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UNIFORM REPRESENTATIONS OF CONGRUENCE
SCHEMES

JOEL BERMAN AND GEORGE GRATZER

A congruence scheme Y is a finite sequence of polyne-
mials. A nontrivial equational class K is a representation
of 3 iff the principal congruences in K can be described in
a natural fashion by 5. In this paper it is shown that a
necessary and sufficient condition for a congruence scheme
3 whose polynomials do not contain constants to have a
representation is that each polynomial in the sequence be
at least binary.

1. Introduction. For an algebra o and «,bc A, let O(a, b)
denote the smallest congruence relation under which « = b; such
relations are called principal. For instance, in the class D of dis-
tributive lattices (see [1]):

¢ = d(O(a, b)) iff
¢ = pyb, @, b, ¢, d)
@, @, b, ¢, d) = p(e, a, b, ¢, d)
2,(b, @, b, ¢, d) = p,(b, @, b, ¢, d)
v(a, @, b, ¢, d) = pia, a, b, ¢, d)
(b, @, b,¢,d) =d ,

where

Doy Yoo Yus Y2 Ys) = (T A Yo) V Y2) N\ (%2 V ¥Us)
(%, Yo Yi Yoo ¥s) = (€ V Yo V Y) A (¥ V ¥s) »
Do Yoy Yus Yr Ys) = (& V Yo) A Y2) V Ys s

oL, Yor Yu» Yor Ys) = (X AN Yo A Y3) V Y5«

This is one example of a congruence scheme (for a general definition,
see §2). The general definition of a congruence scheme permits an
arbitrary sequence p, -, »,_, of polynomials and the polynomials
may have any number of variables.

As the simplest example of a congruence scheme, let K be an
equational class and let us assume that for all A e K the following
holds:

¢c=dO(,0b) iff c=a +e and d =b + ¢ for some ec A, where
+ is a binary operation of K.

Congruence schemes have been investigated in [5] under the
name 1-good systems and in [1].
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An equational class K is a uniform representation of a congruence
scheme X iff the principal congruence relations in all A€ K can be
described by Y. The paper [1] starts with an equational class K
representing a congruence scheme 3 and considers the consequences
of this assumption.

In this paper we start with a congruence scheme 3 and ask
under what conditions there is a nontrivial equational class K repre-
senting Y. A trivial necessary condition (see §2) is that each poly-
nomial be at least binary. However, this is not sufficient, as ex-
emplified by the scheme 0+ ((0 + x) + ) (see §5). Our main result
is that the above condition is necessary and sufficient, provided the
polynomials in the scheme contain no nullary operations.

In §2 we give all the basic definitions. In §3 the representation
theorem is reduced to finding a suitable simple algebra. The cons-
truction of this simple algebra is presented in §4. Some additional
results, examples, and problems are given in §5.

2. Basic definitions. We assume that the reader is familiar
with the basic concepts of universal algebra; see [2].

Given a set of polynomials 2 (of a given type z) and a class of
algebras K (of type p) we say that K admits 2 or that the type
of Q is contained in the type of K iff all operation symbols occurring
in £ are operations in K, in other words, if every pe 2 can be
regarded a polynomial of K.

Now we give the three basic definitions. The reader should be
familiar with Mal’cev’s lemma (see, e.g., Theorem 10.3 in [2]), which
forms the background for these definitions.

DEFINITION 1. For a type ¢ of algebras, a congruence scheme
(briefly, scheme) X of type 7 is a sequence p,, - -, p,_, of polynomials
of type 7, where p, is a polynomial in the variables 2 and %% 0 <
j < n,;, together with a function ¢:{0, 1, ---, n — 1} — {0, 1}.

We shall say that a class K of algebras admits 3 if K admits
the polynomials in X.

REMARKS. The variables « and % (0 < j < n,) are assumed to
occur explicitly in p;,. Variables with distinct indices (upper or lower)
are distinct from each other and from x. The integer %, can be 0,
in which case the only variable of p, is . (Some easy changes are
necessary in the example given in the introduction to make it satisfy
the formal requirements of Definition 1.)

DEFINITION 2. Let X be a congruence scheme and 9 an algebra
admitting Y. We define a 4-ary relation on A:



UNIFORM REPRESENTATIONS OF CONGRUENCE SCHEMES 303

For a,, a, b, b, € 4, {a, a, b, b,) is in the relation Y, in symbols,
2(ay, ay, by b,), iff there are elements ¢(4, ) e A 0 =1 <1, 057 < my)
satisfying the following equations:

( i ) bo = po(a/t(o), C(O’ 1)’ Tt C(O, Ny — 1));

(ii)  Di(@i_siiry €(3, 0), <=+, c(%, 1 — 1)) = Dy (@risny (2 + 1, 0), <,
ct+1,n,,—1),2=0,1, --c, n — 2,

(iii) pn—l(a1—t(n-1)1 c('n - 19 0)7 Tt c(n - 19 Ny — 1)) = bl'

REMARK. We call the ¢(z, j) the elements used to establish
2(a,, @, by b,). Of course, in general there are many such ¢(s, j).

Now we can restate Mal’cev’s lemma in terms of these de-
finitions:

LEMMA 8. Let 9 be an algebra. For a, b, ¢, de€ A4, ¢ = d(6(a, b))
iff there exists a congruence scheme X (of the same type as that of
A) such that X(a, b, ¢, d).

DEFINITION 4. Let K Dbe a class of algebras (of the same type)
and let 3 be a congruence scheme. K is a representation of X, in
notation, K = 3, iff K admits X and for all ¥e K and a, b, ¢, dc A,

¢ = d(0(a, b)) iff 2(a,b,¢,d) holds in A.
If K = {2}, then we say that ¥ is a representation of X or A X.

REMARK. For a,bec A, then b = b(@(a, a)) always holds. Thus
if %A = ¥, then we always have 2X(a, a, b, b); similarly, we can also
conclude X(a, b, @, b) and X(a, b, b, @).

DEFINITION 5. A congruence scheme X has a uniform represen-
tation K iff K is a nontrivial equational class representing X.

For examples, the reader is referred to [1].
The following observation will be useful:

COROLLARY 6. Let U be an algebra admitting the congruence
scheme 3. For a,bec A, let c(t, j) be the elements used to establish
2(a, a, b, b). Then

pi(a" 6(?;, O), Tt C('&., n;, — 1)) =b ’ fO"' all 0 = t<n.

Proof. The polynomials exhibited in Definition 2 with the sub-
stitution of @, @, b, b are all congruent to each other and to b under
O(a, a) = w, hence the statement.

Now we come to the necessary condition.
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LEMMA 7. Let Y be a congruence scheme. If n, =0 for some
0<17<m, then ¥ has no representation by an algebra with more
than one element. In particular, X has no wuniform represen-
tation.

Proof. Let A= 2 and |A| > 1. Let n, =0. Let a,be A and
a # b. By Definition 4, 3(a, a, b, b) and so by Corollary 6, p,(a) = b.
Similarly, 3(a, a, @, @) and hence p,(a) = @, contradicting that a =+ b.

3. The reduction theorem. The proof of the main theorem
is given in two stages.

THEOREM 8. Let X be a congruence scheme. Then X has a
uniform representation iff there exists a simple algebra with more
than one element representing 2.

Proof. Let us assume that X has a uniform representation,
that is, K = 2, where K is a nontrivial equational class. By a
result of R. Magari [4], K contains a simple algebra 2 with more
than one element. Since e K, A = 2.

Conversely, let ¥ be a simple algebra of type g with more than
one element and let A = Y. Let (' denote the type we obtain by
augmenting g with a ternary operation ¢ and the 4-ary operations
94, ), 0=t <n 0= 7 < n,.

Since ¥ is simple and U &= 2, X(a, @,, b, b,) holds in A whenever
a, #* a, or if @, = @, and b, = b,. Let ¢(7, j) denote the elements used
to establish X(a,, 2, b, b,).

Define

Q(i, j)(aoy @y, bOs bl) = 0(7;’ .7‘) .

Define q(3, 7){(a,, @, b, b,) for b, = b, in an arbitrary way.

Let ¢ be an arbitrary majority function on A, that is, a ternary
function satisfying q(a, b, b) = q(b, b, @) = q(b, @, b) = b for all @, b € A.

Let A’ denote the algebra of type ¢ we obtain from U by defining
g and the ¢(4, 7) as deseribed above.

Let p; denote the polynomial defined by

p: = pz(x9 Q(/L: 0)(23, zfy zéy z;), ct Q(’i, n;, — 1)(Z3, Zf, zéy Z;)) .
Then U’ satisfies the following set @ of first-order axioms:
@)@, ¥, ¥) = ¢y, %, ¥) =9y, ¥, %) = ¥)

(xo)(x1)(yo)(y1)(xo # @ — (Y = pt’)(xz(o)’ Loy Ty Yor Yo) N\ =00 A
p;(xl—t(i), Loy L1y Yoo y1) = p;+1<xt(i+1)7 Loy L1y Yoo ?/1) VANRRERVAN
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Dors(Bistn—13s Toy Tuy Yoo Y1) = Y1)
(w)(’!l)(’.i! = p(')<x’ Z, T, Y, y) = e = p;~1(w, Z, T, Y, y)) .

Let K, denote the class of all algebras of type p satisfying @.
Since W € K, K, contains an algebra of more than one element. K,
is closed under the formation of ultraproducts (since K, is axiomatic),
subalgebras (since @ is universal), and homomorphic images (since
all algebras in K, are simple, in view of the second sentence in @
and the fact that K, contains the one-element algebra). In view of
the first sentence in @, all algebras in K = HSP(K,) are congruence
distributive, hence by Joénsson’s lemma (see, e.g., [2]) and the
observations in the previous sentence, K is the class of subdirect
products of algebras in K.

Finally, we verify B2 for all BeK. Since BekK,B is a
subdirect product of algebras 9,c K, me M. Take a, a, b, b cB
satisfying b, = b,(0(a,, @,)). For xe B, let #™ denote the projection
of » into %A,. Then b = b™(O(ar, a™) for all m e M. Thus

Z(ag, a', by, bI")

is established with the elements ¢(¢, j)(aF, a®, b7, b™). Let c¢(3, j)
denote the element of I7(U,|m e M) for which ‘
o(t, )" = q(3, J)(as, al’, by, b)
for all me M. Since ¢(4, j) is a polynomial of a, a,, b, b,, we have
¢(i, j) € B and so these elements (the ¢(4, 7), 0= i< %, 0= 7 <)
establish X(a,, @, b, b;) in B. This completes the proof of Theorem 8.

Observe that the equational class K constructed to prove Theorem
8 has a number of interesting properties: K is congruence distributive;
K is semisimple, that is, all subdirectly irreducible algebras in K
are simple; K has the Congruence Extension Property (this follows
from a result in [1]). By adding more operations in the construction

of U we could make K satisfy any Mal’cev condition, such as con-
gruence permutability, regularity, and so on.

4. The construction of simple algebras. To construct a simple
algebra representing a given congruence scheme 3, we first prove
two theorems about idempotent algebras and a special type of con-
gruence scheme. An algebra 9 is called idempotent iff all operations
S of A have arity > 0 and f(a, -+, a) = a for alla ¢ A. A polynomial
p is called idempotent reduced iff it contains no constants and no
subpolynomials of the form f(u, «++, %) Where f is an operation.
(For instance, (z + 9,) + (@ + ¥,) + %.) is idempotent reduced, while

@+ W+9)+@+@w+9) and @+ @+ w) + @ + 9,)
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are not.)

THEOREM 9. Let U be an idempotent algebra of tyve 7,{a,b,c,d> €
A* and either a b or a = b and ¢ =d. Let p(x, ¥y, -, ¥, be an
idempotent reduced polynomial of typve v, n = 1. Then there exists
an idempotent algebra W containing A as a subalgebra and there
are elements e, +++,e,€ A’ such that ¢ = p(a,e, -++,¢,) and d =

p(by €y 0y en)'

Proof. With a polynomial p we associate a partial algebra €(p).
First we define C(p):

for p ==, C(p) = {p};
if 2= fF(Dy **°, Du-v) > where f is an operation and

C(p,), *++, C(p,_,) have already been defined, then
Clp) = (P UU (C() [0 =7 < m) .

For every operation f in the type we define a partial operation
f on C(p); the domain of f in C(p) consists of all (p, -++, D,y €
C(p)"(f is m-ary) for which q = f(Dy, +-, D.—) €C(p) and we define
(Do, *++, Du_r) to be q. €(p) is the corresponding partial algebra.

Now let o, »(x, ¥, -+, ¥.), and @, b, ¢, d be given. First we
consider the case a # b.

Define D = AU(C(p(x, 2, - -+, 2,)) U C(p(2', 2,, -+, 2,))), where U
stands for disjoint union and =z, 2, 2, ---, 2, are distinct variables.
Observe that C(p(zx, 2, +++, 2,)) N C(p(x', 2, +--, 2,)) consists of all
subpolynomials of »(x, 2, ---, z,) that do not contain x while

C(p(x, 2,y +++, 2,)) N[2] = {x} and C(p(@’, 2, -+, 2z)N[x] =D .

Define on D the operations f of ¥ as partial operations. If f
is m-ary, the domain of f in D, Dom (f, ®), is

A™ U Dom (f, €(p(x, 2, -+ -, 2,))) U Dom (f, €(p(x’, 2,, -+, 2,)))

and f is defined on its domain to make 9, €(p(x, z, -+, 2,)) and
Cp(x', 2, -+, 2,)) subalgebras of D. It is easily seen that this definition
is not ambiguous.

Now let @ be the smallest equivalence relation on D under which
a=x,b=a,¢c=pk 2, -+, 2,), and d = p&’, 2, +-+, 2,). We claim
that ©® is a congruence relation of ©. Indeed, let f be an m-ary
partial operation, let u, = v;(0),i=1,2, ---, m, and let f(uy, + -, Un),
f, +++, v,) be both defined. Since O restricted to A is w, we can
assume without loss of generality that
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<’ll/1, M) un> € Dom (j; @(p(xi Ry * 0y zn))) .

Since p is not a proper subpolynomial of itself, no u, is p(z, 2, ---, 2,).
Hence either (v, ---,v,> € A" and

<’bl/1, ey u’n> = <w’ *ty £l$>, <v1’ ct ’U,,b> = <a'7 A a'> ’
contradicting that p is idempotent reduced or
<’l)1, ) ’U,,> € Dom (fy @(p(xy Ry %y z,,)))

in which case we must have w, = v, for all t=1, ---, m since O
restricted to C(p(x, 2, ---, 2,)) is @. This proves that @ is a congruence
relation.

Now let %' be any completion of D/O into an idempotent algebra.

If a =0b, then we start with D = AUC(p(, 2, -+, 2,) and
proceed as above. This completes the proof of Theorem 9.

Let us call a congruence scheme Y idempotent reduced iff each
polynomial occurring in X is idempotent reduced.

THEOREM 10. Let 3 be an tdempotent reduced congruence scheme
satisfying n, =1 for 0 < i < n. Then there exists a countable non-
trivial simple idempotent algebra A representing 3.

Proof. We proceed by repeated applications of Theorem 9. Let
A, be an idempotent algebra of a type admitting 3 and 1 < |4,| = W,
(such an %, obviously exists). Now let us assume that we already
have 9, ---, A, with the following properties:

(i) A,_, is a subalgebra of A, for 1<m; (ii) if <{a, a, b, b,y € 4,_,
and a,#a, or a, = @, and b, = b,, then X(a,, a,, b, b,) in A; for ¢ < m;
(jii) |4;| = W, for © < m. To construct ¥, let

{Kaz, a3, b, b5 [0 < @ < w}

be all elements {a, @, b, b,) of Aj such that a, # a, or a, = @, and
b, = b, and X(a,, @, b,, b,) does not hold in %,. We define a sequence
of idempotent algebras B, B, +-+, B, -+ k < @ such that B, = A, B,
is a subalgebra of %B,,,, |B;|=<W,, and X(ai, af, b}, b)) in B,. Indeed, if
B, -+, B, are already constructed, then we construct B,,, as follows:
if 2(ai, af, bitY, bitY) in B, then B, = B,,,. If not, we adjoin to
B; » — 1 new elements w,, ---, w,_, and take an idempotent algebra
B, containing B, as a subalgebra, |B;| < W,, such that w,, -+, w,_, €
B),. Now successively apply (the construction of) Theorem 9 to
<a§(0,, a'f—t(o)’ bz, w0>9 <a§(1), af—t(m W, w1>; M) <a':(n—1)» a’f—t(n-—l)’ Wy—2y b:> and
call the resulting algebra 3B,,,. Then |B;,, — B;| < ¥, hence | B, | <

Ro.
Let 9, be the direct limit of the B,, 7 < w, and let A be the
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direct limit of ¥,, m < w. A is obviously idempotent and nontrivial,
and |A| < W,. To show that % is simple we verify that for a, b, ¢, d e
A and a # b, we have ¢ = d(6(a, b)). We prove more: if {a,, a,, b, b,> e
A* and a,# a, or a, = a, and b, = b, then X(a, a, b, b,). This is
obvious, since {a,, @, b,, b,y € A, for some m <® and hence 3(a,, a,, b, b,)
in 9,,,, and therefore in A. This shows that A is simple and that
A represents 5. This completes the proof of Theorem 10.

To obtain the main result we have to get rid of the condition
“jdempotent reduced” in the previous results.

DerFINITION 11. Define a map »p — p from the set of polynomials
containing no constants of a given type into itself by the rules:

(i) % = « for any variable z.

(ii) Let » = f(q, +++, ¢n), Where f is an operation. Then p =
(/iu if 61 = = {j'm and ﬁ = f(au PR am) otherwise.

For a congruence scheme X, 2 is the scheme obtained from Y
by replacing each polynomial p by p (and retaining ¢).

COROLLARY 12. (i) Let p be a polynomial. If the variable x
occurs in p, them it occurs in P.

(ii) Let U be an idempotent algebra admitting the polynomial
D. Then p<a1, t an) = ﬁ(av ] an) fO’I‘ all Qyy * 0y Ay e A.

(iii) Let A be an idempotent algebra and let 3 be a congruence
scheme. Then U represents 3 iff W represents 3.

Now our main result is a simple combination of Lemma 7,
Theorems 8, 10, and Corollary 12(iii):

THEOREM 13. A congruence scheme 2 containing mo constant
has a uniform representation iff all polynomials in X are at least
binary.

This construction can be easily modified to give a single uniform
representation of any set of congruence schemes satisfying the hypo-
thesis of Theorem 13.

5. Concluding remarks. We start out with a scheme containing
a constant which does not have a uniform representation even though
it satisfies the necessary condition of Lemma 7. In fact, we prove
more.

THEOREM 14. Let X be the comgruence scheme given by p =
0+ (0+2)+y) and t(0) =0. Then there is no algebra A with
more than one element representing X.
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Proof. Let U represent Y, |A| > 1. We claim that x -0 + «
is a permutation of A. Indeed, let ¢,b€4,0+a=0+b, and ¢ =
d(@(a, b)) in A. Then 3(a, b, ¢, d), that is, ¢ =0+ (0 + a) + ¢) and
d=0+ ((0 + b) + ¢), hence ¢ =d. Thus O(a, b) = ® and so a = b.
Since a = a(0(0, 0)), there is an ec 4, such that a = 0 + ((0 + a)+e),
hence @ = 0 + o’ with o’ = (0 + @) + e. This shows that to every
a € A, there is a unique o' € A satisfying ¢ =0 + «o'.

Next fix an acA4,a+* 0 and consider the congruence a =
b© (0, ¢)). We claim that b is uniquely determined. Indeed,
20, a, a, b), hence a =0+ (0+0)+e¢) and b=0+ (0 + a) + e).
In the first equation, 0 + 0’ = 0, hencea =0 + (0 +¢). Thus 0+e=a’
and so e is uniquely determined (in fact, e = @), yielding b6 = 0 +
((0 + @) + &”). Thus b is uniquely determined. But this is clearly
a contradiction since both b = @ and b = 0’ satisfy the congruence.

Binary polynomials play a special role in connection with repre-
sentations of congruence schemes as witnessed by the following
results:

(i) Let the scheme Y have a uniform representation. Then
there exists a binary scheme 3’ (that is, all polynomials in X’ are
binary) such that 3’ has a uniform representation and every equa-
tional class K representing X’ also represents 3.

(ii) An equational class representing a binary congruence scheme
contains no finite algebra of more than one element.

(iili) Any equational class K representing a congruence scheme
satisfies an identity of the form x = q(x, ¥), where ¢ is a binary poly-
nomial in which & and y occur. In particular, K cannot be regular.

(ii) is the most complicated of these three statements so we
shall prove it. Let 3 be a congruence scheme with the polynomials
0.0, ¥.), 0 < 7 < n. Let U be an algebra, A = ¥, and let 4 be finite,
|A| > 1. Fix a, a,€4, a, # a,. For all be B we have 3(a,, @, b, b)
and X(a, a, b, b); let f2b), 0 <1< m, and fi(®d), 0 =17 <n, be the
elements establishing these. By Corollary 6,

p(a; fi) =b7=0,14=0,1, ---, 2 — 1.

Thus each f7 is one-to-one. Since A is finite, each f/ is a permutation
of A. In particular, each f/ is onto, hence

pi(x, w) = p,(x, v) implies that u =v.

Consider now any be A satisfying X(a,, a,, a, b), and let ¢, ---,
¢,—, be the elements used to establish it. Thus

@y = D@01y Co)y ***5 Pil@y—siiry 1)
= Py @stirrr Citr)y ** s Paa1(By—sinonyy Cay) = b«
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Thus ¢, is uniquely determined, in fact, ¢, = fi“(a,). Similarly,
¢ = fipth_y10¢)). Continuing thus, we find that each ¢, 1 <1< n,
is uniquely determined and so b is uniquely determined. But this
is clearly a contradiction since both b = @, and b = a, satisfy X(a,, a,,
a, b) and @, # @,. This completes the proof of (ii).

(ii) is particularly interesting because it provides a large variety
of equational classes K of algebras with no nontrivial finite algebras.
In fact our method finds such K that are idempotent, congruence
distributive, ete.

Another result of some interest is

(iv) Let X be a congruence scheme with » = 1 (that is, with
a single polynomial). Then every equational class representing K is
congruence permutable.

This follows from H. Lakser [3]; see also H. Werner [6].

Some of the open problems can be stated in terms of three
quasi-orderings defined on congruence schemes:

2, &, Y, == (2y(a, b, ¢, d) = Y (a,b,c d)
3, S, =— U =—=UAE2T)
20;e21‘=’(K}:20=Kl:21)9

where K is an equational class.

Natural problems are:
I. Describe the relations &, <, <..

II. Define ¥, =,2, iff ¥, <, 3, and 3, <, 3, similarly define =,
and =,. Given a scheme Y, find a scheme X’ of smallest “rank” such
that 3’ =, Y; similarly for =, and =,.

III. It would be interesting to investigate equational classes of
semigroups and some other algebraic systems form the point of view
of congruence schemes.

The main result of this paper is no longer true if in Definition
lap, and a p; (¢ # j) can have more than one variable in common.

IV. Find the corresponding result.

Rather than using a scheme to describe principal congruences,
one can devise schemes to describe V (G(a;, b))t =1, +«-, n).

V. Generalize the main result to such schemes.

Given an algebra 9, define Sch 2 as the set of all congruence
schemes 3 such that %A = Y. For a class K of algebras, set
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Sch K = () (Sch | % e K) .

Observe that &, and <, can be defined in terms of Sch % and Sch K,
respectively.

This notation justifies the use of the term “representation” since
K represents Y iff ¥ ¢ Sch K, that is, 3 actually occurs in Sch K.
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