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A GENERAL COINCIDENCE THEORY

BENJAMIN HALPERN

Consider two topological spaces X and Y, two maps
f,9:X>Y, and a relation R on Y,RCYXY. A Lefschetz-
type theorem is established with regard to the existence of
an € X such that g(x)Rf(x). Several ideas related to the
Lefschetz Fixed Point Theorem, such as periodic point
theorems, local fixed point index, asymptotic fixed point
and periodic point theorems, are carried over to this more
general situation.

1. Introduction. Consider two topological spaces X and Y,
two maps f,g: X— Y, and a relation R on Y,RC Y X Y. Under
what circumstances must there exist an xe X such that g(a)Rf(x),
i.e., (g(x), flx))e R. In this paper we do three things with respect
to this problem. First, we show how to obtain related homology
maps from H,(Y) into itself. Each of these homology maps 7 is
such that A(h) = 3.5, (— 1)" trace h, = 0 implies g(x)Rf(x) for some
xeX. Secondly, we find an interpretation in terms of f and g for
the condition A(h") = 0, where h" = hoho---oh, » times. We show
that if A(h") # 0, then there exist points x,, @,, -+, 2, € X such that
g(x; )Rf(x;) for 1 <4 <r and g(x)Rf(x,). Thirdly, we show that
there are many situations in which one can assert that A(h") = 0
for some » < N, where N is determined by the situation at hand.

One application is the following apparently new theorem about
spheres. Theorem 4.5: If f, g: S — S* are continuous maps such
that f(A4) # g(4) for all Ac S* with cardinality of A =1 or 2,
then both f and g are null homotopic. Another application concerns
lines in the complex projective plane as follows. Remark 4.9: If
L is a line in CP? and f is a continuous map from L into the space
of lines in CP? then there exists two points a, be L such that f(a)
goes through b and f(b) goes through a.

Section 2 contains some notation and conventions. In §3 we
establish our central theorems. Section 4 contains applications. In
§ 5 we consider extensions to more than two functions. We outline
a local index theory in §6. In §7 we establish some asymptotic
theorems. In the last section, §8, we discuss a very general situa-
tion involving four spaces, two maps, and two relations.

Several authors have dealt with the problems of fixed points
and coincidence points by similar methods. Fuller [8], Fadell [7],
Brown [3] and [4], and Roitberg [15] deal with fixed points and
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coincidence points on manifolds. In [13] Lefschetz considers coinci-
dence points for compact metric ANR’s. Lefschetz obtains a theorem
involving the Lefschetz number of certain cycle mappings which
depend on choices of cycles in the graphs of extensions of the trans-
formations. This result seems to be related to Theorem 8.1 below.
But, the transformations considered in [13] are not assumed to be
continuous, nor single-valued, nor defined for all points of the
domain. Hence, no attempt is made in [13] to relate these cycle
mappings to induced homology or cohomology maps of the transfor-
mations.

The author would like to thank Professor Robert Brown for his
suggestion which led to this work.

2. Notation. We list here some notations and conventions we
use throughout the paper. We use singular homology and cohomo-
logy. We use the notation and conventions of Spanier [16] for the
various products in homology and cohomology. Unless explicitely
noted otherwise, the coefficients are taken in a fixed field F. We
denote the integers by Z, the reals by R, and the complex numbers
by C. By “map” we mean continuous function. % A denotes the
cardinality of the set A.

3. Main theorems. We establish here the central result of
this paper, Theorem 3.2. For purposes of exposition we find it
convenient to prove a special case, Theorem 3.1, first. (Actually
Theorem 3.1 is not strictly a special case of Theorem 3.2 because
R is not assumed closed.)

Let X and Y be two topological spaces, and f,9: X — Y two
continuous maps, and R a relation on Y, RC Y x Y. Suppose n is
a nonnegative integer. Let ae H,(X), and be H(Y X Y) be such
that @*(d) = 0 where : Y X Y — R— Y X Y is the inclusion map.
Let h;: H(Y)— H(Y) be the composite

()L H(X)

Iw Jna

H(Y) H(X)-LSH(Y)

where b/ and N a are the maps such that (b/)(z) = b/z for ze H,(Y)
and (Na)z) =z2zNa for ze H (x). Set h,=(— 1)"h,. Assume
further that H,(Y) is a finite dimensional vector spaces over F' for
each ¢ = 0.

For such a, b define a Lefschetz R-number by L(f, g) = A(h) =
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2(— 1)* trace h,.

THEOREM 3.1. If some Lefschetz R-number L(f, g)+ 0, then
g(x)Rf(x) for some x e X.

Proof. Consider the following diagram

Xommmmr - YXY—-R

g |+
xxx%yvyvy Lyxy

where d(x) = (%, x) is the diagonal map, and T(y, ¥') = (¥, ¥) is the
interchange map. If there is no x € X such that g(x)Rf(x), then we
may define a map m: X —Y X Y — R by setting Mz) = (g(x), fx)),
and the above diagram would commute. It would then follow that
b = N*o@*(b) = 0 since ®*(b) = 0 by hypothesis. Hence, to prove
the theorem it is sufficient to show that <¥’, a) = A(h).

Let {a}, {8}, and {7} be bases for H,(X), H.(Y), and H¥X)
respectively. Let {8} be the basis for H*(Y) dual to (B, i.e., <8,
B;> = &;;. Define f,;, g.; @:;, b;j, and b;; by requiring

f*(az) = Zifij:ei
9*(B)) = i 9.7
YiNa = 3500
b/B: = 3, buiB;
b= Zn‘gﬁgi X i/éa' .

We need one pzeliminary fact before we show (b, a) = A(h).
We first show that b,; = b;,, We simply calculate

<b/Br By = <b, By X By
= % 5n<81 X Bj, 181 X Bk>

= Z; b:6405, = by .
On the other hand
B/Bu B) = 3 benlBay B
= % DimOmi = by«

Hence b,; = b;, as claimed.
We now observe that
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b, ay = {d*o(f x g)*oT* 3, b8, x Bj a)
=3 a(D)b;(F*(B;) U g*(By), a)

where o(t) = (— 1)““@"““‘/5:'. Hence,
¥, @) = 31003 f*(B;) U S g, @)
= 3 0@bsgulF*(By) . Mna)
= 3,000b;9af*(Bs) ;3 auen)
= 3 0(biguauBs, fra)
PIKLQLI I REPYN
= %‘i 0(1)bs9uut1;

> ) > Z ()b f1; -
j such that ijk
dim Bj=p

Il

l

Note that if dim 8, = p and dim B, # n — ?, then b;;, = 0. Hence,
in the above expression for (', a) we may replace

@) = (— 1)dim§i~dim,§j
by (— 1) 27, Thus,
Wy = S0 S S bigaauls

{f1dimp j=p} %5

= 3 (—1)*®? trace h,
4

= >, (—=1)*»?(—1)"*? trace h,
»

= A(h) .

Next we will be concerned with two sequences of functions.
In order to facilitate our notation we will index the spaces and
functions by elements of Z,, the ecyclic group of order m. We
consider z, to consist of the integers 1,2, ---, m, so that m =0 in
Z.. Let =0 be a fixed integer. Suppose that for each i ¢ Z,, X,
and Y, are topological spaces, f*: X, — Y, and ¢°: X, — Y,_, are con-
tinuous functions, R,c Y, X Y, is a relation on Y, a¢‘c H,(X,), and
bie H(Y, x Y,) with ¢*(') =0 where oY, X ¥, — R, - Y, X Y,
is the inclusion map. Let h,;: H (Y, — H/Y,) be the composite
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Hi(Y) L H (X)) Hi(Y,) L5 H (X))
bVI ln a? b'"/] l nat
fa? Ss™ It
H(Y)  HX)ZS ... 2y, H(X) 25 HY(Y) .

Set hj = (—1)”””7:;.

Also assume dim H(Y;) < e for all j =0 and 7¢ Z,,.

We will be using the cohomology cross product for the Cartesian
products of several spaces. In order to insure that the excesiveness
conditions (necessary for the definition and properties of the eross
product) are always satisfied, we will assume that R, is closed in
Y, X Y, for each i¢ Z,.

Under these conditions we define a generalized Lefschetz R-
number by

L{f*% {g'h) = A(h) = 2(—1) trace h; .

THEOREM 3.2. If some generalized Lefschetz R-number L({f%},
{g'}) # 0, then there are points x;€ X, such that g (z,.)R,f(x;) for
v1eZ,.

Proof. First we establish some notation. If (A4, 4’) and (B, B’)
are two pairs of spaces then (A, A) X (B,B')=(A X B, A X B'U
A" x B), and rel(4, A") = A’. If a collection of objects {4} are
indexed by the integers ¢+ =1,2, ---, q, then J[A, = A4, X 4,_, X+--
X A, x A,. Note the order. This notation is used for the various
interpretations of X, e.g., multiplication in F, Cartesian product of
spaces or pairs of spaces, and cross product in homology and coho-
mology. Consider the following diagram

1 ;S el [ (Y, x Y, ¥, X ¥, — R)

Hd‘l lso

X x X 2% 1y, x ¥~ Y, % ¥,

lw

H(Yz x Yn Yi X Yi "‘Ri)

where d: X, — X, X X, is the diagonal map, di(x) = (x, ) for x ¢ X,
TMy: xvi-)=Tyix g Y. x Y, for [Ty, X yi, el Y. X Yoy,
and @ and + are inclusion maps. Set b= [[b'cH"™(JI Y, X Y).
We claim that ¢*(b) = 0. It is sufficient to show that b = *(c) for
some ceH"[[(Y,x Y, Y, x Y, —R,). Since ¢*(*) =0, there
exists a ¢e HWY, x Y, Y, x Y, — R;) such that b’ = +*(¢*) where
Y, XY, > (Y;x Y,Y,xY,—R,) is the inclusion map. Since
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o = [Iv* we may set ¢ = I] ¢ and then «*(¢c) =TI v**(e*) =11 b°=b
This establishes the claim that ¢*(b) = 0.

Now we reason as in the proof of Theorem 3.1. Consider the
element b = ([T d)*(I1 f* X g")*T*(b) e H*(I] X;). If there is no
sequence z,€ X, 1€ Z,,, such that g(x,,,)R.f(x;) for 1€ Z,, then we
may define a map Mm: [T X, —»rel [[(Y; X Y, Y, X Y, — R,) by setting
MIT ) = 1T gt (x,.,) X fi(x;). The above diagram would then com-
mute. It would then follow that b = A*op*(b) = 0 since @*(b) = 0.
Hence, to prove the theorem it is sufficient to show that (—1)*™ (¥,
a) = A(h), where a =[] a*e H,,(I1 X)).

For each i€ Z,, let {ai}, {Bi}, and {'Y} be bases for H. (X)),

H.(Y,), and H*(X) respectively. Let {,6’} be the basis for H*(Y,)

dual to {B }, l €., <B Bk> - Byk Deﬁne f]k’ g]ky ]k; b;/ky and b;k by
requiring

fila)) = 3 bl
9B = 3 ght
TiNat = Z ai,
b'/8; = 3. b3
Z, b B: x Bi .

We have already established in the proof of Theorem 1 that
b]k - bkﬂ

Using the associative and commutative laws for the cross pro-
duct we get

(I bi;)T* T1 B, x Bi, = (I1 b, )o(dim By) IT Bi, x B,

where o(p) = (—1)?l»—ptmm=bl  Here we have made use of the fact
that (IT 05,5, #* 0 implies dim ,8‘ + dim Bk =n for all teZ,. T*
simply takes B”‘ from the far left pos1t10n to the far right position,
commutmg‘ past ,Bk x [Ir ,8’ X ,8,, of homological dimension n —
dim ,6’”‘ + n(m — 1).

We now proceed as in the proof of Theorem 3.1.

@', ay = (AL &Y= x g9 T*(L 3 bz.,jifv’;; x Bi), Tla®
= Z H U(dlm B )bkza gh 1l al,,plfp,'

{kis35slip510€ Z )

= x 1 +1
= 3 Ia(n— dim B} )b} ;,gi 0t S5 hir, -
{kg:d5:15P511€ Z )

In the last equality we have used the fact that if dim @;"m +*
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dim 7}, then gj , =0, and if dim 7} # n-dim a;, then aj, = 0, and
if dim aj, # dim 8}, then f}, = 0. Hence, by summing over &, with
dim 8}, = r first, we find

&, a) = 3, (=) nutum—) trace b, ,

and so
(=D, ay = >, (—1) trace h, = A(h) .

4, Applications. First we note some immediate specializations
of Theorem 3.1. Suppose X and Y are compact, closed, oriented
n-dimensional topological manifolds, and a € H,(X) is the fundamental
class for X, and be H(Y X Y) is the image of the Thom class
of Y under the map v*: H(Y X Y, Y X Y —4Y)—> HNY x Y)
where 4Y is the diagonal of Yand ¢: Y XY - (Y XY, Y XY—4Y)
is the inclusion. Then A(h) = A(f.o(Na)og*-(b/)) is the Lefschetz
number for f and g and Theorem 1 with R = 4Y reduces to the
Lefschetz’s coincidence point theorem. If we specialize further and
take Y = X and ¢g = 1,, then we obtain the Lefschetz fixed point
theorem for oriented manifolds.

We now discuss some consequences of Theorem 3.2. Suppose in
Theorem 3.2 we have m = pq, X;,, = X, Y., =Y, ffH'=fi gt'=
g', a*t'=a‘, and b*** =0’ for all i€ Z,. Now let k,: H(Y,) — H/(Y,)
be the composite

2%
H " (Y) Lo H*(X,)  H""(Y,)— H""(X,..)

bl/] lnaZ blI/I lnaq+l

HY) H&X)IS . ISty BXL) IS HY,)=H(Y).

Set k, = (—1)™"k,. Clearly, for the &, of Theorem 2 we have £, =
(k) = E,ok,o-++ok,, p times. Hence, h, = (—1)""h, = (—1)""k,)?* =
k2, and so h = k*: H(Y,) — H,(Y,). Now we may apply the theory
developed in [9], [10], and [12] for dealing with the Lefschetz’s
numbers of iterates. We will use Theorem 4 of ]10] to illustrate
how most of the theorems of [10] may be carried over to the present
context. In algebraic terms, Theorem 4 of [10] is essentially the
following result. Let ch & denote the characteristic of % .

THEOREM 4.1. Given a finite sequence V ={V, ---, Vi} of
finite dimensional vector spaces over F , and T:V — V a sequence
of linear maps T,: V,— V,. If

(a) T, has a nonzero eigenvalue for some even ¢, and
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(b) T,=0 for all odd %,
(¢) ch F ¢{2, ---, n}, where n = >, cen dim V;
then A(TY) = 3, (—1) trace Ti+ 0 for some j, 1 £ j £ Deven dim V.

THEOREM 4.2. Given a topological space X and two maps f,
g: X — 8™ where n = 2 is even. FEither

(a) both f* amd g*: H"(S": F )— H™X;. %) are zero for all
fields # such that ch . + 1 or 2, or

(b) fIX') = g(X') for some X' C X with §X' =1 or 2.

Proof. Without loss of generality we may assume X is con-
nected. Suppose that g*: H*(S*) —» H*(X) is not zero with coeffici-
ents in a field &# . Set b, = j*(r) where 7€ H*S" x S*, S* X S*—4)
is the Thom class of S and j5:S" X S*— (8" x 8", 8" X 8" — 4) is
the inclusion map. Let s, be the canonical generator of H,(S") = Z.
Then b,/s, is a generator of H"(S*) = Z. Consequently g*(b,/s,) € H*(X)
is not zero. Hence {g*(b,/s,), a) # 0 for some ac H,(X). Let a, be
such an a. Let x, be the cannonical generator of H(X) = Z and %,
the dual generator of HX). Now we have 0 {g*(b,/s), a,) =
(&, U g*(by/80)) = <&y, (9%(by/s,)) Na,». Hence (g*(bl/so)) Na,=tx, with ¢t=0.

Let k& be defined as in the paragraph preceding Theorem 4.1.
Then, ky(s,) = fyo(N a)og*o(b/)(s,) = fu(tx,) = ts, and hence %, = 0.

It is clear now that Theorem 4.1 applies with V, = H,(S*) and
T = k. It follows that either A(k) = 0 or A(k*) = 0. Hence (b) holds.

Similarly, if f*: H*(S") — H*X) is not zero for some field of
coefficients, then (b) holds.

We would like to use Hopf’s theorem on homotopy classes of
maps into S” to interpret geometrically condition (a) of Theorem 2.4.

REMARK 4.3. We will need the following elementary algebraic
fact whose proof we leave to the reader.

If an Abelian group G, homomorphism f:Z — G, and integer
n = 2 satisfy

(a) G has no element of order (prime)?,

(b) G has no element of order 2 or 3 or --- or mu,

) FRILZY ¥ - GR.# 1is zero for all fields . which
satisfy ch .7 ¢{2,8, ---, n},
then f is zero.

THEOREM 4.4. Given an even integer m = 2 and a topological
space X which has the same homotopy type as an n-dimensional
CW-complex, and two maps f, g: X — S*. Assume H™(X; Z) has no
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element of order (prime), nor of order 2. Kither
(a) both f and g are null homotopic
or
(b) AX") = g(X") for some X' C X with $X' =1 or 2.

Proof. Assume (b) does not hold.

We apply Theorem 4.2 and conclude that f* and ¢g*: H*(S*; & )—
H*"X; &) is zero for all fields .# such that ch.& # 2. Since
H™(X; Z) = 0, the universal coefficient theorem which expresses
H*(-; &) in terms of H*(-; Z) implies f3® 1, g ®L: H*(S*;, Z) R
F — HYX;Z)R .~ are zero for all fields # such that ch . #2
where f%, g3: H*(S*; Z)—»H"(X; Z) are the induced cohomology map
with integer coefficients. Now from Remark 4.3 we see that [}
and g3 are zero. Finally, both f and g are null homotopic by Hopf’s
theorem.

COROLLARY 4.5. If f, g: S — S*™ are continuous maps such
that f(A) # g(A) for all A S*™ with $A = 1 or 2, then both f and
g are null homotopic.

Proof. Set X = S** in Theorem 4.4 and consider the case n=0
separately.

REMARK. Responding to a preprint of this paper Professor
Dold has given an elegant short proof of Corollary 4.5 relying only
on properties of the cross product and intersection number.

Next we present an application of Theorem 3.2 where the rela-
tion R is not taken to be equality. Let Y = CP? = the complex
projective plane. We consider CP? to be defined as the quotient of
C?® — {0} by the equivalence relation ~ which sets (u, v, w) ~ (\u, M,
aw) for all (u, v, w)e C*— {0} and » e C —{0}. Denote the equivalence
class of (u, v, w) by [u, v, w]. We say U = [u, v, w] is perpendicular
to U’ = [/, v/, w'], (notations: U L U’), provided uw' + vv' + ww’ =0.
This notion is well defined, i.e., it does not depend on the choices of
(u, v, w) and (w', v, w') representing U and U’.

THEOREM 4.6. Given a topological space X and two maps
f, 9: X — CP% Either

(a) both f*, g*: H(CP?* & )— HXX; 7 ) are zero for all fields
& such that ch F + 2,
or

() Sflx) L g(x) for some xe X,
or
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(e) fle)Lglx) and f(x') L g(x) for some x, ' € X.

Proof. By considering f and g restricted to the components of
X it is readily seen that the theorem is reduced to the case where
X is connected. So assume X is connected. We wish to apply
Theorem 3.2 as we did in the proof of Theorem 4.2. Here we have
R={U,UYeY X Y|ULU'}, where Y = CP?:. The only significant
difference between the present proof and the proof of Theorem 4.2
is in finding an appropriate b, ¢ HX(Y x Y). We consider this point
and leave the rest of the proof to the reader. What we need is a
b,e HX(Y X Y) such that

(i) b/s, = s* where s, is the cannonical generator of H(Y) =
& and s® is a generator of H¥Y) = .& .

(ii) 2*(b,) =0 where 1: Y X Y —R—Y x Y is the inclusion
map.

It is well known that CP? is a complex analytic manifold of
complex dimension 2. It is easily verified that RCY X Y is a
compact connected complex analytic submanifold of complex dimen-
sion 8. Hence Y X Y and R are orientable smooth manifolds of
(real) dimensions 8 and 6 respectively. Pick orientations for Y and
R so that now Y x Y and R are oriented manifolds. Let V=Y x
Y. The Thom Isomorphism Theorem and the Tubular Neighborhood
Theorem give a generator re H(V, V- R; ¥ )= H(R; ¥ )= F
with the following property. [See Milnor [14] pages 67 — 69 for
definitions and proofs. Though Milnor uses homology with Z coeffi-
cients in [14], the relavent part, pages 67 — 69, may be done using
homology with % coefficients.] If M is a compact oriented sub-
manifold of V of (real dimension 2 which intersects K transversally,
and [M]e H(M; & ) is its fundamental class, and h: M — V and
72 V—(V,V — R) are the inclusion maps, then j,oh,[M]= R-Mr,
where R-M is the intersection number of R and M.

We apply the above formula to the case M = S* X p,, where we
consider S? = {[u, v, w]e CP?*|w = 0} and p, = {{u, v, w]eCP*|v =
w = 0}, By a straight forward calculation one may verify that
S? X p, intersects R in exactly one point, ([0, 1, 0], [1,0,0De Y X Y,
and this intersection is transverse. Hence R-(S* X p,) = =+ 1 depend-
ing on the orientation we choose for S* X p,. Choose the orientation
of S*= 8% X p, such that R-(S* X p,) = 1. Now we have j,oh,[S*x
p,] = r. Let # be the generator of HV, V — R; # )= % dual to
r. Set b, = 7*(#)e H(Y x Y). Condition (ii) for b, follows from
the exact sequence for the pair (Y X Y, Y X Y — R).

Next note that
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by halS* X D]y = G*(F), RulS* X D)) = (7, uohi[S* X p]>
= (R =1.

Since CP* can be written as CP* = S*U (a 4-cell) and h:S* X p, —
CP? x CP* is the inclusion, we have h,[S? X p,] = 8, X s,€ H(Y X Y;
) where s, is a generator of H,(Y;. %)= .. Let s be the
generator of H*Y;.# ) dual to s,. Then, {b,/s, 8,» = {by, 8, X 8» =
{byy hy[S* X »,]> = 1. This shows that b,/s, = s>. We have thus veri-
fied condition (i) for b,. The rest of the proof follows closely the
proof of Theorem 4.2 and is left to the reader.

Next we prove an analog of Theorem 4.4.

THEOREM 4.7. Given a topological space X which has the same
homotopy type as a 2-dimensional CW-complex, and two maps
[, 9: X — CP:. Assume H*(X; Z) has no element of order (prime),
nor of order 2.

Either

(a) both f and g are null homotopic
or

(b) f(x)1 g(x) for some xe X
or

(e) Sflx)Llglx) and f(x') L g(x) for some x, x’' € X.
Proof. Assume both (b) and (c¢) fail to hold.

Just as in the proof of Theorem 4.4 we can conclude that
f*, g*: H(CP? Z)— H*X) are zero. Write CP* = S*U (a 4-cell) and
let ¥ S — CP? be the corresponding inclusion map. Then +*: H¥CP?
Z)— H*¥S* Z) is an isomorphism. By cellular approximation f ~
Jof’ and g ~ pog’ for some f7, ¢t X — S Then 0= f* = f'*oy*
and 0 = g* = ¢g’*oyp* and so f'* = ¢’* =0. Thus f’ and ¢’ are null
homotopic and consequently f and g are also null homotopic.

COROLLARY 4.8. If CP! is any complex projective line im CP?
and f: CP*— CP? any continuous function, then there exist a, b e CP!
such that fla) Lb and f(b) La.

Proof. Note that (1) CP'= §? and (2) the inclusion map
g: CP* — CP? induces isomorphism on H*(CP?* Z)= Z and consequent-
ly g is not null homotopic. Theorem 4.7 now gives the desired
conclusion.

REMARK 4.9. One can -identify CP* with the space of lines in
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CP? and then a L b can be interpreted as saying that the line a goes
through the point b. Now Corollary 4.8 becomes: If L is a line in
CP? and f is a continuous map from L into the space of lines in
CP?, then there exists two points a, b € L such that f(a) goes through
b and f(b) goes through a.

5. Higher order coincidence problems. Consider two sets X
and Y and a finite sequence of functions /[ X—Y,+=12, ---, N.
A point z e X such that

fi(@) = filx) = -+ = fu(x)

is called a coincidence point for the sequence f;,, 1<+<N. In
Theorem 3.1 (with R taken as equality) we considered the case N=2,
and we call 2 in this case a simple coincidence point. When N =3
we will refer to x as a higher order coincidence point. The adjee-
tives “simple” and “higher order” will be applied also to the problem
of finding or proving the existence of coincident points (or iterative
analogs as in Theorem 3.2).

The purpose of this section is to make the observation that a
higher order coincidence problem may be reduced in a useful manner
to a simple coincidence problem. The reduction is done by consi-
dering Y = Y¥ and f, g: X — Y defined by f(z) = (fi(=), fi(x), ---,
Sy_.(®)) and g(x) = (fy(x), fo(x), -+, fy(x)) for all xe X. Then xec X is
a simple coincidence point for f and ¢ iff # is a higher order coin-
cidence point for the sequence f,, f; -+, fy. One may now apply
the preceeding results to f and ¢g. In applying §§38 and 4 to f and
g one sometimes finds that there exists an m =1 and ;¢ X, je Z,,
such that f(x;) = g(x;,,) for je Z,. Expressed in terms of the f,’s
the condition f(x;)=g(x;,,) for je Z, means f(x;)=\(;y,)=So®;2) =
cor = fy(x;,y_y) for je€ Z,. The hypotheses which one encounters in
§§ 3 and 4 are usually expressed in terms of f,: H (X; ¥ )— H,(Y;
) and g*: H¥(Y; ¥ )— H*(X; % ). The homomorphism f, may
be expressed in terms of f;.: H.(X; ¥ )—HJ(Y; %), 7=1,2, ---,
N — 1 as follows. Set X = X¥* and use the Kiinneth formula to
obtain H (X; %) =@\ H (X;; #) and H(Y; ) =@ H.(Y;;
), where X, =X and Y; =Y for all j. Let d: X— X be the
diagonal map given by d(x) = (x, 2, -++, 2) e X* ' = X for all zeX.
Now we may write

f* = <f1* ®fz* ®"‘®fN~1*)°d* .

This is the desired formula. Reasoning similarly for ¢g* we find

g*=d*(fF R QR f1).
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Hence g*(c, X €, X +++X ¢y) = fi(e) U f¥(e) U++-Uf¥ey) Where c; €
H*Y; ) for 1=2,8, ---, N.

We consider one example. Let X = S8* X S* and Y = S** with
n =1, and suppose f,, f;, fo: X — Y are three maps. The bidegree
of f, is the pair of integers («,, B;) where «, = degree f;|S*" X q
and B, = degree f,|p» x S* for any p, g € S*.

THEOREM 5.1. If at least one of the numbers a,B,+ 8., 0.8+
Bolly, B + B, does mot wvanish, them there exists A S™ x S™
such that $A4 < 4 and fi(A) = f(4) = f(A).

Proof. Let f and g be defined as in the discussion above. Set
the coefficient field F' equal to the rationals. Let ¢ be a generator
for H,,S* and a, the canonical generator for H,S*", and let @ and
@, be the corresponding dual generators of H*®**(S*") and H°(S*"). Let
7 e H™(S™ x §*, §* x §* — 4) be the Thom class for S** correspond-
ing to a. Set b = j*(r) e H™(S*™ x S**) where j: S* X S§** — (S** x S*",
S x S* — 4) is the inclusion map. Then bja, = ad. Set a,=a Xae
H,(X) and b, =b X be H"(Y X Y), where ¥ = Y2 = 8" x S, It
is easy to check that f}(@) = a@ X d,+ B8, X & ¢ H*X) = H*(S™ x
S*). Next, a straight forward calculation similar to the caleulation
made in the proof of Theorem 4.2 yields k(a, X a,)= (@,B;+ £,0)a, X
a, where k, = Seo(N a,)og*eo(by/): Hy Y) — Hy( Y)- If a8 + B, # 0,
then Theorems 3.2 and 4.1 give the desired conclusion. This takes
care of one case. The other two cases follow by permuting the
functions f,, f,, fa

6. Local index. Consider two topological spaces X and Y, a
relation R in Y, RCcY X Y, and elements ae H,(X) and b ¢
HY Y X Y, Y X Y —R). For each open set VX, and pair of
maps f, g: V— Y such that C = {xe V| g(x)Rf(x)} is a closed subset
of X we can define a local index KV, f, g, a, b, R) as follows. Let
p: X — (X, X —C) and (V, V—-C)— (X, X — C) be the inclusion
maps. Since C is closed in X, ¥, H(V,V—-C)—-H/(X,X — () is
an isomorphism by excision. Set a, = y¥iop(a)e H(V, V — C).
Let (g, f):(V, V—-C)— (Y X Y,Y XY — R) be the map defined by
(g, /)x) = (g(x), fx)) for all xe V. Now set

IV, f, g,a,b, R) = (g, /)b, av,c)

where (¢, )* H{Y X Y, Y X Y — R)— HYV, V — O).

This approach to defining a local index seems to be well known
to the experts for the case R = equality. See [1] page 558, and
[5]. Consequently we discuss only briefly some of its important
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properties. It is immediate that I is linear in a € H,(X) and in
beH"(Y x Y, Y x Y — R). Also, the following naturality property
in Risclear. If RcR and k:(Y X Y, Y XY —-R)—>(Y XY, Yx
Y — R) is the inclusion map, then IV, f, g,a,b,R)=IV,f, g, a,
k*('), R') where k*: H(Y XY, Y XY - R)-> HYY XY,Y xY—R').

It is an elementary exercise in diagram chasing to verify that
if V, V' cX are open and Cc V and C’'c V' are closed in X, and
VNV =@, then

yyyover = Jx(@p,0) + Jx(ay ) e VUV, VUV —CU a),

where 5:(V,C)—(V UV, CUC) and 7:(V',C")Y—>(V UV, CUC)
are the inclusion maps. It follows that if IV, f, g, a, b, R) and
v, f,¢,a,b,R) are defined and VNV' =g, then I(VUYV,
fUuf,gug,eb,R)=IV,f 9,00, R)+ KV’ f', ¢, a, b, R) where
the maps fUSf:VUV'—>Y and gUg¢:VUV'—>Y are induced
from f and f’, and g and ¢’ respectively.

The following properties follow easily from the definition. If
V, V' < X are open subsets with V' c V, and {z € V|g(x)Rf(x)} < V",
then IV, f, 9,0, b, R)=IKV', f| V', g|V',a,b,R). If F:V x I->Y
and G: V x I — Y are a homotopies from f to f’ and g to ¢’ respec-
tively such that {re V|G(x, t)RF(x, t) for some tel} is closed in
X, then IV, f, g,a,b, R)y= IV, f,¢,a,b,R). Finally, I is “nor-
malized” as follows. If V = X, then I(X, f, g, a, V', R) = A(f,°o(Na)°
g*o(b/)) = the Lefschetz R-number L(f, g) based on a and b=75*(b") ¢
HYY X Y), where j: Y X Y- (Y X Y, Y X Y — R) is the inclusion
map.

Now consider the situation in Theorem 3.2 and the higher order
coincidence situation. Both these situations reduce to the simple
coincidence situation. This is implicit in the proof of Theorem 3.2
and explicit in the discussion of higher order coincidence points. In
this way the local index described above carries over to these other

situations.

7. Asymptotic theorems. An asymptotic fixed point theorem
for a function f: X — X is a theorem asserting the existence of a
fixed point for f under hypotheses on the iterates f™ of f, especially
for n large. An asymptotic periodic point theorem uses hypotheses
on f* for n large to conclude that f™ has a fixed point for =
rather small. In this section we will show how the asymptotic
fixed point theorems of Browder [2] and asymptotic periodic point
theorems of Halpern [11] have analogs in coincidence theory.

The key observation for our study of asymptotic coincidence
point theorems is that #e€ X is a coincidence point for the functions
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f, 9: X — Y and the relation RC Y X Y, i.e., g@)Rf(x), iff  is a
fixed point for the set-valued map g o Rof: X — 2%, i.e., x € g (R(f(x))),
where R(y) = {y' € Y|y'Ry} for all yeY. In general, a set-valued
function F' from a set A into a set B is an ordinary function from
A into 2% = the set of all subsets of B, (notation F: A —2%). If h:
A — B is an ordinary function, then A7': B— 2* denotes the set-
valued function which assigns to each be B the set A7'(b)c A. If
TcA X B is a relation, then 7T can also be thought of as a set-
valued function T: B — 2* defined by 7T(b) = {a € A|aRb} for all be B.
If F: A— 2% and G: B— 2° are two set-valued functions, then their
composite GoF: A —2° is defined by GoF(a) = Userw G) for all
acA. Also, if A’Cc A and F: A — 2%, then set F(A') = U,cu Fla).

Now suppose f, g: X— Y, RCY x Y, and #z,¢ X for v¢ Z, with
m = 1. The points x; satisfy g(x,,.)Rf(x;) for 1€ Z, iff z, is a fixed
point for the mth iterate of the set-valued function g 'oRof, i.e.,
T € (g_1°R°f)m(w1)'

The following lemma will allow us to translate the results of
[2] and [11] into coincidence theory.

LeMMA 7.1. Given topological spaces X, Y, and Z and maps
ffX—>Z and ¢g:Y—Z, and a subset RC Z X Z, and elements
ac€HJ(Y) and be HWZ X Z) such that +*(b) = 0 where . Z X Z —
R — Z X Z s the inclusion map. Suppose ¢l g (R(A(X)cY'CY,
where Y' is open. Then (Na)og*o(b))of (H (X)) C k. (H,(Y")), where
k: Y’ — Y is the inclusion map.

Proof. Set R' = g*oRof(X). Let ;Y- R —Y, B:Y—(Y,
Y—-R),and j: Z X Z—(Z X Z,Z x Z — R) be the inclusion maps.
The following diagram commutes

(Y x X, (Y - R') x X)

Y, Y - R)x X272« 2,2 %7 - R)

Iﬁx1 ]j
Y x X S zxz

where (g x f) is induced by ¢ x f. Since i*(b) =0, b = j*(b) for
some be H(Z X Z,Z x Z — R). Let ve H,(X) and set ¢t = g*o(b/)
fe)e H?2(Y). Now we will show that {(a*(t),s) =0 for all
seH, (Y — R'). Indeed,

(@*(t), 8) = <, @x(s)) = (g*o(b))ofx(v), ax(8)) = {(b))of(v), gros(s))
= <b: g*(a*(s)) X f*(v»
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= (G*(b), (9 X Fs(au(s) X v))

= (b, Jxo(g X Falas(8) X v))

= (b, (g X )eo(B X L)u(@s(s) X v))
= (b, (g X FalBu(as(s)) X v))

=0

because B.(a.(s)) = 0 by exactness. Hence a*(t) =0 and so t = B*(%)
for some t e H* (Y, Y—R’'). The cap product pairs H**(Y, Y—R')
and H(Y,(Y—R)UY’") with H/ (Y, Y’). Our assumption that
Y’ Dcl R’ guaranties that (Y — R’, Y') is an excisive couple. The
naturality of the cap product now gives:

Pt Na) = P (B* @) Na) = TN Vula)

where : Y — (Y, Y’) and 7: Y — (Y, (Y—R')U Y’) are the inclusion
maps. But (Y- R)UY' =Y and hence H (Y, (Y —RH)UY') =
H,(Y,Y)=0. Thus y,((Na)=0 and so tNa=(Na)og*o(b))of(v) e
k. H,(Y") by exactness.

REMARK. Lemma 7.1 is related to the properties of the transfer
homomorphisms (Umkehr-homomorphisms). See [6] pages 308-314.

THEOREM T7.2. Let X and Y be two compact, path connected
Hausdorff spaces, f, 9: X — Y two maps, and RCY X Y a closed
subset. Assume that there exists a be H"(Y X Y) such that ¢*(b)=
0 and g*(b/y,) =0, where p: Y X Y — R—Y X Y 48 the inclusion
map and Y, 18 the canonical generator of Hy(Y). Assume also that
H.(X) and H(Y) are of finite type, and ch F = 0, where F is the
field of coefficients. Set i = g 'oRof: X — 2%, If there exists an N
and an open set X' C X such that vV(X)C X' and 7. H(X')—
H(X) is zero for i odd, where 7: X' —> X 1is the inclusion map,
then there exists an M = D cwen TONE Yy, and elements x;€ X for
jeZ, such that g(x;.)Rf(x;) for jeZ,.

Proof. Since g*(b/y,) € H"(X) is not zero, there is an a e H,(X)
such that {g*(b/y,), @) # 0. Hence

0 = {g*(b/¥y), a)
= <ﬁ7\o U g*(b/yo), a’>
= (&, (9%(b/y)) N @)
where Z, is the canonical generator of H°(X). Therefore (Na)og*o

b))y, = 0 and hence _f*o(ﬂa)og*o(b/)(yo) =y, with a # 0. Let
ks H(Y)— H(Y) and ki: H(X) — H,(X) be the composites k; = f,°
(Na)og*e(b/) and k! = (Na)eg*o(b/)of« in the following diagram
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H(Y) L% H-(X)

Ib/ lnaf

H(X)-L5m(Y) H(X)-L5H(Y) .

Set k;, = (— 1)k, and k, = (—1)*k,. From the commutative property
of the trace function, trace AB = trace BA, we conclude that A(k?)=
A(k'") for all p = 1. From this observation, Theorem 3.2, and the
proof of Theorem 1 of [11] it follows that it is sufficient to show
that rank k;” < rank 7,, for all <. We accomplish this by repeated
application of Lemma 7.1.

We will construct a sequence of open sets X, X,0 <7< N,
such that

(1) X, =X’

(2) ¥ H(X)CX;

(3) (el X;, ) X; for 0 < 5 < N.

We will construet the X;’s by induction. Set X, = X’. Then
conditions (1), (2), and (3) hold for those j’s for which they make
sense. Assume now that X, X, ---, X; have been defined and satisfy
1), (2), and (38) where applicable. Set R'={(y,¥)e Y XY |, y) e
R}. Using the compactness of X and Y it is easy to see that
¥ I(X) is closed and X, = f(Y — R(g(X — Xj;))) is open. From
JV i X)c X; it follows that ¥ 9 %(X)c X);,. So by normality
there exists an open set X;,, € X such that

FX) € X C el Xy © Xy

It is easy to verify that (cl X;,,) C (X)) C X, and so the induc-
tion step is complete.
Now we can show inductively that

Aj: K H (X)) C Vo (Ho(Xy-5)) C H(X)

where 7y_;: Xy_; — X is the inclusion map.
Since X = (X)) c Xy C X, statement A4, holds trivially. Assume
statement A4;. Let ¥;:cl X;— X be the inclusion map. Then

K (H (X)) = F'(K(H (X))
CE(Vy_ix(H(Xx-7)))
C K (Ty-jx(Hy(el Xy_3)))
= (Na)og*o(b))ofuoTy—is(Hulcl Xy_j))
= (Na)og*o(d/)o(f oVy_)x(Hylel Xy_;))
C VymjorsH (X))

by property (8) and Lemma 7.1. (Note that +(cl X_;) is closed.)



468 BENJAMIN HALPERN

Hence by induction we get
EY(H (X)) C7Vox(Hi(X0)) = 7o(H (X)) .

It now follows that rank k¥ < rank 7., for all 7, as we wished to
show. This completes the proof.

REMARK. It is not hard to see that under the hypothesis of
Theorem 7.2 {x € X|z e +4™(x) for some m = 1} X’'. Indeed, if xz¢
™(x), then x € ™ C Y™ p™(x) C PP p™(x) C -« - Y ™(x). Also ¢y (x)C
X’ implies YVH(X) = VI X) ¥ X) X'. Hence zey"™(x)C
¥ X)c X'. Thus the z;, j€ Z, in the conclusion of Theorem 7.2
satisfy x;€ X’ for je Z,.

REMARK. An alternate theory of asymptotic periodic coincidence
point theorems can be developed by starting from the observation
that there exists a coincidence point z € X for the functions f, g:
X — Y and the relation Rc Y x Y, i.e., g(x)Rf(x), iff there exists
a fixed point yeY for the set-valued map fog'oR: Y — 27, i.e.,
Y € fog o R(y).

8. A very general coincidence problem. Consider four sets
X, XY, Y, two functions f: X — Y, g: X' — Y’, and two relations
ScXx X and RcY’' x Y. A coincidence pair for this situation
is a pair (z, 2') e X x X' such that Sz’ and g(z)Rf(x). If we take
X=X', Y=Y and S = equality, this problem specializes to the
type of problem already considered. In this section we will show
how all the preceeding results can be extended to this more general
coincidence situation. To this end we define a slant produect pairing
H*(X') and H,(X x X') with H,_,(X), which will have the same
role as the cap product did in the preceding development. We use a
fixed field & for coefficients. Given topological spaces X and X’ such
that H,(X) and H,.(X') are of finite type, and elements ¢’ € H?(X’)
and ke H,(XxX'), define ¢'\h € H,_,(X) by requiring <{c, ¢'\h) = {e¢x
¢, hy for all ce H*?(X). This product is to be compared with the
cap product as follows. Consider the case where X = X’. The
equation

(a) (e, ¢\hy = (¢ X ¢, h) is formally the same as

) e, Nay=<cUc,ay where ac H,(X). The equivalence
between (a) and (b) becomes more than formal when & = d,(a),
where d: X — X X X is the diagonal map. For then

e X ¢, hy ={c X dia)
= {d*(c X ¢), a)
={cUd,a).
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Hence c¢\d.(a) =c¢' Na for all acH,(X) and ¢ e€H?X). In the
extension from the special case X = X', Y=Y’, S=the diagonal =
{(x, x)lre X} X X X, to the general case, we replace ¢’ Na =
¢\d.(a) where ¢’ e H?(X) and a € H,(X), by ¢\vr«(a) where ¢’ € H?(X’),
ac H,(S), and +: S — X x X’ is the inclusion map.

We illustrate how the results of §§3-7 can be extended to this
more general coincidence situation by proving the following analog
of Theorem 3.1.

THEOREM 8.1. Let X, X', Y, Y’ be four topological spaces, f:
X—-Y, g:X'"—->Y' two maps, and RCY' XY and ScX x X'
two relations. Suppose n s a monnagative integer. Let ac
H,(X X X"y and be H(Y' x Y) be such that 9.(a) =0 and ¢*(b) =
0, where N: X X X' - (X X X', S)and p: Y X Y —R—>Y' X Y are
the inclusion maps. Assume H (X), H (X", H.(Y), and H.(Y’)
are of finite type. Let hy: H(Y)— H(Y) be the composite

(Y L H(X)

Ib/ l\a
H(Y) H(X) L H(Y)

wnere b/ and \a are the maps such that (b/)(z) = b/z for ze H(Y),
and (\a)t) = t\a for te H*¥(X"). Set h,=(—=1)"h,. If Ah)=
Y(—1) trace h; # 0, then there exists a pair (x,2’)e X X X' such
that xSz’ and g(x")Rf(x).

Proof. Consider the following diagram

¢J Jsv

xxxywy Lyxy
where T(y, ¥') = (¥, y) is the interchange map. Set b'=q*o(f X g)*o
T*(b)e H*(S). If there is no ordered pair (x, 2’) e X X X’ such that
xSz’ and g(x')Rf(x), then we may define a map :S—Y' ' X Y —R
be setting Mz, 2') = (g9(2'), f(«)), and the above diagram would com-
mute. It would then follow that &’ = M*op*(b) = 0 since @*(b) = 0
by hypothesis. We have also assumed that 7,(a) = 0. Hence a =
Jry(a’) for some o' € H,(S). To prove the theorem it is clearly
sufficient to show that (¥, a’> = A(h). Note that

by a") = {P*e(f x g)*oT*(0), a’)

= {(f x 9)*=T*(b), ¥(a’)
= {(f X g)*=T*(b), a) .
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Now the ecalculation showing that <¥, a’) = A(h) is essentially the
same as the calculation in the proof of Theorem 3.1. Just replace
Na by \a.

Similar adjustments can be made with the other results of the
preceding sections.

The analogous problem to the problem considered in Theorem 3.2
will be refered to below as the “general composite problem.” This
problem involves two sequences of functions f,: X,— Y, and g,:
X,—Y,_ , for neZ,, and two sequences of relations, R,cY,xY,
and S,c X, x X,, for neZ,, and asks for an x € X,, such that x¢
Siegrto R, 0f po e+ -0f08,09:0Rof,. A natural question is: Is there a
nontrivial generalization of the general composite problem? We will
observe here that what appears to be a “most general” coincidence
problem involving functions and binary relations can be viewed as
a special case of the general composite problem.

Suppose T,n e Z, is a sequence of spaces and for each neZ,
either (a) F,:T,— T,,, is a function from T, into T,,, or (b)
F, =9 where g:T,.,— T, is a function from T,,, into T,, or (c¢)
F,cT,.,x T, is a relation.

Problem Q. Find an xe T, such that xe([[, F.)(x). To reduce
problem Q to a general composite problem we simply set F, = f,
or g, or R, depending on whether case (a) or (b) or (c) applies to
F,, and set all the other functions and relations in the general
composite problem equal to the appropriate identity maps or relations.
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