SUMMABILITY OF MATRIX TRANSFORMS
OF STRETCHINGS AND SUBSEQUENCES

DAVID F. DAWSON

It is well known that if a regular matrix sums every subsequence of a sequence \(x \), then \(x \) converges. It follows trivially from this result and row finiteness of the Cesàro summability matrix that if \(A \) is a regular matrix such that \(Ay \) is Cesàro summable for every subsequence \(y \) of \(x \), then \(x \) is convergent (not merely Cesàro summable). The purpose of the present paper is to give some general results of this type involving matrix methods that are not necessarily row finite. For example, it is shown that if \(T \) is any regular matrix summability method and \(A \) is a regular matrix such that \(Ay \) is absolutely \(T \)-summable for every stretching \(y \) of \(x \), then \(x \) is absolutely convergent. This is done without assuming that \(x \) is bounded, and consequently, without the benefit of associativity.

The well known result mentioned above is due to R. C. Buck [2], and the trivial consequence involving the Cesàro summability matrix \((C, 1)\) can be seen as follows. If \(A \) is regular and \(Ay \) is Cesàro summable for every subsequence \(y \) of \(x \), then \((C, 1)A\) is a regular matrix which sums every subsequence of \(x \), since row finiteness of \((C, 1)\) gives the associativity relation \((C, 1)(Ay) = [(C, 1)A]y\). Consequently by Buck's theorem, \(x \) is convergent.

When we say that a matrix \(A \) is semiregular, we will mean that \(A \) is regular over the set of all convergent sequences of 0's and 1's. Thus \(A = (a_{pq}) \) is semiregular iff \(A \) satisfies the first two of the following three conditions for regularity:

1) \(a_{pq} \to 0 \) as \(p \to \infty \), \(q = 1, 2, 3, \ldots \),
2) \(\sum_{q=1}^{\infty} a_{pq} \to 1 \) as \(p \to \infty \),
3) \(\sum_{q=1}^{\infty} |a_{pq}| < K_A \), \(p = 1, 2, 3, \ldots \).

If \(\varepsilon \) is a positive term null sequence and each of \(x \) and \(y \) is a complex sequence, then the statement that \(y \) contains an \(\varepsilon \)-copy of \(x \) means that \(y \) contains a subsequence \(\{y_{np}\} \) such that \(|y_{np} - x_p| < \varepsilon_p \), \(p = 1, 2, 3, \ldots \).

Theorem 1. If \(T = (t_{pq}) \) is a matrix such that \(\sum_{q=1}^{\infty} |t_{pq}| < L_p \), \(p = 1, 2, 3, \ldots \), \(A \) is a regular matrix, and \(Ay \) is \(T \)-summable for every subsequence \(y \) of \(x \), then either \(x \) converges or \(TA \) is a Schur matrix, i.e., \(TA \) sums every bounded sequence.

Proof. Suppose \(x \) is unbounded. Clearly \(A \) is row finite since
Az is defined for every subsequence z of x. It is somewhat less clear, but nonetheless true, that T is row finite, and we give a proof. Suppose the pth row of T contains infinitely many nonzero terms. Using only the semiregularity of A, we can construct a subsequence y of x such that \(|t_{pj} \sum_{q=1}^{\infty} a_{jq} y_q| = |t_{pj}(Ay)_j| > 1 \) for infinitely many values of j, thus ruling out convergence of \(\sum_{q=1}^{\infty} t_{pq} (Ay)_q \), and contradicting the fact that T(Ay) is defined. We see this as follows.

Suppose a finite subsequence \(y_1, y_2, \ldots, y_n \) of x has been determined. From the semiregularity of A, there exists a positive integer v such that if \(i > v \), then \(\sum_{q=1}^{\infty} |a_{iq}| < 1/2 \) and \(|\sum_{q=1}^{\infty} a_{iq} - 1| < 1/2 \). Choose \(j > v \) such that \(t_{pj} \neq 0 \). Let \(a_{jr} \) be the last nonzero term in the jth row of A. Then from the inequalities above, \(r > n \). Determine \(y_{n+1}, \ldots, y_r \) such that \(y_1, \ldots, y_r \) is a finite subsequence of x and

\[
|a_{jr} y_r| > \frac{1}{|t_{pj}|} + \left| \sum_{q=1}^{r-1} a_{jq} y_q \right|.
\]

Then regardless of how the remaining terms of y are chosen,

\[
|(Ay)_j| = \left| \sum_{q=1}^{\infty} a_{jq} y_q \right| = \left| \sum_{q=1}^{r} a_{jq} y_q \right| > \frac{1}{|t_{pj}|},
\]

thus establishing our assertion above. Therefore T must be row finite. Hence the associativity \(T(Az) = (TA)z \) holds for all z. Therefore TA sums every subsequence of the divergent sequence x. Thus by the theorem in [9], TA is a Schur matrix. This completes the proof for the case that x is unbounded.

Next suppose \(|x_p| < M \), \(p = 1, 2, 3, \ldots \). We note that if y is any subsequence of x, then \(|\sum_{q=1}^{\infty} t_{pq} \sum_{s=1}^{\infty} a_{qs} y_s| < MK \sum_{q=1}^{\infty} |t_{pq}| < MK_o L_p \). Thus we can interchange the order of summation and obtain

\[
(*) \sum_{q=1}^{\infty} t_{pq} \left(\sum_{s=1}^{\infty} a_{qs} y_s \right) = \sum_{q=1}^{\infty} \left(\sum_{s=1}^{\infty} t_{pq} a_{qs} \right) y_s.
\]

The left side of (*) is the pth term of the sequence \(T(Ay) \) and the right side of (*) is the pth term of the sequence \((TA)y \). Thus again we have the associativity \(T(Ay) = (TA)y \). Hence the matrix TA sums every subspace y of x. Therefore if x is not convergent, then TA is a Schur matrix by the theorem in [9]. This completes the proof.

Theorem 2. Suppose T is any regular matrix summability method. If A is a regular matrix such that Ay is T-summable for every subsequence y of x, then x is convergent.
Proof. Since the hypothesis of Theorem 1 is satisfied, then
either \(x \) converges or \(TA \) is a Schur matrix. But \(TA \) is regular
since it is the product of regular matrices, and no regular matrix
is a Schur matrix. This completes the proof.

For stretchings, we obtain the following theorem which is
analogous to (but more comprehensive than) Theorem 2.

Theorem 3. Suppose \(T \) is any regular matrix summability
method. If \(A \) is a regular matrix such that \(Ay \) is \(T \)-summable
(absolutely \(T \)-summable) for every stretching \(y \) of \(x \), then \(x \) is con-
vergent (absolutely convergent).

We note that Theorem 3 is an immediate consequence of the
following result which we shall call the “Copy Theorem.”

Theorem 4. If each of \(T \) and \(A \) is a regular matrix, \(x \) is any
complex sequence (bounded or not), and \(\varepsilon \) is any positive term null
sequence, then there exists a stretching \(y \) of \(x \) such that \(TAy \)
even exists and contains an \(\varepsilon \)-copy of \(x \).

Proof. Let \(K = K_A + K_T + \max \varepsilon_p + 1, M_p = 1 + \sum_{q=1}^p |x_q|, \delta_p =
\min \{\varepsilon_1, \ldots, \varepsilon_p\} \), and \(Q_p = KM_p + 1 \). There exists a positive integer
\(n_i \) such that if \(p \geq n_i \), then
\[
\left| \sum_{q=1}^\infty a_{pq} - 1 \right| < \frac{\delta_1}{16Q_1}.
\]
There exists \(r_1 \) such that
\[
\sum_{q=1}^{n_1} |t_{pq}| < \frac{\delta_1}{8Q_1} \quad \text{and} \quad \left| \sum_{q=n_1}^\infty t_{pq} - 1 \right| < \frac{\delta_1}{8Q_1}.
\]
There exists \(m_1 > n_1 \) such that if \(1 \leq p \leq r_1 \), then
\[
\sum_{q=m_1}^\infty |t_{pq}| < \frac{\delta_1}{8Q_2}.
\]
There exists an integer \(s_1 > 1 \) such that if \(1 \leq p \leq m_1 \), then
\[
\sum_{q=s_1}^\infty |a_{pq}| < \frac{\delta_1}{16Q_2}.
\]

Suppose the finite increasing sequences \(\{n_p\}_{p=1}^{\alpha-1} \), \(\{r_p\}_{p=1}^{\alpha-1} \), \(\{m_p\}_{p=1}^{\alpha} \),
and \(\{s_p\}_{p=1}^{\alpha} \) of positive integers have been determined. Choose \(n_\alpha >
m_{\alpha-1} \) such that if \(p \geq n_\alpha \), then
\[
\left| \sum_{q=1}^{\alpha-1} a_{pq} - 1 \right| < \frac{\delta_\alpha}{16Q_\alpha}.
\]
and

\[\sum_{q=1}^{\pi_a} |a_{pq}| < \frac{\delta_a}{8Q_{a-1}}, \quad \text{where } s_0 = 1 \text{ and } M_0 = 1. \]

Choose \(r_a > r_{a-1} \) such that

\[\sum_{q=1}^{\pi_a} |t_{raq}| < \frac{\delta_a}{8Q_a} \text{ and } \left| \sum_{q=\pi_a}^{\infty} t_{raq} - 1 \right| < \frac{\delta_a}{8Q_a}. \]

Choose \(m_a > n_a \) such that if \(1 \leq p \leq r_a \), then

\[\sum_{q=\pi_a}^{\infty} |t_{pq}| < \frac{\delta_a}{2^{a+1}Q_{a+1}}. \]

Choose \(s_a > s_{a-1} \) such that if \(1 \leq p \leq m_a \), then

\[\sum_{q=\pi_a}^{\infty} |a_{pq}| < \frac{\delta_a}{2^{a+1}Q_{a+1}}. \]

From (3) and (4) we can obtain

\[\left| \sum_{q=\pi_a}^{m_a} t_{raq} - 1 \right| < \frac{\delta_a}{4Q_a}. \]

From (1) and (5) we obtain

\[\left| \sum_{q=\pi_a}^{\pi_a} a_{pq} - 1 \right| < \frac{\delta_a}{8Q_a} \text{ for } n_a \leq p \leq m_a. \]

Thus we have defined the increasing sequences \(\{n_p\}_{p=1}^{\infty}, \{r_p\}_{p=0}^{\infty}, \{m_p\}_{p=0}^{\infty}, \text{ and } \{s_p\}_{p=0}^{\infty} \) of integers, where \(r_0 = 0 \) and \(m_0 = 0 \).

Let \(\{y_p\}_{p=1}^{\infty} \) be the stretching of \(x \) induced by \(\{s_p\}_{p=0}^{\infty} \) [3, p. 455].

If \(\alpha > 1 \) and \(n_a \leq p \leq m_a \), then from (2), (5), and (7) we obtain

\[
\left| \sum_{q=1}^{\pi_a} a_{pq}y_q - x_a \right| \leq \left| \sum_{q=1}^{\pi_a} a_{pq}y_q \right| + \left| \sum_{q=\pi_a}^{\pi_a-1} a_{pq}y_q - x_a \right| \\
+ \sum_{q=\pi_a}^{\infty} |a_{pq}y_q| \\
< \left(\sum_{q=1}^{\pi_a} |a_{pq}| \right) \max \{|x_1|, \ldots, |x_{a-1}|\} \\
+ |x_a| \sum_{q=\pi_a}^{\pi_a-1} a_{pq} - 1 \right| + \sum_{q=\pi_a}^{\infty} |x_q| \sum_{q=\pi_a}^{\pi_a-1} |a_{pq}| \\
< \delta_a/8K + \delta_a/8K + \sum_{q=\pi_a}^{\infty} |x_q| \frac{\delta_{p-1}}{2^{a+1}Q_v} \\
< 3\delta_a/8K.
\]

Also we can prove this inequality for \(n_1 \leq p \leq m_1 \). Thus we have for \(\alpha \geq 1 \) and \(n_a \leq p \leq m_a \).
SUMMABILITY OF MATRIX TRANSFORMS

\[\sum_{q=1}^{\infty} a_{pq}y_q = x_a + \mu_a, \text{ where } |\mu_a| < 3\delta_a/8K. \]

If \(m_{a-1} < p < n_a \), then from (5) we obtain
\[
\left| \sum_{q=1}^{\infty} a_{pq}y_q \right| \leq \left| \sum_{q=1}^{s_{v-1}} a_{pq}y_q \right| + \sum_{q=s_{v+1}}^{\infty} |a_{pq}| \left| x_{v+1} \right| \sum_{q=s_{v+1}}^{\infty} |a_{pq}|
\]
\[
< KM_a + \sum_{v=\alpha}^{\infty} |x_{v+1}| \frac{\delta_v}{2^\alpha+\sum_{v+1}^\infty Q_{v+1}}
\]
\[
\leq KM_a + (\delta/2) \sum_{v=\alpha}^{\infty} 1/2^v
\]
\[
< KM_a + 1 = Q_a.
\]

From this inequality and (8) we can show that if \(m_{a-1} < p \leq m_a \), then
\[
\left| \sum_{q=1}^{\infty} a_{pq}y_q \right| \leq \sum_{q=1}^{\infty} a_{pq} - x_a + |x_a| < KM_a + 1 = Q_a,
\]

since \(|x_a| < KM_a \) and \(3\delta_a/8K < 1 \).

If \(r_{i-1} < p \leq r_i \), then from (4) and (10) we obtain
\[
\left| \sum_{q=1}^{\infty} t_{pq}(Ay)_q \right| \leq \sum_{a=4}^{\infty} Q_{a+1} \sum_{j=m_{a+1}}^{m_{a+1}} |t_{pq}| (Ay)_j
\]
\[
\leq \sum_{a=4}^{\infty} Q_{a+1} \frac{\delta_a}{2^\alpha+\sum_{v=\alpha+1}^\infty Q_{v+1}} < \delta_a/4.
\]

Thus we see that \(T(Ay) \) is defined.

From (3), (6), (9), (10), and (11), we obtain
\[
\left| \sum_{j=1}^{n_t} t_{r_i j}(Ay)_j - x_i \right| \leq \sum_{j=1}^{n_t} |t_{r_i j}(Ay)_j| + \sum_{j=m_{i}}^{n_t} t_{r_i j}(Ay)_j - x_i
\]
\[
+ \sum_{a=4}^{\infty} Q_{a+1} \sum_{j=m_{a+1}}^{m_{a+1}} \left| t_{r_i j}(Ay)_j \right|
\]
\[
< \frac{\delta_a}{8} + \left| x_i \right| \sum_{j=m_{i}}^{n_t} t_{r_i j} - 1 + \sum_{j=m_{i}}^{n_t} |t_{r_i j}| \mu_i
\]
\[
+ \sum_{a=4}^{\infty} Q_{a+1} \sum_{j=m_{a+1}}^{m_{a+1}} |t_{r_i j}|
\]
\[
< \frac{\delta_a}{8} + \frac{\delta_a}{4} + 3\delta_a/8 + \sum_{a=4}^{\infty} Q_{a+1} \frac{\delta_a}{2^\alpha+\sum_{v=\alpha+1}^\infty Q_{v+1}}
\]
This completes the proof.

We can use Theorem 4 to prove the following extension of a theorem of Agnew [1].

Theorem 5. Suppose T is any regular matrix summability method. If A is a regular matrix and x is a sequence having a finite limit point, then there exists a subsequence y of x such that every finite limit point of x is a T-limit point of Ay.

Proof. Using the separability of the complex plane, we write the finite limit points of x in a sequence denoted by u. Let v denote the sequence $u_1; u_2; u_3; u_4; u_5; \cdots$, and let ε be a positive term null sequence. By the “Copy Theorem,” there exists a stretching z of v such that $T(Az)$ is defined and contains an ε-copy of v. Let y be a subsequence of x such that $z - y$ is a null sequence. Since $T(Ay) = T(A[y - z]) + T(Az)$, we see that $T(Ay)$ is the sum of a null sequence and a sequence which contains an ε-copy of v. Therefore every finite limit point of x is a limit point of $T(Ay)$. This completes the proof.

In [5] we proved theorems analogous to the results of this paper, except that T was the identity matrix (ordinary convergence) and A was a semiregular matrix. The following theorems are trivial consequences of associativity, the results in [5], and the fact that if T is a row finite regular matrix and A is a semiregular matrix, then TA is a semiregular matrix.

Theorem 6. Suppose T is any row finite regular matrix summability method. If A is a semiregular matrix such that Ay is T-summable for every subsequence y of x, then x is convergent.

Theorem 7. Suppose T is any row finite regular matrix summability method. If A is a semiregular matrix such that Ay is T-summable (absolutely T-summable) for every stretching y of x, then x is convergent (absolutely convergent).

Remark. We give an example to show the necessity of “row finite” in the statement “... the fact that if T is a row finite regular matrix and A is a semiregular matrix, then TA is a semiregular matrix,” which precedes Theorem 6. Let B and A be matrices defined as follows: $b_{pq} = 2^{p-q-1}$ if p is even and $q \geq p$.\[<\delta_i/8 + \delta_i/4 + 3\delta_i/8 + \delta_i/4 = \delta_i \leq \varepsilon_i.\]
b_{pq} = 0 \text{ if } p \text{ is even and } q < p, \quad b_{pq} = 1 \text{ if } p \text{ is odd and } q = p, \quad b_{pq} = 0 \\
if \quad p \text{ is odd and } q \neq p, \quad a_{pq} = 0 \text{ if } q < 2p - 1 \text{ or } q > 2p, \quad a_{pq} = 2^{p-1} + 1 \text{ if } q = 2p - 1, \quad a_{pq} = -2^{p-1} \text{ if } q = 2p. \quad \text{Simple calculations show that } B \\
is regular, \quad A \text{ is semiregular, but } BA \text{ is not semiregular.}

REFERENCES

Received July 13, 1977.

NORTH TEXAS STATE UNIVERSITY
DENTON, TX 76203