other words,
that ueH. Thus u e H n i2{x} and we have shown that the set
H Π R{x) is closed.

The foregoing lemma can be used with neighbornets U such
that either U or U"1 is unsymmetric. When applied to antisym-
metric neighbornets, it yields the following result: when U is an
antisymmetric neighbornet and V c U an open neighbornet, then the
family {{x}\xeX and V'^aUix}} is closed and discrete.

(c) Transitive neighbornets.

DEFINITION 3.10. A sequence (Un) of neighbornets of X is a
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normal sequence if U2

n+1 c Un for every neN. A neighbornet U of
X is normal if ?7 is a member of some normal sequence of neigh-
bornets of X.

By a result in [21], all normal sequences of neighbornets have
quasi-metrics "associated" with them.

DEFINITION 3.11. A filter (-base) ^ of reflexive relations on X
is said to be a (base for a) quasi-uniformity on X provided that
for each Ue%S there exists F e ^ such that V2czU. A quasi-
uniformity U on X is said to be compatible with X provided that
for each xeX, {U{x}\Ue^} is a base for ηx.

It is easily seen that the collection of all normal neighbornets
of a topological space X forms a quasi-uniformity that contains every
other quasi-uniformity of X; this quasi-uniformity is called the fine
quasi-uniformity of X in [8].

We proceed to study transitive neighbornets. The following
result is a direct consequence of the fact that for a transitive relation
R we have R2aR.

LEMMA 3.12. A transitive neighbornet is normal, unsymmetric
and open.

DEFINITION 3.13. Let Λ* be a family of subsets of X. The
family Λ" is interior-preserving if we have Int (Π {N\Ne^yf^f}) =
f\{IntN\Ne^'} for every subfamily ^ T ' of %Ar.

The terminology "interior-preserving" is justified by the obser-
vation that a family Λr is interior-preserving iff the family ~~^V*
is closure-preserving. Interior-preserving open families are called
Q-collections in [22] and fundamental open families in [6].

THEOREM 3.14. The following conditions are mutually equiva-
lent for a relation U on X:

( i ) U is a transitive neighbornet.
(ii) We have U = D& for some interior-preserving and open

family 0*.
(iii) We have U~ι = ΌS^ for some closure-preserving and closed

family

Proof. It is easily seen that a family & of subsets of X is
interior-preserving and open iff the relation Dέ? is a neighbornet
(i.e., iff x e Int Π (^)* f° r e a c ^ %sX)', the equivalence of (i) and (ii)
follows directly from this fact by using (ii) of Lemma 1.1.
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As we have {DSf)~ι — D~£? for every family jSf of subsets
of X and as a family & is interior-preserving iff the family ~& is
closure-preserving, we see that conditions (ii) and (iii) are mutually
equivalent.

Theorem 3.14 has a number of interesting corollaries:

COROLLARY 3.15. If U is a transitive neighbornet of X, then
the family {UA\AaX} is interior-preserving and open and the
family {U~ιA\AaX} is closure-preserving and closed.

Proof. Let £? be an interior-preserving family of open subsets
of X. Then we see, using that x e Int Π (^)« for e a c ^ x e X> that
both of the families {\J <?'\ 0" a &} and {f| rf?Ί <?' c ^} are interior-
preserving and open. By using the relationship existing between
interior-preserving families and closure-preserving families, we see
that the analogous result holds for closure-preserving and closed
families. Corollary 3.15 now follows from Theorem 3.14 and the
preceding observations, since for any relation R on X, we have that
RA = U {Ufa}\aeA} for each A c X .

It follows from Corollary 3.15 that for every neighbornet V of
X, the family {F~~°°A|AcX} is closure-preserving and closed.

COROLLARY 3.16. When & is an interior-preserving and open
cover of X, the family {St(x, έ?)\x e l } has a closure-preserving and
closed refinement.

Proof. As & is a cover, we have Ό& c S^ and it follows that
D-<? = {Ώ&Y1 c (Sέ?)-1 = Sέ7; thus we have Π (-<?). c St(xf έ?) for
each x e X. As we have x e Π C^)x for each x e X, it follows that
the family J%Γ = {f}(~^)x\xeX} is a refinement of the family
{St(x, ^)\xeX}. As the family ~& is closure-preserving and closed,
the family 5£~ also has these properties.

When «Sf is a family of sets, we denote by SfF the family that
consists of all finite unions of sets from £fm When Λ~ is another
family of sets, we say that Λ" is an F-refinement of =Sf if ^V is
a refinement of the family £fF. Since every point-finite family of
sets is interior-preserving, the following result is an immediate con-
sequence of the preceding corollary.

COROLLARY 3.17. Every point-finite open cover of a topological
space has a closure-preserving closed F-refinement.
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This result is of great importance in the theory of metacompact
spaces. However, as we do not intend to study covering axioms in this
paper, we mention just one result that follows from Corollary 3.17.

COROLLARY 3.18. Every locally compact metacompact space has
a closure-preserving cover by compact closed subsets.

Proof. If X is locally compact and metacompact, then X has a
point-finite open cover such that every set of the cover is contained
in some compact subset of X; any closed F-refinement of the cover
consists of compact subsets of X.

We close this section with some remarks on the role of transi-
tive neighbor nets in the theory of quasi-unif or mities. It is easy to
show that the collection of all transitive neighbornets of a topological
space is a base for a compatible quasi-uniformity for the space; this
quasi-uniformity is called the fine transitive quasi-uniformity of
the space ([8]). If the fine transitive quasi-uniformity of a space
coincides with the fine quasi-uniformity of the space, then the space
is said to be transitive ([8]). It follows directly from the definitions
that a topological space is transitive iff each normal neighbornet of
the space contains a transitive neighbornet. The equivalence of (i)
and (ii) of Theorem 3.14 is used as a tool for studying quasi-uni-
formities with a transitive base in [7] and [8]. In [14] there is an
example of a space that has a compatible quasi-uniformity with a
countable base but that does not have a compatible quasi-uniformity
with a countable transitive base; this space is nontransitive. A
space that has a compatible quasi-uniformity with a countable transi-
tive base is nonarchimedeanly quasi-metrizable ([7]).

4* Some applications* In this section we apply the concepts
defined in the previous sections to the theory of semi-stratifiable
spaces. The reason for choosing this theory as an example is that
in a semi-stratifiable space, many covering properties can be translated
into properties of neighbornets.

Before studying neighbornets of semi-stratifiable spaces, we
observe that several generalizations of metric spaces have been given
characterizations that can be expressed in a unified way by using
sequences of neighbornets.

(a) Generalizations of metric spaces.

Let us recall that a network at a point x e X is a family (or a
sequence) £f of subsets of X such that for each 0 e τjxf we have
xeLaO for some L e J*f. A family of subsets of X is a network



NEIGHBORNETS 93

for X if the family is a network at each point of X.

DEFINITION 4.1. A sequence (Rn) of relations on X is basic
(strongly basic) if for each xeX, the sequence (Rn{x}) (the family
{RnO\neN and Oeηx}) is a network at x. The sequence (Rn) is
doubly (infinitely) basic if the sequence (Rl) (the sequence <i2£» is
basic. If the sequence (Rΰ1) is (strongly, doubly, infinitely) basic,
we say that the sequence (Rn) is (strongly, doubly, infinitely) co-
basic.

LEMMA 4.2. A sequence (Rn) of reflexive relations on X is basic
(strongly basic) iff we have F = ΓUe v RήιF (F = ΓUe* RnlF) for each
closed set Fez X.

We will now give translations of various definitions and character-
izations of generalized metric spaces into the terminology defined
above; Lemma 4.2 is helpful in showing the validity of some of these
translations.

4.3. Denote by ^V the collection of all sequences of neighbornets
of X. Then X is

( i ) stratifiable iff some S? e Λ" is strongly co-basic [10].
( i i ) a (7-space iff some £f e ,yV" is doubly co-basic (infinitely

co-basic) [11].
(iii) semi-stratifiable iff some S^ z^V* is co-basic [5, 13]
(iv) semi-developable iff some Sf e Λ^ is both basic and co-

basic [1].
( v ) first countable iff some Sf e Λ~ is basic.
(vi) a 7-space iff some £f e <Λ" is doubly basic (strongly basic)

[12, 15].
(vii) nonarchimedeanly quasi-metrizable iff some S? 6 ̂ V is

infinitely basic [7].

REMARKS. 1° In (i) through (vii) above, we can choose the
sequences in question to be decreasing and to consist of open neigh-
bornets.

2° For all the generalized metric spaces mentioned above, we
have adopted the "separation-axiom free" versions of the definitions.

3° If a σ-space is defined without assuming the sets of the
(σ-locally finite) network to be closed, we need some extra assump-
tion (such as regularity) for (ii) to hold.

4° To prove (iv), use Lemma 3.2 together with the fact that
for any relation R, the relation R U R~ι is symmetric.
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5° The term "stratifiable space" is due to C. Borges ([2]); in
[4], these spaces are called Mj-spaces. Semi-stratifiable spaces are
called pseudostratifiable in [13].

(b) Neighbornets and covers of semi-stratifiable spaces.

We start this section by indicating how neighbornets of semi-
stratifiable spaces can be "approximated" by unsymmetric neigh-
bornets. Then we study certain partitions connected with neigh-
bornets and we use the properties of these partitions to obtain
characterizations for some important subclasses of the class of semi-
stratifiable spaces. In the end of the section we study the properties
of unsymmetric neighbornets of semi-stratifiable spaces satisfying
some covering axioms.

Our first result deals with developable spaces (X is developable
if X has open covers έ?n, neN, such that (Sέ?n) is a basic sequence
for X; the sequence <^%> is then called a development of X).

THEOREM 4.4. Let U be a neighbornet of a developable space
X. Then there exists an unsymmetric neighbornet V of X such
that VdU2.

Proof. Let <^> be a development of X such that for each
neN, the cover ^ + 1 is a refinement of the cover < Λ̂. Let Ho = 0
and for each neN, let Hn = {xeX\St(x, ^n)dU{x}}; then we have
Hn] X (that is, HndHn+1 for each n and X = \JneNHn). For each
x 6 X, let k{x) be the least natural number k such that xeHk. Well-
order the family \JnQN ̂ n and for each xeX, let Ox be the least
member of the subfamily {j?uJ)9. We define the neighbornet V of
X by setting V{x} = Ox — Hk{κ)^L for each xeX.

- For all xeX and yeX, if x e V{y} and y e V{x), then k(x) =
k(y); thus we see easily that the neighbornet V is unsymmetric.
To complete the proof, let xeX and let m = k(x). Since xeHm,
there is a point yeHmΓ)OxΓ\ U{x}. We have U{y} c Z72{#} and
V{x}(zOxciSt{y, ^ m ) \ since yeHm9 it follows that we have F{#}c
?72{x}. We have shown that F{#} c U2{x} for each x e l ; thus we
have VdU2.

We now give an example to show that the result of Theorem
4.4 does not remain valid if we replace "developable" by "semi-
stratifiable" in the theorem; the example depends upon the following
simple result.

LEMMA 4.5. Let S be a dense subset of a semi-stratifiable space
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X and let V be a neighbornet of X. Then the set {x e X\x $ SΓ\ V ̂ x}}
is of the first category in X.

Proof. Denote the set in question by L. Let <ϊ7n> be a co-
basic sequence of open neighbornets of X. We may assume that
for each neN, UnaV (if this were not the case, we could use the
neighbornets UnΓ)V in room of Un). For each neN, set Kn —
{xeX\ U~ι{x}(zX - S}. It follows from Lemma 2.4 £hat these sets Kn

are closed and as they are disjoint from the dense set S, they are
nowhere dense. It is easily seen that Ld\JneN Kn; hence L is of
the first category in X.

EXAMPLE 4.6. Let X denote the set of all real numbers, Q the
set of all rational numbers and D the set of all irrational numbers.
For each xeD, let (gn(x)) be a sequence of rational numbers con-
verging to x (in the Euclidean topology), and let A{x) = {gn(x)\neN}.
For all xeD and neN, let Bn(x) = {yeX\ \y - x\ < 1/n} and let
Wn{x) — Bn(x) — A{x). We equip X with the topology in which the
points of Q are isolated and for each xeD, (Wn(x)} is a base for r]x.

To be able to prove that X provides the desired counterexample,
we have to choose the sequences (gn(x)}, xeD, in a more specific
way but before doing so we show that, even in the general case,
X is a semi-stratifiable space. We do this by showing that X has
a er-closure-preserving base. For all rational numbers s and t such
that s < t, let (s, t) = {x e X\ s < x < t) and let ^8Λ = {(s, t) - A{x)\x e
D Π (s, t)}. Evidently these families &8tt are closure-preserving.
For every xeD, the sets (β, ί) — A(x), where seQ, teQ and xe
(s, t), form a base for ηx. Thus if we let &s,s = {{s}} for each s e Q,
then the family .^ = \J {^s>t\seQ, teQ and s <; t) is a σ-closure-
preserving base for X. By observing that the sets of the family
& are closed, as well as open, we see that X is a regular space.
It follows by results in [4 and 5] that X is semi-stratifiable.

Let S — {dn I n e N} be a countable and dense subset of D. To
choose the sequences (gn(x)}, xeD, we start by choosing for each
weiVan element rn from the set Q ΓΊ Bn(dn). Then we choose the
element gn(x) of Q, for neN and xeD, in the following way: if
x e Bn(dn), then we take gn(x) to be rn; otherwise we take gn(x) to
be some element of the set Q Π Bn(x). Then, for each xeD, the
sequence (gn(x)) has the required property, since | x — gn(x) \ < 2/n
for every neN. From now on, we assume that the topology of X
has been defined by using these special sequences (gn(x)), xeD.

We define a neighbornet U of X by setting U{g} = {g} for each
geQ, U{x} = X- A(x) for each xeD- S and U{dn} = TΓn(dJ for
each neN. It is easily seen that we have rn0 ?72{c?w} for each neN.
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To show that the conclusion of Theorem 4.4 is not valid for X and
U, assume on the contrary that there exists an unsymmetric neigh-
bornet V of X such that we have VdU2. Denote by H the set
{x e D\x 6 S Π F- ί̂e}}. Note that the topology which D inherits from
X is the same as the Euclidean topology on D; hence the subspace
D of X is of the second category in itself. By using the result of
Lemma 4.5 on the subspace D and on its dense subset S, we see
that the set H is uncountable. As the neighbornet V is unsym-
metric, we have x e{y eS\ V{y} — V{x}} for each x e H; as the set S
is countable, it follows that there exists z e S such that the set
Hr = {xeH\V{x} = V{z}} is uncountable. By using the second count-
ability of the subspace D, we see that there exist x, xr e fΓ — S
and n e N such that x Φ xf and x' e Wn(x)a V{z). As we have x Φ x\
we see that xΫ does not belong to the Euclidean closure of the set
A(x); it follows that there exists keN such that Bk(x')c:Wn(x).
Since x'eH, we have x' e{y eS\V{y} = V{x'}} and since x'ίS, we
see that there exists i ^ 2k such that dt e Bik(x') and F{c£J = V{xr).
Then we have that Bt(di)c:Bk(xf) and hence that r< e Bk{x'). It follows
that we have rt e Wn{x) c V{z). On the other hand, we have V{di) =
V{x'} = F{2;} and it follows that V{z) c U2{dt} c X - {rJ. We have
reached a contradiction and thus we have shown that there is no
unsymmetric neighbornet contained in the neighbornet U2.

After this negative result we show that by making the conclu-
sion of Theorem 4.4 slightly weaker, we can generalize the result
from developable spaces to semi-stratiίiable spaces.

THEOREM 4.7. Let U be a neighbornet of a semί-stratίfiable
space X. Then there exists an unsymmetric neighbornet V of X
such that Va U3.

Proof. Let (Vn) be a decreasing co-basic sequence for X such
that for each neN, Vn is an open neighbornet contained in U. Let
Jϊ0 = 0 and for each neN, let Hn = {x eX\V^{x}ciU{x}}; then we
have Hn | X. For each xeX, let k(x) be the least natural number
k such that xeHk. Well-order X and define a mapping φ:X-^X
by letting each φx be the least element of the subset V^x){x} of X.
We define the neighbornet V of X by setting V{x) = Vk{x){φx} — Bh^^
for each xeX.

The neighbornet V is unsymmetric (compare with the proof of
Theorem 4.4). To complete the proof, let xeX and let m = k(x).
Since a? 6 Hm, there is a point # e Hm Π Fm{9?a;} Π U{x). We have
^ e V»{#} and yeHm and it follows that φxe U{y}; we have thus
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φx 6 U2{x). It follows that we have V{x} c Vm{φx} c U3{x}. We have
shown that V{x] a Uz{x] for each xeX; thus we have VaUz.

We now turn to consider the relationships existing between
neighbornets and families of subsets of semi-stratifiable spaces. Our
first result deals with partitions (i.e., disjoint covers).

THEOREM 4.8. Let & be a partition of a semistratifiable space
X and let P be the equivalence relation determined by &. Then
the following conditions are mutually equivalent:

( i ) & has a σ-discrete and closed refinement.
(ii) & has a σ-closure-preserving and closed refinement.
(iii) There exists a transitive neighbornet V of X such that

V n V'1 c P.
(iv) There exists a neighbornet U of X such that UΓiU"1 is

an equivalence relation and U Π U"1 c P.

Proof, (i) => (ii) is trivially true.
(ii) => (iii): Let &~ = \JnBN ̂ l be a closed refinement of & such

that for each neN, the family ^ n is closure-preserving. For each
x 6 X, denote by k(x) the least number k such that xe\J J^l. Define
a relation V on X by setting V{x) = X - \J{Fe\JnSUx)^l\x^F)
for each x eX. Since each of the families ^ n , neN, is closure-
preserving and closed, we see that V is a neighbornet. To show
that V is transitive, let x and y be points of X such that y e V{x).
Then it follows from the definition of the set V{x} that we have
G^Qj, c CJQ* for each n <; k(x); in particular, we have {<βQy = 0
for each n < k{x) and thus we have k{y) ^ k(x). From the foregoing
it follows that V{y} c V{x). We have shown that the neighbornet
V is transitive. To show that V Π V~λ c P, let x be a point of X.
Let F b e a set of the nonempty family (^l(X))x. From the foregoing
it follows that we have {^l^x))x = (^lω)v for each y6 7nΓ1{a;};
we have thus V Π F"1^} c ί7. The set F is contained in some set
of the family & and, since xeF and (^*), = {P{̂ }}, it follows that
FcP{x), By the foregoing, we have that V^V~1{x}aP{x}. We
have shown that V Π F"1 c P.

(iii) => (iv): Obvious.
(iv) => (i): Assume that X has a neighbornet Ϊ7 with the prop-

erties mentioned in (iv). Denote by R the equivalence relation
Uf] U1. Let <FW> be a co-basic sequence for X such that for each
neN, Vn is an open neighbornet contained in U. For every neN,
denote by Hn the set {xeX\V~ι{x]aU{x}} and denote by ^ the
family {Hnf)R{x}\xeX}. By Lemma 3.9, each of the families ^l
is closed and discrete. As we have R{x) c P{#} and P{#} 6 ^ for
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each xeX, we see that every set of the family
contained in some set belonging to the partition &. Since the se-
quence (Vn) is co-basic, we have that \JnBNHn = X and it follows
that the family 3^ covers X. We have shown that the tf-discrete
and closed family ^ is a refinement of the partition 3?.

REMARKS. 1° From Corollary 3.8 it follows that every open
cover of a topological space is refined by a partition & satisfying
condition (iv) of the theorem above; hence it follows from the theo-
rem that every semi-stratifiable space is subparacompact (this result
is due to G. Creede [5] and to Ya. Kofner [15]).

2° By using Theorem 3.14 we can express condition (iii) above
in terms of interior-preserving and open (or closure-preserving and
closed) families. (Note that for any family £f of subsets of X, we
have Ό^ n D~^f{x} = {yeX\{Sf)y = (£f)Λ) for each xeX.)

3° It is easily seen that if a partition & satisfies condition (ii)
of Theorem 4.8, then U &' is an i<Vset for each &' c £?.

We now use Theorem 4.8 to obtain characterizations for some
spaces contained in the class of semi-stratifiable spaces.

COROLLARY 4.9. The following conditions are mutually equiva-
lent for a space X:

( i ) X is semi-stratifiable and X has an antisymmetric neigh-
bornet.

(ii) X is semi-stratifiable and X has a neighbornet that is
both antisymmetric and transitive.

(iii) The family consisting of all singleton subsets of X is σ-
discrete and closed.

Proof. If X satisfies condition (iii), then X is a σ-space and
thus semi-stratifiable. The rest of the proof follows directly from
Theorem 4.8 since a relation T on X is antisymmetric iff T Γ) T~γ

is the identity relation on X.

If X has an antisymmetric neighbornet V, then for any neigh-
bornet U of X, U Π V is an antisymmetric, and thus unsymmetric,
neighbornet contained in U. It is well known that there exist non-
developable spaces that satisfy condition (iii) of the above corollary;
thus we see that the property of developable spaces mentioned in
Theorem 4.4 does not characterize developability in the class of
semi-stratifiable spaces.

Next we use sequences of unsymmetric neighbornets to characterize
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developable spaces and σ-spaces; the following result is useful in
proving these characterizations.

COROLLARY 4.10. Let V be an unsymmetric neighbornet of a
semi-stratifiable space X. Then there exists a σ-discrete and closed
cover J^ of X such that for each F e ̂  we have V{x) = VF for
every xeF.

Proof. By Theorem 4.8, the partition determined by the equiva-
lence relation Vd V~ι = {(x, y) eX x X|F{#} = V{y}} has a σ-discrete
and closed refinement.

THEOREM 4.11. Let X be a semi-stratijiable space. Then
( i ) X is developable iff X has a basic sequence by unsymmetric

neighbor nets.
(ii) X is a σ-space -iff X has unsymmetric neighbornets Vn,

neN, such that the sequence < Vn Π Vΰ1) is basic.

Proof, ( i): The necessity of the condition in (i) follows directly
from Corollary 3.8. To prove the sufficiency, assume that X has a
basic sequence (Vn} such that Vn is an unsymmetric neighbornet
for each neN. By using Corollary 4.10, we see that for every
neN there exists a closed cover &~% = \JkeNJK,k of X such that
each of the families ά?n,k is discrete and such that we have Vn{x} =
VF whenever xeFe^n. For all neN and keN, denote by Kn>k

the set U ̂ l,k and by O>%th the family {X - Kntk} U {VnF - (Kn,k -
F)\Fe^l,k). The reader may verify that these families 0>%tk are
open covers of X and that the family {St(x, ^k)\neN and keN}
is a base for ηx for each xeX.

(ii): Necessity. If X has a σ-locally finite and closed network,
then, since every locally finite family is closure-preserving, it fol-
lows from Theorem 3.14 that X has a co-basic sequence (Vn), where
each Vn is a transitive, and thus unsymmetric, neighbornet of X.
As the sequence < Vn) is co-basic, the sequence < Vn Π Vή1) is basic.

Sufficiency. Suppose that X has unsymmetric neighbornets Vnf

neN, such that the sequence (Vn Π Vή1} is basic. By Corollary 4.10,
there exist σ-discrete closed covers ^l, neN, of X such that for
every neN, we have Vn{x} = VnF whenever x eFe^n. The family

is a σ-discrete and closed network for X.

We note that the characterizations (i) and (ii) above can also be
proved by using results given in [12] and [11], respectively (the
characterizations for σ-spaces given in [11] are stated for regular
spaces; however, it can be shown that the assumption of regularity
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can be dispensed with if we define σ-spaces by using closed networks).
In the remainder of this section we study the relationships that

exist between the properties of open covers and the properties of
neighbornets in a semi-stratifiable space that satisfies certain covering
properties. The covering properties that we are going to consider
are metacompactness, orthocompactness and the Lindelof-property (a
space is orthocompact if every open cover of the space has an
interior-preserving open refinement).

THEOREM 4.12. Let U be an unsymmetric neighbornet of an
orthocompact (metacompact) semί-stratifiable space X. Then there
is an interior-preserving {point-finite) open cover T of X such that
DT c U.

Proof. By Corollary 4.10, there is a closed cover άf — \JneN ^l
of X such that the families ^n, neN, are discrete and such that
we have U{x} = UF whenever x eFe j^~. For every neN, let
Kn - U ^ and let OJJF) = UF - (Kn - F) for each F e ^ ; then
the family <2?n = {X - Kn) U {On(F)\Fe Fn} is an open cover of X.
Note that if we have xeFe^"n, then On(F) is the only set of the
cover ^ that contains x; thut we have in this case that St(x, <^n) =
On(F) dUF= U{x}.

For every neN, let 5^ be an interior-preserving (point-finite)
open refinement of ^ . Let Ho = 0 and for each neN, let Hn =
\Jk*nKk. For every neN, the family T\ - {V- Hn_,\Ve Tn) is
interior-preserving (point-finite); as Hn | X, we see that the family
T* = UweΛr̂  has this same property, ψ* is evidently open and as
we have TtcT, T covers X. To show that DT c U, let xeX.
Denote by k the least of the numbers n such that x e Kn. Then it
follows from x $ Hk^ that f| (3^)* c: Π ( 3^)β. As Tk is a refinement
of ^ c , we have f| ( 3̂ )* c: Sέ(a?, ^ ) . We have a? e î 1 for some FeFk

and it follows, as noted above, that St(x, &k) c U{x). As we have
DT{x} = Π {T)m and Γl (3r)β c f\ (Tk)x, it follows from the foregoing
that DT{x) c U{x}. We have shown that DT c C7.

The part of the above theorem outside the parenthesis can also
be stated in the following way: in an orthocompact semi-stratifiable
space, every unsymmetric neighbornet contains a transitive neigh-
bornet.

In this theorem, one cannot replace "interior-preserving" by
"locally finite" even if X were paracompact. To see this, take X
to be the closed unit interval in the Euclidean topology and let
U — D^/, where ^/ is the disjoint (and thus interior-preserving)
family {(II(n + 1), 1/ri) \ n e N} of open subsets of X.
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The following is an immediate consequence of Theorems 3.7 and
4.12.

COROLLARY 4.13. Let U be a neighbornet of an orthocompact
{metacompact) semi-stratifiable space X. Then there is an interior-
preserving (point-finite) open cover T^ of X such that DV* c C73.

It follows from Theorem 4.4 that for a developable space X, we
can replace Us by U2 in the corollary.

The result of Corollary 4.13 can be used in the study of quasi-
uniformities of semi-stratifiable spaces. To see this, note that a
normal neighbornet 0 of X contains, for each neN, Vn for some
neighbornet V of X; in particular, we have U3 aθ for some neigh-
bornet U. Thus it follows from Corollary 4.13 that every ortho-
compact semi-stratifiable space is a transitive space. To interpret
the parenthesized part of this corollary in terms of quasi-uniformities,
note that the collection {DT^lΎ* is a point-finite open cover of X}
forms a base for a quasi-uniformity on X. This quasi-uniformity
is called the point-finite covering quasi-uniformity of X ([8]), and
it follows from Corollary 4.13 that for a metacompact semi-stratifiable
space this quasi-uniformity coincides with the fine quasi-uniformity
of the space.

Next we show that in a metacompact semi-stratifiable space
every interior-preserving family of open subsets is generated by
some point-finite family of open subsets of the space. We need the
following notation: when JZf is a family of sets, the symbol Sfs is
used to denote the family formed by all possible unions of sets
from £f.

COROLLARY 4.14. Let % be an interior-preserving and open
family of subsets of a metacompact semi-stratifiable space X. Then
there is a point-finite and open cover T1 of X such that <& <z 3^.

Proof. By using Theorem 4.12 (or Corollary 4.13) we see that
there exists a point-finite open cover & of X such that D^ is con-
tained in the transitive neighbornet D^. Let T = {Π (έ?)x\xeX};
then ^ is a point-finite open cover of X. To show that <%f c Ψ*s

9

let Z7e^. For every y e U we have Γ\(^)y = D^{y} c D^{y) =
f\(^)ydU. It follows that U = U ί ί Ί (^)yl2/e U}; thus we have
UeTs.

By considering the proof above, we see that the conclusion of
Corollary 4.14 holds in precisely those spaces X in which the point-
finite covering quasi-uniformity of X coincides with the fine transi-
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tive quasi-uniformity of X. It can be shown that all such spaces
are hereditarily metacompact. The Sorgenfrey line provides us with
an example of a hereditarily paracompact space for which the con-
clusion of Corollary 4.14 fails to hold.

In the last result of this section we give several characteriza-
tions of the Lindelof-property for semi-stratifiable spaces in terms
of neighbornets.

THEOREM 4.15. The following conditions are mutually equiva-
lent for a semi-stratifiable space X:

( i ) X is a Lindelδf-space.
(ii) If U is a neighbornet of X such that U Γϊ U~ι is an equi-

valence relation, then the family ό>/{JJΌ U~ι) is countable.
(iii) // R is an unsymmetric relation on X such that either

R or R~ι is a neighbornet of X, then the family SsfR is countable.
(iv) If V is a transitive neighbornet of X, then the family

J / F is countable.
(v) If V is a transitive neighbornet of X, then the family
"1 is countable.

Proof, (i) => (ii): Assume that X is a Lindelόf-space and let U
be a neighbornet of X such that U Π U~ι is an equivalence relation.
It follows from Theorem 4.8 that the family J^(Z7fΊ t/"1) has a σ-
discrete and closed refinement. As X is a Lindelof-space, every σ-
discrete family of subsets of X is countable. Since the disjoint
family ό>/(U Π Ϊ7"1) has a countable refinement, the family itself is
countable.

(ii) => (iii): Assume that condition (ii) holds and let R be an
unsymmetric relation on X such that either R or R~ι is a neigh-
bornet. We have R n R~ι{x) = {y eX\R{y} = R{x}} for each xeX
and it follows that the family jzfR is countable if the family
j^f(R Π R~ι) has this property. As R Π iZ"1 is an equivalence relation
and as either R or R~ι is a neighbornet, it follows from the assump-
tion we have made that J^(B n R"1) is a countably family.

(iii) => (iv): Obvious.
(iv) => (v): This follows directly by observing that for a transi-

tive and reflexive relation T on X and for points x and y of X, we
have T{x} = T{y} iff Γ"1^} = T~ι{y).

(v) => (i): Assume that (v) holds. To show that X is Lindelof,
it is enough, by a result in [5], to show that every discrete family
of closed subsets of X is countable. Let ^~ be discrete family of
closed subsets of X. Denote by V the transitive neighbornet Ό~^
of X. By assumption, the family J%fV~ι is countable. For each
x e X, we have V^x} = £>-(~^){a?} = D^{x} = f[ J Q hence we
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have V~ι{x} = F whenever xeFejK It follows that ^ C J / 7 " 1 ;

the family &~ is thus countable.

For an unsymmetric neighbornet U of a semi-stratifiable Lindelof-
space, the family J^U~ι does not necessarily have to be countable.
To see this, let X be the closed interval [0, 2] in the Euclidean
topology and let (gn} be an enumeration of the rational numbers in
the interval (1, 2]. We define a neighbornet U of X by setting
Z7{α} = (l,2] for each x>l, U{0} = X and U{l/n] = X for each
neN, and, finally, ?7{cc} = (I/O + 1), 1/w) U (1, gn) for each neN and
each a? 6 (l/(n + 1), 1/w). Then it is not difficult to show that U is
an unsymmetric neighbornet of X such that the family JzfU"1 is
uncountable.

(c) Stratifiable spaces.

In this last section we give some characterizations for stratifiable
spaces. For the proof of these characterizations we need the fol-
lowing result on strongly basic sequences.

LEMMA 4.16. Let (Rn) be a decreasing and strongly basic se-
quence of relations on X and let keN. Then the sequence (R%) is
strongly basic.

Proof. We use induction on the number k. For k=l, the result
is true by assumption. Suppose that it has been proved for k = m.
To show that the result is true for k = m + 1, let xeX and let
Oeηx. As the sequence (Rn) is strongly basic, there exist Ueηx

and neN such that RnUa0. By using the induction assumption,
we can fine V e rjx and I ^ n such that Rΐ VaU. Then we have
R?+iV = R^RTV) dRnU(z0. It follows from the foregoing that the
sequence <i?Γ+1> is strongly basic.

As we have (i^)"1 = (R^y for any relation R and for any keN,
we see that the result of the lemma above remains true if we re-
place "basic" by "co-basic" in the lemma.

We need some terminology to state the following theorem. A
family Λ^ of subsets of X is a quasi-base for X if for every x e X,
the family {Ne^V\xeN0} is a base for ηx. A topological space is
an Λf2-space [4] if the space has a σ-closure-preserving quasi-base
and is regular (in this paper we do not assume that a regular space
is always a ΪVspace).

THEOREM 4.17. The following conditions are mutually equiva-
lent for a space X:
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( i ) X is stratifiable.
(ii) X has a sequence < 3 θ of point-finite open covers such

that the sequence (D 3 θ is strongly co-basic.
(iii) X is a M2-space.

Proof. (i)=>(ii): Suppose that X is stratifiable and let (Un}
be a decreasing and strongly co-basic sequence of neighbornets of X.
Since every stratifiable space is paracompact (see [4]), Corollary 4.13
implies that there exists a sequence < 3 θ of point-finite open covers
of X such that we have DTlaUl for each neN. By using the
remark following Lemma 4.16, we see that the sequence <ϋX>, and
hence also the sequence <D $O (note that RaS iff R^czS'1, for
any relations R and S), is strongly co-basic.

(ii) => (iii): Let < 3 θ be a sequence of point-finite open covers
of X such that the sequence (D 3O is strongly co-basic. For each
n 6N, let Vn = D Tn and let ^ = {V?A\ Ac X}. By Theorem 3.14,
each V% is a transitive neighbornet; it follows from Corollary 3.15
that the families Λ^ are closure-preserving and closed. To show
that the family <yV = {J^BN^K is a quasi-base for X, let xeX and
Oeηx. Since the sequence <V»> is strongly co-basic, there exists
neN and Z7e^β such that V^UcO. Since a? elnt (F~xί7), we have
shown that <yV" is a quasi-base for X. As ^ ~ is a closed quasi-base,
X is regular, and thus X is an M2-space.

(iii) =» (i): This is well known (see [4]).

In [4], J. Ceder raised the questions whether Mz=> M2 and
M2 => Mt. Theorem 4.17 answers the first question1 but it leaves the
second one unanswered. For partial answers to the second question,
see [23], [3], and [19].

Next we characterize a subclass of stratifiable spaces by imposing
a restriction on the cardinalities of "generators" of a quasi-base:

THEOREM 4.18. A topological space X is Lindelof and stratifi-
able iff there exist countable and closure-preserving families ^ n ,
neN, of closed subsets of X such that the family Une^i^n) is a
quasi-base for X.

Proof. Necessity. Assume that X is Lindelof and stratifiable.
By Theorem 4.17, there is a sequence < 5 θ of point-finite open covers
of X such that the sequence (D $O is strongly co-basic. For each
neN, let Vn = DTn and ]/n = {V~ι{x}\x e l } . Then we have

= {V~1A\AcX} for each neN and it follows that the family
1 While preparing this paper for publication, the author learned that G. Gruenhage

had also proved that Mz implies M%.
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\JneN {^n) is a quasi-base for X (compare with the proof of (ii) =>
(iii) in Theorem 4.17). From Corollary 3.15 and Theorem 4.15, we
see that the families ^ are closure-preserving, closed and countable.

Sufficiency. Suppose that there are families J?n, neN, of
subsets of X with the properties mentioned in the theorem. Then
the countable family \JneN^ is a network for X and it follows
that X is a Lindelof space. For every neN, it follows by the cor-
responding properties of the family ^ n that the family ^% is
closure-preserving and closed (compare with the proof of Corollary
3.15). The space X has thus a σ-closure-preserving closed quasi-base.
It follows that X is an M2-space.

In our final theorem we characterize pseudometrizable spaces in
terms of strongly co-basic sequences. To prove the theorem, we
need A. H. Stone's result that all pseudometrizable spaces are para-
compact (the result is proved in [24] only for metrizable spaces but
the same proof works for pseudometrizable spaces if we do not require
paracompact spaces to be T2). We also need the following modifica-
tion of A. H. Frink's metrization theorem ([9], Theorem 3): X is
pseudometrizable if X has a sequence {Un} of neighbornets such
that the sequence < Un o TJ~X © Un) is basic.

THEOREM 4.19. The following conditions are mutually equiva-
lent for a space X:

( i ) X is pseudometrizable.
(ii) X has a sequence ( 3O of locally finite open covers such

that the sequence (D 3̂ > is strongly co-basic.
(iii) X has a strongly co-basic sequence formed by cushioned

neighbornets of X.

Proof, (i) => (ii): Assume that X is pseudometrizable and let d
be a pseudometric on X such that d induces the topology of X.
For each neN, let 3^ be a locally finite open refinement of the
cover of X consisting of all the open cϋ-spheres of radius 1/n. Then
it follows from the properties of d that the sequence (S 3O is
doubly basic. For all xeX and neN we have (D Tn)~\S T%{x})c
S2 7Z{x} and it follows that the sequence (D 3O is strongly co-basic.

(ii) =*(iii): Assume that X has locally finite open covers Vn,
neN, such that the sequence (D 3O is strongly co-basic. For each
neN, denote by Wn the neighbornet associated with the indexed
family {D Tn{x)\xeX). Then we have T7"Ό = (D TJ'V for each
neN and for each open set 0 cX; it follows that the sequence (Wn}
is strongly co-basic. The neighbornets Wn, neN, are cushioned
since it follows from the local finiteness of the families 71 that the
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families {D Ψl{x)\x eX} are locally finite and thus closure-preserving.
(iii)=*(i): Let (Wn) be a strongly co-basic sequence for X such

that each Wn is a cushioned neighbornet of X. It follows from
Lemma 2.3 that for each neN, the symmetric relation Un =
Γ\k^n (Wk Π Wk1) is a neighbornet of X. The sequence < E7»> is strongly
co-basic and as the relations Un are symmetric, it follows that this
sequence is strongly basic. By using Lemma 4.16, we see that the
sequence <172> is strongly basic. For each neN, we have Uήι = Un

and hence Un o Uή1 °Un= Ui. It follows that the sequence < Un° £/irl0 IT"*)
is basic. We have shown that X satisfies the condition of Frink's
theorem; X is thus a pseudometrizable space.

By the last part of the proof above, it is evident that the result
of Theorem 4.19 remains true if we replace "strongly co-basic" by
"strongly basic" in condition (iii) of the theorem. Note that it fol-
lows further, by using Lemmas 3.2 and 3.3, that a space X is
pseudometrizable iff X has a sequence (£fn) of semi-open covers such
that the sequence (SjϊfJ) is strongly basic.

We close this paper with a few comments on the construction
of closure-preserving families. The result of Theorem 4.17 above,
as well as numerous other results (see e.g., [6] and [16]), show that
closure-preserving families or their "complements", interior-preserving
families, can be constructed from families without these properties.
However, when these constructions are studied more closely, it be-
comes apparent that all of them involve families having certain
finiteness or order properties (point-finite families were used in the
proof of Theorem 4.17; Lemma 2.6 of [16] deals with certain gen-
eralizations of monotone families). Thus it appears that there does
not as yet exist any technique (apart from the trivial one mentioned
after Corollary 3.15) for constructing closure- or interior-preserving
families from families (or collections of families) which do not fulfill
explicit or implicit conditions assuring the existence of finite or
monotone subfamilies. Some such technique would be most welcome
to those who work on problems connected with covering axioms,
generalized metric spaces or quasi-uniformities, because it is only
for restricted classes of spaces that we can expect results analogous
to Corollary 4.14 to hold. As normal sequences of open covers can
be used to construct σ-discrete refinements for the members of the
sequence (see [24] and [25]), it is not unfounded to conjecture that
normal sequences of neighbornets could be used in a "similar way to
construct interior- and closure-preserving families; however, the ex-
ample given in [14] shows that the analogy cannot be pushed very
far. Anyway, we hope that neighbornets will aid in finding these
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constructions, in case they exist.
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