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THE FACTORS OF THE RAMIFICATION SEQUENCE
OF A CLASS OF WILDLY RAMIFIED »-RINGS

ROBERT D. DaAviIS

Let R, denote a v-ring of characteristic 0, with maximal
ideal M and residue field # of characteristic » (p #+0,2) in
which p generates the eth power of the maximal ideal. If
p divides ¢, B, is said to be wildly ramified. This work is
concerned primarily with the determination of the factor
groups of the ramification sequences of wildly ramified v-rings
having ramification 2p.

The canonical homomorphisms of the ramification sequence are used
to show that in all except G,/H, the successive factor groups are
isomorphic to subgroups of the additive group of the residue field
or to subgroups of the additive group of derivations on the residue
field. Then the Eisenstein polynomial of R,, over R is used to determine
bounds on the range of the the canonical homomorphism. One then
construets inertial automorphisms, using convergent higher derivations
to establish that those bounds do, in fact, deseribe the range. Further,
it is found that if G,/H, is nontrivial, it is isomorphic to the group
of order 2, and that G,/H, contains the first known examples of -
rings having inertial automorphisms which are neither derivation
automorphisms nor automorphisms of finite order. In addition the
Galois theory of totally ramified extensions R,, (¢ < p) is treated.
Necessary and sufficient conditions for R,,/R to be Galois are found
as well as the location of the Galois maps in the ramification sequence.

The determination of the factors of the ramification sequence
extends the work of MacLane [8], Heerema [4] and Neggers [9].
The Galois theory of totally ramified extensions R,, (¢ < p) of an
unramified v-ring, treated in §III generalizes the work of Wishart
[13] and Davis and Wishart [1]. The convergent higher derivation
used here as in the work of Heerema is completely described in [5],
so a discussion of it will not be included.

In addition to evaluating the factor groups of the ramification
sequence, a second object of this work was to determine the relation-
ship of the subgroup of derivation automorphisms G, to the rami-
fication sequence, where a €@, if there exists a convergent higher
derivation D = {D;} such that a = >3, D;. In earlier work Neggers
[9, Theorems 4 and 5] has shown that for arbitrary e, if 7>
(e + p)(» — 1), G,C G, and that for 4,5 = (e + p)/(p — 1), G/G;, =
G;/G;,, and H,/G,., = H;/G;,,. He also characterized these factor
groups in terms of derivations [9, Theorem 6]. Until now in every
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known case of complete local rings that have been investigated, it
has been found that the group of inertial automorphisms is generated
by the automorphisms of finite order and G,. However, in the proof
of Theorem 3 we exhibit automorphisms that can be neither derivation
automorphisms, nor automorphisms of finite order, nor composites of
the two.

Let G be the group of automorphisms of R,, and let M be the
maximal ideal whose jth power will be denoted throughout by M(7);
the residue field is » = R,/M. The subgroup G, of automorphisms
which induce the identity map on h is called the inertial automor-
phism group of R,. A chain of normal subgroups of G, is given by
the following:

G, ={aecG,|ala) — ac M(i) for every acR,}
H, ={aeGla(a) —aecM(i + 1) for every aecM}

so that
G.2H2G22H,---.

This chain of subgroups is known as the ramification sequence of R,.

To stabilize the notation, we will hereinafter denote by V(a)
the exponential valuation of an element a € R,; we denote by either
o(a) or @ the image of a € R, in the residue field » under the natural
map of R onto h; we will assume that h is not perfect, i.e., that &
has a nontrivial p-basis, since otherwise H; = G,,,; and we will always
assume that the prime p = 2. In addition the minimum polynomial
of R,,/R will always be

1.1) f(@) = & + ngaﬂi

and s will always denote the least positive integer for which a, is
a unit in (1.1). In case no a; is a unit, we will say that s = 2p.

Letting 7 denote a prime element for R,,, observe that w always
satisfies an equation of the form

(1.2) 7+ pu =20,

where % is a unit in R,, such that # = @,. Moreover, if % € h?, then
a ve R,, may be chosen so that 7 satisfies an equation of the form

(1.3) 7 + p(v® + ww) = 0

where 7? = @,. Note that the value of s as well as whether a,ch?
is independent of the choice of w. Further, it will be shown in Lemma
1.2 that @ ean be chosen so that 7eh?. If s=2p —1 and aq,€h?,
the form of (1.3) can be modified to
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(1.4) 7 + p(v? + 7w, + pw,) = 0

in which @, = @,,_,.

Using u, v, w, and w, as in (1.2), (1.3), and (1.4) and assuming
7 e h? we define the following sets of derivations on &.

2 (h) = Group of all derivations on k.

2,(h) = Group of 6 € &(h) such that o(&t) = 0.

2,(h) = Group of 6 e &7(h) such that o(w) = 0.

Z(h) = Group of e =2 (h) such that o(w) = p(2v*b” + wb) for
some b €h.

Zy(h) = Group of 6e = (h) such that é(w) = p(2v°b* + 2wb) for
some b ¢ h.

,(h) = Group of 6 € &'(h) such that o(w) € h*.

Dyh) = Group of d € 2 (h) such that é(w,) = 0.

Zy(h) = Group of 6 € 2 (h) such that 4(@) = p(2v°b — 2v*?b?) for
some b € h.

We can now describe the factor groups H,/G,,, and G,/H, in every
case in the following theorems:

THEOREM 1. If % ¢ h®, then H,/G,. .= (h). If %€ h?, then H,/G,,,
18 given in the table below.

TABLE I
¢u(H:) == H,/G* é(Hy) = H,/Gs ¢s(Hs) = Hs/G,
WE? weh? wEI? wEI?

0<s<p-—1 2(h) 2(h) 2(h) 2(h) 2(h)

s=p—1 2(h) 2,(h) 2(h) 2(h) 2(h)

s=p * Z,(h) * Z,(h) *
p<s<2p—2 2(h) Z(h) Z(h) 2)h) 2(h)
8=2p—2 Z(h) Z1(h) 2(h) Fy(h) 2(h)

s=2p—1 ZD5(h) 24(h) 2(h) 2.(h) 2(h)

s=2p 2(h) Z(0) (k) Z.(h) 2(h) 1

* Let o be the smallest integer greater than » for which a, is a unit, or if a;€
M(@2p) for i=p+1, ---, 2p—1, then ¢=2p. If @,€h?, then H;/G4, is given by the row in
which s = ¢ and the column for a given 7 obtained by letting 4, assume the role of .

T If wegh? and p = 8, then H;/Gy= De(h).

THEOREM 2. Let h* denote the additive group of h. Let 1> 1
and for ae@,, define yr(a) = p(la(r) — w)/z*). If @¢h?, then y(G;,)=
G,/H, = h*. If for @weh?, we have s # p, or s = p and W € h?, then
G; # H; if and only if R,,/R is Galois and i is equal to the n of the
theorem in [1]. In this case G.,/H, is the group of order p. When
s=p and Weh?, G, =H, and +(G;)=G/H;, = ht for 1+ >2. If
G, # H,, then G,/H, is 1somorphic to the group of order 2.
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THEOREM 3. Suppose that in (1.1) we let ¢ = Min {V(a,)/2p|% =
1,2 -+, 20 — 1}, 7 = Min {¢| V(a,) = 2tp}. Further, if a,€h?, let a, =
e? + ep for ¢,c,e R. Then G,+ H, except when @,ch® in the fol-
lowing cases:

(a) t=0 and j ts odd unless j = p and @, € h’.

() t=0,j=9p—1,a,,€h? &, # 0 and R,,/R is not Galois.

(¢) t=1,5=1 and ¢, ch’.

To prove these we need to state a few basic results, some of
which are proved elsewhere.

In what follows, if T is a subring of R,, the symbols 57°(T, R,),
=T, R,), and 57T, R,) will denote the set of higher derivations,
convergent higher derivations, and uniformly convergent higher
derivations respectively, having domain 7 and range R,. See [5,
Definition 3] for definitions of these.

For convenience we state here the following two results of
Heerema.

THEOREM A [5, Theorem 4]. Let S be a p-basis for h and let
SC R be a set of representatives of the elements of S. If I is the
set of positive integers and f is a mapping from SX I into R,, then
there is one and only one De SZ (R, R,) such that D,(&) = f(&, ©) for
all £e8S and 1€ l. Moreoever, D converges (uniformly) if and only
if D comverges (uniformly) on S.

LEMMA A_[4, Lemma 1]. If S is a set of representatives in R
of a p-basis S for h and De S# (R, R,) is such that D;(S)c M(t;) C
M, 3 =1, then D,(R)C M(q,) where

g =min{t; + -+ +¢t; e =1, 7, + - + 75, =1, and ¢ = 0}.

Now suppose that D = {D;} € (R, R,). Then D extends uniquely
to De 2Z7(R,, K,) where K, is the quotient field of R,. Moreover,
De 2~ (R, R,) if and only if D(x)eR,, and if De 2~(R, R,), then D
extends to D e 2#(R,, R,)if and only if D(x) converges. The extension
of each D, in De 2#Z(R, R,) to R, is given by:

f'@Dy(r) = —D(f) =) — A; — B;

in which f'(7) is the ordinary derivative of f(x) evaluated at =,

D,(f)m) = P[D(azp- )7 + Dy(ay,_)n***

(1.5)
+ e 4 Di(al)n: + Di(ao)]
A, =p S St in which
(1.6) =
Sk = > D, (a)Dy(x) - -+ Dy, ()

Tytigtee e tip gy =1
0=1;<¢ for 9=1,2,-++,k+1
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and

.7 B, = 2 D, (7)D,(x) - - - Dizp(ﬂ') .

iy tigte s Figp=1
0=i;<i for j=1,2,+-+,2p
We now prove a lemma which gives sufficient conditions for
extending D' € 57(R, R,,) to a De S57,(R,,, R,,).

LemMMA 1.1. Let D' € 57(R, R,,) where R,, = R[x] and (1.1) 1s
the minimum polynomial of mw. If for q > 2, there exist integers
n>1 and m > 2p(n — 1) such that

(1.8) Dirm)e M(2) for 0 < j<mn

Dim)eM(q) for n<j<2n—1

(1.9) Dim)eM(@+1) for 2n—1=j<m

(1.10) Diap)eMg+1—2p—Fk+V(f'(m)) for 3 =2n—1

and k=1,2, ---,2p — 1 and when j =m for k=0 also, then unless
=3, q=3, and V(f'(m))=4p—1, >, D;(x) converges and > 3.m_, Di(T)¢c
M(q + 1).

Proof. First we show by induction that Dz)e M(q + 1) if 7 =
m. Thus assume D;(w)e M(p + 1) for all j suchthat2n —1<j <7
where » = m > 2p(n — 1). From (1.10) it is immediate that D,(f)(%) e
Mg + 1 +V{(f'(n))) since pe M(2p). Considering B,, observe that
Bt G+ e+ 9, =7 > 2p(n — 1) implying that at least one index
in {4, 4, ***, %, is greater than » — 1 and at least one other is # 0.
Thus each such term is in M(q + 2p). Moreover, each such term
appears a multiple of p times unless each distinet index appears a
multiple of p times so that the sum of these nonexceptional terms
is in M(4p + q). Thus V(f'(x)) < 4p — 1 implies that this sum is in
M(V(f'(r)) + g + 1). In the exceptional case there are three possibili-
ties:

(1) ©y=1,= -+ =1y, = (r/2p) > (2p(n — 1)/2p) = n — 1.

(2) 4,=+-+- =1, and 4, = +++ = 1, (relabeling subscripts if
necessary) where ¢, # 4,,,, and 1%, 4,4, = 0.

(3) t=-+-=1,=(r/p) > 2prn —1)/p)=2(n—1) and 4, =

- = 4,, = 0 (again relabeling subseripts if necessary).

Using (1.9), one checks that the terms in each of these cases are
in M(V(f'(z)) + ¢ +1). It follows that B,e M(V(f'(x)) + q¢ + 1). Now
considering A,, it is straightforward to check the values of the
terms to verify that »S¥, e M(V'(n)) + q + 1) except when s = p and
4, < 2n — 1. This case will follow if we can show that »S},e
M(V(f'(r)) + g +1). Thus recall S}, is a sum of terms of the form
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D,(a,)Dy(x)+-- D, , (7). Now fix 4, and observe that for a given set
of indices {7,, %y, * -, 141}, the sum of terms with this set of indices is
a multiple of p unless 4,=%,=---=14,,,. In the nonexceptional case at
least one index is greater than % so that the sum of these terms to-
gether with the coefficient of p* isin M(5p+¢q). When ¢,=4,=+++-=1,,,,
each index is greater than 7 so that each of these terms together
with the coefficient p is in M(pg + 2p). It follows that »Sj, e
Mp + @ c M(V(f'(x)) + ¢ + 1) since ¢ > 2 and p > 2. Thus for each
k, pSf, e M(V(f'(m)) + ¢ + 1) so that A, e M(V(f' (7)) +q+ 1). It
follows that D.(x)e M(q + 1). It remains to show the convergence
of >y, D,/(x). Thus, given 7 > 1 assume for some integer » = m that
j > r implies D;(x) € M(q + ). Since D converges on R, it is clear
that this » may chosen so that Dj(a,) € M(V(f'(x)) + 1 + ¢ — 2p + 1).
Now letting 7' = 2pr, one may check in a manner similar to that
given above, that for j >+ D;jw)e M(q + 1 + 1). It follows that
>, Dj(m) converges and >3, Di(w) € M(q + 1).

LeMMA 1.2. If a, € f(x) is such that @, € h®, then for every positive
integer n there exists a prime element 7, for which

e 4+ p(v*" + mw,) = 0

Jor some units v and w, in R,,.

Proof. For given n we multiply
1.3) 7w 4+ p(v?® + Tw) = 0

through by v*"~*. Letting ©, = 7v®"'"/2 and w, be the product of
w and the remaining factors of v, the result follows.

Suppose now that ae H\G,,, so that @ = ¢ + w'a*, where ¢ is
the identity map and a* is an additive mapping on R,, for which
a*(M)c M. Then the mapping ¢,(a) induced on & by a* is a derivation
on h. The mapping ¢;: H,— Z'(h) is a homomorphism with kernel
G, and for a given a € H\G,,,, ¢;(@) will hereinafter be denoted by J,.

Now suppose a(w) = w(1l + 7°z) for some z€ R,,. Apply a to (1.2)
to obtain

Visad ,%‘_p, 2p whigk + 7P Zp Pig?
=1\ k D
k+p

(1.11,s) + p[ﬂ"a*(u) + Tt (w) + 7w g‘, (Z)n"‘z"

+ 7wt (w) Za, ( S)n’“’z} =0.
=\ k
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Apply a to (1.3) to obtan

2 . 2 )
Fiats 22?1( If)n:’"z" + rc“’( bp)n“z”

o=
kD

(1.18,8) -+ p[é‘, (Z)Q,p—knkia*(v)k b 2t ()

=1

+ Tw i‘, ( 3 )n"iz" + it (w) i( s )n"’z"} =0.
k=1 k =\ k

LEMMA 1.3. If a¢c H\G,,, for i = 1,2, «+-, then 6,(%)=0, where
% 18 as i (1.2).

Proof. Consideration of the values of the terms in (1.11, s) shows
that a*(u) e M since otherwise pria*(w) would have unique minimum
value in (1.11, s). Thus 6,(&) = 0.

II. Proof of Theorem 1. It is known that for each 14, ¢,(H,) is
a subgroup of the additive group of derivations on 4, and we have
seen in Lemma 1.3 that if ¢ e¢,(H;), then é(#) = o(@,) = 0. It will
be sufficient then to show that we can find an automorphism in H\G,,,
that will induce the desired derivation on k. We do this by consider-
ing several cases. '

Case 1. 7 =2 and 0 < s <p. Suppose de Fh). It is known
[2, Theorem 1], that ¢ lifts to a d € &(R) for which d(a,) € M(2p) so
define a higher derivation E = {E,}, € & (R, R) as follows: For j =
1,2, ---,p—1, define E; = d?/j! and for j=p, by Theorem A there
exist maps E; such that F = {E;} € 2#(R, R).

We want to show that we can construct an a, € H\G,,, for + = 2
which will induce the given 6 € &7(h). Thus, define D;=7"FE;. Clearly,
D = {D;} e 2Z(R, R,,). All that remains is to show that D(x) con-
verges. From (1.5) one sees that for j =1,2, .-+, p — 1, D;(f)(n) e
M@p + s + iJ), and for j >p — 1, D,(f)(7) € M(2p + 17), and it follows
that for 7 > 1, Di(f)(=)/f'(w) e M(t + 2). The rest of this case will
be concerned then, with the convergence of (4; + B;)/f(x). In con-
sidering A; we will usually be concerned with the value of S¥; since
in most cases the term of minimum value will occur in S¥;. For
7J=1,4,=0,B, =0, and D(n)e M(7 + 1) Cc M(3), since ¢ = 2. Now
for r < j < p we suppose that D () € M(ir + 1), and consider Dy(x).
Inspection of (1.6) reveals that S¥;e M(¢j + s) so that A;e M(2p +
1J + s) and A;/f'(z) e M(¢j + 1). Since j < p, each term in B; appears
a multiple of p times so that inspection of (1.7) reveals that B;c
M(4p + 1j), and thus B;/f'(z)e M(¢j + 1). Hence, for 7=1,2, ---,
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p—1, Di(m)eM(j +1). For j=9p, A, M2p + ip + s) by the same
analysis as used before so that A,/f'(x)e M(ip + 1) M(7 + 2). In
B,, the term D,(m)’zx” does not oceur a multiple of p times, and this
is the only term which may not be in (4p + ¢p). But D(x)e M(i + 1)
so that D,(m)’n” € M(pi + 2p) which implies B, € M(pi + 2p). Thus
B,/f'(7m)e M(pt — p + 2) so that D,(w) e M(i + 2). Now suppose that
for p < r <j<2p, D(z)e M(: + 2). Then one checks that A4,/f'(x) e
M(@i + 2). Each term in B; again appears a multiple of p times so
that B;/f'(m)e M(t + 2). Thus D;(x)e M(i + 2) for »p < 7 < 2p.

In 4,,, observe that S¥,, € M(s + 2¢ + 2), implying that 4,,/f'(x) €
M + 2). In B,, the terms of minimum value are D,(7)** € M(2p1 + 2p)
and D,(m)*n? € M(2pt + 2p); all other terms in B,, appear a multiple
of p times and it follows that B,, € M(2pi+2p) and B,,/f (%) € M(i + 2).
Thus D, (7)€ M(1 + 2).

From the definition of D, D;(R)C M(ij). For 0 < k < s, Dia,) e
M2p + i) f'(@)M(t +2—2p — k) for j=3. If k=s, Dia,)e
MGEH c M(V(f'(z)) + 4 + 2 — 2p—k). Thus the hypotheses of Lemma
1.1 are satisfied forq =17+ 1, = 2,and m = 2p + 1, and D = {D,}3>,
converges on R,,. Moreover, «, = >, D, induces 6 .<,(h) since by
the construction D, = 7'd and D;(R,,) C M(¢ + 2) for 7 > 1. It follows
that for 0 < s < p and 7 = 2, H,/G,., = 2(h).

Case 2. ©=3and p<s < 2p. In this case D= {D,} is constructed
exactly as in Case 1. The hypotheses of Lemma 1.1 are satisfied for
g=1+1,n=2and m = 2p + 1 since conditions (1.10) are the same
as in Case 1, and it follows that in this case H,/G,., = Z,(h).

Case 3. 7 =2 and »p <s<2p — 2, p=+3. Again construct D as
in Case 1, and apply Lemma 1.1 using ¢ =3, 2 =2,and m =2p + 1
to see that D(w) converges. Thus for p <s<2p — 2, p # 3, H,/G, =
Dy(h).

Case 4. =1 and s < p — 1. Assume first that prime element
7 has been chosen so that if #e€h”, the v of (1.8) is a pth power.
Then a, = ¢’ + pe, for some units ¢, and ¢, in R. If #¢h?, then
choose S, a p-basis for %, so that #eS. Now let 6 € (k) and suppose
that ¢ lifts to de &7 (R). Since ¢ < (h), dla,) € M2p). For j =
1,2, ---,p—1let D; = w?d?/j! so all the results in Case 1 hold for
these values of j, i.e., for i =1, Dim)e M(j + 1) for 0 < j<p. At
this point we separate into several subcases.

Case 4(). s<p —2,p+3. If S is a p-basis for &, let S be a
set of representatives in R of S. Then for j = p define D, by letting
D,S) = 0 which implies that D,(R)c M(j) for j = p by Lemma A.
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One then checks that the hypotheses of Lemma 1.1 are satisfied when
¢q=38,n=2,and m =2p +1. Thus D = {D;} converges and a, =
S, D, is in H, and induces é € =Z;(h).

Case 4(ii)). s=»—2,i=1, and wek’. In this case observe
first that for a given 6 € Z(h), 6(w) = 0. Then lifting ¢ to d € Z(R),
d(a,) € M(2p), and d(a,) € M(2p). Defining D; = n'd’/j! for 7 =1, 2,
..., » — 1 as before, D;(w)e M(j + 2). For j = p define D; by letting
D;(S)=0. Then D;(R)C M(j), and observe that D;(f)(w) e M(2p + s + J)
for j = p, i.e. if a@,¢h?, then D;a,) =0 for every j = p, and if
@, € h?, then a, = ¢f® + pe, from the first remarks so that D;(a,) €
M(2p + 1). In either case D;(f)(n)e M(2p + s + j). It follows that
for all 5 = p, D;(f) @)/ f'(w)e M(j + 1). In arguments that are routine
by now, B,eM(4p) so that B,/f'(z)e M(4), and A,/f (x)e M(4).
Standard arguments also show that D;(x)e M(4) for p < j < 2p so
that D(r) converges by Lemma 1.1 when ¢ =3, » = 2, and m = 2p + 1.

Case 4(iii). s=p—2,1=1, we¢h®, and #eh?. The construction
for a given 6 € &, (k) which lifts to d e Z(R) is the same as before
for j=1,2, .-+, p — 1, 1i.e., D; = w’d?/j! for these values of 7, so that
D;(r) e M(7+1). Continuing, 4, € M(8p+s) so that 4,/f (z) e M(p +1).
B, contains the term 2D,(7)*zn? so the fact that D,(x)e M(2) implies
that B, M(3p). Choosing S so that @,_, = w € S define D, to be such
that pD,(@,_,)n** + B, M(3p + 1) and define D,(S\a,_,) = 0. Then
D,(f)x)+ B, + A,€ M(38p + 1) so that D,(7) e M(4). For j > » define
D;(S) =10 so that if j=pm + k 0=k < p, then from Lemma A,
D;(R)c M(2m + k). We want to show that D;(x) € M(4) for all j > p.
We do this by an induction. Thus suppose that D,(x) e M(4) for all
r such that 2 < r < ¢t. Then, D,(f)(@)eM@p + s + 4) so that
D,(f)(m)]f'(x) e M(5). Next A,e M(2p + s + 4) so that A,/f"(%) € M(5).
In showing that B,/f'(x) € M(4) we need to consider two cases: (1)
prt, 2) t =mp, m=2. Incase(l)each term of B, occurs a multiple
of p times so that B, M(4p + 4) and B,/f'(x) e M(p + 6) C M(4). In
case (2) all terms appear a multiple of p times except for the following
three cases:

(1) =t =— =19 =mMP/D); tlpy = ++* = 1y = 0.
(ii) 4, =1, = +++ = 1, = (Mmp/2p) so m = 27/ for some = 1.
(i) ¢, =1 = +cc =14, =P 0y = *+* = &, = 7, Where 7r, + 7,=

m, r, = 1, and 7, 7, % 0.
In (i), D,(x)*z*e M(4p); in (ii), D.(n)** € M(4p); and in (iii),
D, (n)?D,,(x)* € M(5p). Thus B,, € M(4p), and

B,.,[f'(w) e M(4p — 3p + 3) = M(p + 3) .
Therefore D,(w) e M(4). We now apply Lemma 1.1, taking ¢ = 3 and
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n and m sufficiently large so that the hypotheses of the lemma are
satisfied.

Case 4(iv). p—2=<s<p or p<s<2p,1 =1, and @ €h?’. Again
we begin the construction with a § € &(h) so that § that § lifts to
a d e Z(R) for which d(a,) € M(2p), and define D; = z’d?/j! for 0<j<p.
From the previous case this implies that D;(zx)e M(j + 1) for 0 <
Jj <p. As before, A, M8p + s) so that A,/f'(x)e M(p +1). B,
contains 2D (w)’z? € M(3p) so choose S so that a,e S and define D, to
be such that pD,(a,) + B,e M(2 + s + 3), and define D,(S\a,) = 0.
Then D,(R) c M(p) and D () € M(4). For p < j < 2p define D;(S) = 0.
Routine calculation shows that D;(w)e M(4) for p < j<2p. B,e
M(4p) since it contains D,(7)*® € M(4dp) and D,(w)*zx®ec M(4p). If
s < 2p — 2, then define D;(S)=0 for all j =p. If s=2p—2 or
2p — 1, define D,,(a,) so that pD,(a,) + B, € M(2p + s + 3), and
D,,(S\a,) = 0. For j > 2p define D;(S) = 0. In either case D;(R)C
M(j), and A,,/f'(z)e M(5). Also D,,(f)(w)e M(4p + s) so that D,,(7)e
M(4). Thus apply Lemma 1.1, letting ¢ =3, » = 2, and m = 2p + 1.
It follows that in all of the subcases considered in Case 4, H,/G, =
Dy(h).

Case 5. s=p—1,1=1, wech® and w¢h®. Recall that » in
equation (1.3) is such that 7 €h?, so that for any é € Z'(h), 6(¥) = 0.
Thus in equation (1.13, »p — 1), a*(v) € M, so that pulling out terms
of minimum value and simplifying, we have

20722 + w2z — a*(w) = 0 mod 7 .
Thus any d € ¢,(H,) is such that
o(w) = p(2v*z* + wg)

for some Z ¢h.

Since @ ¢ h* choose a p-basis S for » which contains @,_, = % and
choose S to contain a,_,. Let 6 €. =7(h) be any derivation such that
o(w) = p2v*a® + wa). We want to show that there exists an ), € H;
which induces 6. So suppose ¢ lifts to d'e Z(R). Then definede R
by setting d(&) =d'(&) for every &e S\{a,_,} and setting d(a,_,) = a,_,
@ where @ is a representative for some given @c€h. Let D, = zd.
Observation of (1.4) shows that D,(n) = e mod z®. For j =2, «--,
» — 1 define D;(S) = 0. Then D;(R)c M(j) and Dj(w)e M(j + 1) for
j=1,2,+---, p— 1. In checking the pth map in D = {D;} observe
that S;,_.e M(s + p) so that 4,e M(3p + s) and A,/f'(m)e M(p + 1).
Also note that every term in B, except the term D,(w)’n” € M(3p)
appears a multiple of p times so that except for this term, B, e
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M(4p). Now define D, by letting D,(a,-,) be such that pa*~'D,(a,-,) +
B,e M(3p + 2) and D,(¢) = 0 for every &£eS\{a,—,}. Then D,(R)c M
and D,(x) e M(4). For j > p define D;(S) = 0. Observe that if j =
rp + k, where 0 <k < p, then by Lemma A, DiR)C M(r + k) so
that De 5#(R, R,,). To prove that D(x) converges we use an induction
like that used in the proof of Case 4(iii) to show that for all j = p,
Dj(w)e M(4). Then we apply Lemma 1.1 with ¢ =38 and m and n
sufficiently large so that conditions (1.9) and (1.10) are satisfied.

Note that in this construction D,(a,_,) = aa,_,7 and that in defining
D,, we choose D,(a,-,) so that pn*'D,(a,_,) + B,€ M(3p + 2). The
term of least value in B, is <2£0 D,(z)*n? = 2a°7*. Thus pa**D,(w) +
2077 € M(3p + 2), and since p = —v 7% (mod MBp — 1)), D,(a,_,) =
2a”v*w mod n?. For j # 1, pD;(a_,) = 0 by definition, so that for
a, = 3% D;, plai(a,-,)) = plaw + 2a*v?), and @, induces 4.

Case 6. s=p—1,1=1,4¢eh?, and weh?. This case is the
same as the previous one except that a,_, = w e h?. Thus for every
oe Zh), o(w) =0, so suppose € Z(h). o lifts to a de F(R)
such that d(a,) € M2p) and d(a,_,)e M(2p). For j=1,2,+--,p—1
define D; = wid?/j! and for j > p —1 define D;(S) = 0. It is straight-
forward to verify that D = {D;} € 5#(R.,R,,) and that @, = >, D; €
H\G,. It follows that every 6 € & (h) is induced by an a € H, so that
H, |G, = Z(h).

CaseT. p<s<2p—2,p+#3,4=1, #eh? Observation of (1.13, s)
reveals that since v eh?, a*(w)e M. It follows then that if ¢ € ¢,(H,),
o(w) = 6(@,-,) = 0, or ¢,(H,) < Z(h).

Now let 6 € &,(h). Lifting ¢ to d € &' (R) and letting D; = nidi/j!
forj=1,2, +--,0—1, D(R)C M(j), and Dy(x)e M(j +2). Forj=»p
define D; by letting D;(S) =0, and it follows by Lemma A that
D;(R)C M(j) for all values of j. The argument that D(x) converges
is standard and will be omitted, except to note that D;(x) € M(4) for
2 < J = 2p so we can show convergence using Lemma 1.1 with ¢ = 3,
n=2, and m =2p + 1. It follows that the a, = 3, D, obtained
induces the given é € &,(h) so that H,/G, = (k) in this case.

Case 8. s=2p—2,1=1, and 4 €h?. As before, assume that
for @ € H\G,, a(w) = n(l + 72) and that 7eh?. It follows that a*(v)e
M. Further, consideration of the values of the terms in (1.13, 2p — 2)
reveals that a*(v) € M implies that ze M. It follows that a*(w)e M
and, as a result, if 0e€¢,(H,), then 6(w) =0. We will show that
6,(H,)) = =,(h), (recalling that if w € h*, Z,(h) = = (h)) by constructing
a derivation automorphism that induces 6. Thus suppose 0 € Z(h).
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Lifting 6 to de Z(R) and letting D; = n’d?/"' for 5 =1,2, ---, p — 1
one may check that D;(R)c M(j)and D;(w)e M(j + 2). At this point
we separate into several subcases.

Case 8(i). If w¢h?, we choose a p-basis S for h to contain .
Letting S be a set of representatives of S, define D, by letting D,(w)
be such that D,(x)e M(4p + 1) and D,(S\{w}) = 0. For j > p define
D; by letting D;(S) = 0. Observe that D,(R) < M(2) so that by Lemma
A D ={D)e2#(R, R,,). One may then check that D(x) converges
using Lemma 1.1, with » = (p + 3)/2, m = p* + p, and ¢q = 3.

Case 8(ii). 1w, h? and w, € h* where we specialize (1.3) by writing
7 + p(v? + TP w, + 7 'w,) = 0.

Note that &, = @ = @,,_, and @, = @,,_;. One may check that in this
case D;(n)e M(j +38)for j=1,2, ---, p—1. For j=p, define Dy(S) =
0. It is routine to verify by standard arguments that D = {D;}
converges in this case.

Case 8(iii). w,eh” and w,¢h®>. We choose a p-basis for h to
include w, and define D, by letting D,(w) be such that D,(7)e M(4)
and D,(S\{w}) = 0. For j > p, define D; by D;(S) = 0. Observe that
by Lemma A, D,(R)c M(k) and for j=Fkp + 40<s<p, Di(R)C
Mk + 2). Thus De 2#4(R, R,,). Using Lemma 1.1, it is routine to
verify that D = {D;} converges by taking ¢ =38,n = 2p, and m =
2p(2p — 1) + 1.

Case 9(1). s=2p—1,1=1,%ech?, and w ¢ h*. From (1.13,2p —1)
it is apparent that 2z is not a unit. Thus letting z = my, the fact
that minimum value terms must be congruent implies that a*(w) =
27v?y? (mod 7). To show that ¢,(H,) = =,(h), it will suffice to show
that we can construct an a,c H\G, for which ¢,(a,) (@) = 0(27v"b?)
for any given b”ch?. Thus let 6 € & (h) be such that 6(w) = 0. We
assume that a,, ;€S so that @,_,=@¢cS. Then & lifts to a d'e
Z(R) and we define d € 2 (R) by letting d(¢&) = d'(§) for all & € S\{a,,_.},
and we define d(a,,_,) = 7*ba,,_,.

Thus the derivation in =7 (h) induced by d and d’ agree on S so
they are equal. For j=1,2, ---, p — 1 define D; = n'd’/j!, and one
may verify that D,(R)c M(j) and D;(w)e M(j + 2). In particular
D(x) = n*b(mod z*). Now note that B, contains the term 2b*z** and
that all other terms in 4, and B, have higher value. Thus define
D,(ay,_,) to be such that D,(f)(x) + B, € M(4p + 2) and define
D,(S\@;,—)=0. It follows that D,(a,,—,) = 2?b*v*w (mod M(2)), D,(7) €
M(4), and D, (R)cC M.
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For j > p define D; by Di(S) =0. Thenif j =mp +k 0=k <
p, D;(R)C M(m + k). This clearly converges on R,, by an induction
argument similar to that used in Case 4(iii) and Lemma 1.1. Moreover,
at(ay,_,) = a?b®v® (mod ) so that «, induces a derivation of the desired
kind. It follows that H,/G, = Z,(h) in this case.

Case 9(ii). Same as 9(i) except @,,_, € h*. In this case 7 satisfied
equation (1.4) in which w,€h?. Applying « to (1.4) and considering
values as before, é,(w) =0, i.e., d, € (k). Recalling that a,= ¢, + pc,,
0 € Z,(h) implies that 6(¢,) = 0. Lifting 6 to a de Z(R), observe
that since w, =¢,, and veh? d(a,)c M(4p), and since a,,_, € h?,
d(a,,_,) € M(2p). Thus letting D; = nid?/j! for j =1,2, «--,p— 1,
Dim)e M(7 + 8) and D;j(R)c M(j). For j = define D;(S) =0 so
that D;(R)CM(j) for all 7 and D = {D;} e 57#(R, R,,). The standard
arguments show that D(z) also converges so that a, = >.2,D; is
an automorphism in H,\G, which induces the given 4. It follows
that H,/G, = Z,(h).

Case 10. 1 =2,8s=2p — 2, and #wech®. This case is analogous
to Cases 5 and 6. Note that the terms of minimum value in (1.13,
2p — 2) when ¢ = 2 are such that

0QvPz? + 2wz — a*(w)) = 0.
Thus if 6 € ¢,(H,), then
o(w) = p(2v*a® + 2wa)

for some @ c¢h. The analysis from here on is exactly analogous to
that of H,/G, when s = p — 1 except that we replace =,(h) with
2,h), i,e., if w0 ¢ h* then H,/G, = Z,(h), and if @ €h®?, then H,/G, =
Z(h).

Case1l. 9 =2,8=2p — 1, and @ e h?. Observation of the values
of successive terms in (1.13, 2p — 1) when ¢ = 2 reveals that z cannot
be a unit. Moreover, since v €h?, a*(w)e M. Thus ¢,: H,— =Z,(h).
As usual we show that ¢, is surjective by constructing a higher
derivation automorphism.

Let 6 e =2(h) so that o(w) = 6(a@,,—,) = 0. This ¢ lifts to de
Z(R), and, as before, define D; = n*d’/j! for j=1,2, ---, p — 1.
Then the usual calculation shows that D;(R) c M(27) and D;(n)e
M(25 + 2) for these values. This means that D(x)e€ M(4) so the
minimum value term in B,, D,(%)*zn?, is in M(5p). For j = », we
define D; by letting D;(S) = 0 and the usual calculation shows that
D is a convergent higher derivation. It follows that ¢,: H, — =,(h)
is surjective and that in this case H,/G, = =,(h),
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Case 12. 1 =2,5=2p — 2 or 2» — 1, and #¢h”. As before,
assume that @ = @,€S. Let 6 ¢ &7 (h) be such that 6(a@,) = 0. 4 lifts
to a de Z(R) for which d(a,) € M(2p). Define D; = n¥di/j! for j =
1,2, ---,»p — 1. Then D;,(R)c M(27) and D;(xw)e M(2j + 1) for these
values of j. Observe that B, contains the term D, (x)?z” € M(4p) which
does not appear a multiple of p» times. Thus define D, by letting
D,(a,) be such that pD,(a,) + B, e M(2p + s + 3), and define D,(S\a,) =
0. Then D, (R)cC M(p) and routine calculation shows that D,(7)e
M(4). Now for j > p, define D,(S) = 0, and by standard arguments,
D = {D;} converges. Thus in this case H,/G, = =,(h).

To complete the proof of the theorem we need to consider the
ramification groups that occur when s = p and s = 2p. One may
verify that they are obtained by same procedures as have been used
in the previous cases. Only two deserve special mention.

Case 13. s=2p, 1 =3, uch?, wéh?, and p =3. In this case
routine calculation reveals that for any a € H,)\G, 6,() = 0(2v°z —2v*727)
for some zZeh. To show that ¢,H;) maps onto Z(h) one uses a
construction similar to that used in Case b.

Case 14. s = p, 4, weh”. In this case we prove

LemMmA 2.1, Suppose s = p, i, W €h?. Then the factors H,/G,,,
are as given when s = o and a, assumes the role of a,.

Proof. TFor the conditions stated 7 has the property that
7w + p(v! + win® + yn’) =0

for some units »,, w,, and y,. Since we are assuming a p-basis for
h is nonempty we can choose a prime element x such that v, € R and
v, ¢ h?, Also, we choose S to include »,. We construct an inertial
embedding of R into R,, by defining a higher derivation D = {D;}
on R as follows. Let D,(v,) = nw,, D,(S\{v,}) =0, and D;(S) =0 for
Jj>1. Then De o7 (R, R,,) and 8 = >\7., D, is the desired inertial
embedding. Let R’ = B(R) and note that

! + win? = (v, + w,w)? (mod M(2p)) .

Letting v = (v, + ww) and y = y, — [(v, + 7Tw,)” — ¥ — win?|/z° then
7 + p(v® 4+ yr°) = 0. Then w satisfies an Kisenstein polynomial over
R’ of degree 2p in which s = ¢. The conclusion follows.

To complete the proof of the theorem we note that if # eh?,
Zh) = Z(h), and if weh?, Z(h) = Z(h).
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III. Galois theory. In this section we characterize wildly ramified
normal extensions of degree ¢p, for ¢ < p. We let R, denote a tamely
ramified extension of degree ¢ so that if v is a prime element for
R, R, = R[v]. Moreover, from [12, Theorem 3-4-3] we may choose
a 7 which satisfies the Eisenstein equation

3.1) 2+ py =0

in R[z]. Further, assume that 7 is a prime element for R,, so that
R,, = RJx], and that the minimum polynomial of R,, over R, is

(3.2) g(x) = a* + 7 2_; bt .

Also I'(R./R) will always denote the Galois group of R, over R.
For convenience we state the following well known lemmas:

LemmA 3.1. Let ac'(R,/R). If ac H,, then xcG,,,.

LEMMA 3.2. R, is a Galois extension of R if and only if h con-
tains a primitive gth root of wuwity. Moreover, if acl(R,/R),
a(v) = 0y where 0 is a qth root of unity in R.

Let t* denote the residue of ¢ modulop — 1,0 < t* < p — 1, and
let [ ] denote the greatest integer function. We restate the theorem
from [1] with some notational modifications.

THEOREM 4. Suppose¢ R,, R,, and R are as above;, let tp =
min{V(®,)|t =1,2, ---, »p — 1}, and let 7 be the least positive integer
1 such that V(b)) =tp. Ifb=---=b,_,=0, set t =+ and j=1.
Then necessary and swfficient condition for R,,/R, to be normal are:

Case 1. t<q
(@ j=p—1—1¢"
(b)  p(—3b;[(Y(—b)'*) has a (p — 1)th root.

Case 2. t=q

(e) qg=7r(—1),r an arbitrary, positive integer, and

(d) o(—7Yp) has a (p — 1)th root.
Moreover, the nontrivial Galois automorphisms of R,,/R, are in G,\H,
where

n={t+2+[t/p —1] in Case 1, rp + 1 in Case 2} .
LemMA 3.3. Let acI'(R,/R) and let 0 and & be representatives

of qth roots of wnity in h such that 67 = & (mod M). If a(v) =é&v,
then if « extends to R,, a(m) = 0 (mod M(2)).
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Proof. From Lemma 3.2 a(y) = &y. If a extends to R,,, then
a(r) = (1l + z). Also recall that @ € G, for some 7 = 1. But 7 satisfies
an equation 77 + yu, = 0 for some unit u, so that by applying « to
this equation we obtain the equation

»

(8.3) P kZ_‘, (Z)z’” + yu,(§ — 1) + yw*a*(u,) = 0.
Inspection of (8.3) reveals that z must be a unit, for otherwise
Yu,(¢ — 1) would have unique minimum value. It follows that

2" + Yu,(§ — 1) = 0 (mod M(p + 1)) .

Thus 2> = p(¢ — 1) so that 2 =60 — 1 (mod 7) and as a result a(r) =
6w (mod M(2)).

It is clear from this lemma that any nontrivial a’ € I'(R,/R) that
extends to R,, extends to an @ e G,\H,.

We conclude this section on Galois theory with

THEOREM 5. Let f(x) = 2 + p D2%" a,x° be the minimum polyno-
mial of R, /R, and let s be as defined in §1. Then R, /R is Galots
of and only if h contains a primitive qth root of unity and one of
the sets of conditions below 1s satisfied:

when s < pq
(a) s=n(p—1) for some n —1,2, ---, q
(d) qls
I_{(c) Qgpry ** %y Cpp_i € M(2p) whenever s +1 = np — 1, and

(d) for a primitive qth root of unity 6 in R, the equation

x? — o(a,8/a,q)r — P(a,, (60" — 1)/a,q) = 0

has a solution;
when s = pq
) ¢g=p—1 and
I (£) for a primitive qth root of unity 6 in R the equation
x? — p(L/a)x + 0(a,(0® — 1)/pasq) = 0

has a solution in h.

Proof. The method of proof is similar to that of Theorem 4.
Assuming that R,,/R is Galois, we apply an e e I'(R,,/R) to f(m) =0
and observe that the given conditions are necessary. To prove they
are sufficient, we use the conditions to construct all the roots of f(x)
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in much the same way as in the proof of Theorem 4. Thus, suppose
R,,/R is Galois. Then R, /R is Galois so that by Lemma 3.2 k contains
the gth roots of unity. Now let # be the unique multiplicative
representative in B of a primitive gth root of unity 4 in A. Lemmas
3.2 and 3.3 imply that the action of @ on 7 will be of the form
a(x) = n(f + zr") for some unit z and some integer n > 0. Using
the fact that f(a(w)) = 0, some straightforward manipulation yields:

pe i=1
(3.4)

pg—1 ? i .
+p ; o, kZ, (k>0*"‘z"7z:”’° =0.
Suppose first that s < pq. Since R,,/R is Galois, the fact that (3.4)
holds for a primitive qth root implies that it must hold for every
qth root of unity 6,. In particular it must hold when 4, = 1 in which
case the middle sum vanishes. Since s < pq, the value of the last
sum is less than 2pg + 7n so the term of index k& = p in the first sum
has minimal value. It follows that s = n(p — 1) so that (a) is neces-
sary. Note that s = n(p — 1) implies that n<p. Conversely, if n<p,
inspection of (3.4) reveals that s < pq. Thus for future reference
we note that s < pq if and only if »n < p.

Recalling the definition of s and that (3.4) must hold for every
qth root of unity 6, pa,7n°(6; — 1) will be a term of unique minimum
value in (3.4) unless (6; — 1) € M for every gth root of unity 4,. Thus
qls. Similarly a,., -, @,,_.€ M2p) so (b) and (c) are necessary.
Simplification of the residues of the minimum value terms in (3.4)
leads to the equation

(3.5) x? — 0(a,8/a,q)% — 0(a,,(6" — 1)/aq) = 0

in which z = 6x. Thus (d) is necessary.

Suppose now that s = pq. As before the middle term of (3.4)
vanishes when 6 = 1. Equating the values of terms of minimum
value yields n = pq/(p — 1). It follows that n = p and g =p — 1 so
that (e) is necessary. The equation in h resulting from the fact
that the sum of the minimum value terms in (3.4) must be congruent
mod M(2pq + n + 1) is (f) were z = fx. Thus conditions IT are neces-
sary when s = pq.

To prove the sufficiency, we construct the roots by induction in
a manner similiar to that used in in the proof of Theorem 4. If we
assume conditions I of theorem and if for a given qth root of unity
6, we let ¢, be a representative in R,, of a root of (d), then the first
approximation for a root of f(x) is n(¢ 4+ ="e,), and one may verify
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that f[x(@ + n"e,)] e M(pq + np + 1). As before, assume that we
have chosen e, e;, «--, ¢, so that, for \, =60 + wn", + n**e, + -+ +
"t e, f(TN,) € M(pq + mp + m). We then show that for \,., =
N + T**™e,,.,, We can choose an e,,,, for which f(z\,.,) € M(pq + np +
m + 1). Thus by induction for a given primitive gqth root of unity
6 we can construct a root of f(x). It follows that we can construct
a root of f(x) for every qth root of unity 6, including 64, = 1.
Moreover (d) must have a solution for every gth root of unity 6, so
that when 4, = 1, the equation

(3.6) 7 — p(a,8/aq) = 0

must have a solution. If £ denotes a solution for (8.6) and 7 denotes
a solution for

(3.7, 6) x? — o(a,s/a,q)x — P(a.,(0r" — 1)/a.q) = 0

for a given qth root of unity 4,, then one may verify that a complete
set of solutions for (8.7, 6,) is given by {7 +r&|r =0,1,2, --+, p—1}.
It follows that R,, contains p roots of f(x) for each gth root of unity
4, and from their construction it is clear that each is distinct. The-
refore we have constructed pq roots of f(x), so that R,,/R is Galois
and conditions (I) are sufficient. Conditions (II) also imply that R,,/R
is Galois in much the same manner as conditions (I). The main
difference is that the first approximation for a root of f(x) is given
by (0 + e,x?), where e, is a representative of a solution of (f).

IV. Proofs of Theorems 2 and 3. Now that the location of
the Galois groups in the ramification sequence has been determined,
we can prove Theorems 2 and 3.

First, for 2 > 1 and a¢eG,;, we define 4, («) to be the residue in
h of (a(rw) — w)/x*. Then one may verify that +,: G, — h is a homo-
morphism of G, into h*, the additive group of h, with kernel H,.
With this observation the proof of Theorem 2 follows from a sequence
of lemmas.

LEMMA 4.1. Let © > 1 and w¢h?. Then for every @ ch*,a +# 0,
there exists an a € G\H; for which (@) — @.

Proof. Let acR,, be a representative of @ ¢h. We prove this
as lemma well as several of the following ones by constructing a con-
vergent higher derivation D = {D;} such that D,(7) = ©'a and D;(x) €
Mt + 1) for all 4 > 1. Then for a, = >, D, ¥(a,) =a&. Thus let
S be a p-basis for & that includes # = @,, and choose SCR,, to be
a set of representatives of S such that a,€S. Suppose now that
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s # p and define D,(a,) = —f'(x)n*a/p and D,(S\{a,}) =0. For j =
2, +++,»— 1, define D;S)=0. Then D,(R)c M(V(f'(m)) + i — 2p)
and by Lemma A D;(R) c M(V(f'(w)’) + 15 — 2pJj). Moreover D(x) =
w'a and D;(w)e M(sj + 1). At this point we separate into several
cases.

Case 1. s+ pand i =2. The term of minimum value in 4, + B,
is 2D(m)*n? e M(8p). If s < p — 3, define Di(S) =0 for j =p. If
»— 38 < s < 2p, define D,(S\{a,}) =0 and D,(a,) such that D,(f)(x) +
A,+ B,e M2p + s+ 3). Then in either case, D,(R)c M(p) and
D,(m)e M(4). Define Di(S)=0for p<j<2pandif p—8<s<p
or p<s<p—2 define Di(S) =0 for j=2p. Since the term of
minimum value in 4,, + B,, is D,(7)** € M(4p), for 2p — 2 < s < 2p,
define D,,(S\{a,}) = 0 and D,,(a,) such that D,,(f)x) + 4,, + B,, €
M@2p + s + 4), and for j > 2p define D;(S) = 0. Now observe that
D,,(R)c M(2p) so that if j =mp + r for 0 <7 < p, from Lemma A,
D;(R)c M(mp + 2r). Thus D = {D;} e 5#)R, R,,), and it is routine
to verify that D;(x) € M(5) for p <j=2p so that Lemma 1.1 implies
convergence of D by taking ¢ =8,n =2, and m = 2p + 1.

Case 2. s+ p and 7 > 2. Again the term of minimum value in
A, + B, is 2D(m)*w? € M(pi + p). If 0 < s < 2p — 2, define D;(S) =0
for j = p. Then D;(R)C M(j%) and Di(z)e M(i + 1) for p < j < 2p.
Thus D converges by Lemma 1.1 by taking ¢ =14, n =2, and m =
2p + 1. If 2p — 2 < s < 2p, define D,(S\{a,}) = 0 and D,(a,) such that
D, (f)xm)+ A, + B, M(2p + s + ¢). Then D, (R)C M(p) and D (7)€
M +1). For j > p define Dy(S) =0 so that for j = mp + » for
0= r <p, Di{R)C M(mp + ri). Clearly D = {D,} e 5#(R, R,,) and for
p<j<2p, Dir)e M(t + 1). Then D(m) converges by Lemma 1.1,
taking ¢ =4, % = 2, and m = 2p + 1.

Case 3. ©>1 and s = p. Let o be the least positive integer
greater than p for which a, is a unit, or if a,,, -+, a,_, € M(2p),
let ¢ = 2p. Then the construction of the convergent higher derivation
is the same as in the previous two cases if we let ¢ assume the role
of s. To prove this we need to show that the fact that s = p does
not interfere with the convergence of those constructions. To do
this, first observe that if @, € h?, then we can choose a prime element
such that a, =1 + pc¢, for some ¢, € R, i.e., @, € k? implies that a, =
d? + pd, for some d, d,e R. Then let ' = nd;* be a new prime
element so that if x** + p >;'a;x® is the minimum polynomial of
7', then a, =1 + pc, where ¢, = d,d;?, and p(a,d?*)¢h*. Thus we
assume that we have chosen a prime element of this form so that
a, =1+ pc, for some ¢,. It follows that for every j, V(D;(a,) <
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V(z*Dj(a)). If @,¢h* and @, and @, are p-dependent, it is clear that
for every j, V(Dj(a,) <V(z*Dia,)). If @,¢h?, and a, and a, are
p-independent, then we choose S to include @, as well as a,. From
our construction, then D;(a,) =0 for every j. Thus V(D;(a,) <
V(z*D;(a,)) so that in any of these cases V(D;(f)(x)) is independent
of V(D a,)), and the fact that s = p does not interfere with the
convergence of the constructions.

In all of these constructions, for a given 7 > 1, we have a D =
{D;} such that D,(x) = n*a and D;(w) e M(% + 1) for 5 > 1. It follows
that for a, = 3, D;, ¥,(@p) = a@. Thus a,eG;\H,. But from the
construction a,(a) — acM(i) for every ac R, so that «a, € G\H,,
completing the proof of the lemma.

LEMMA 4.2. Let 1 >1 and w¢h®. For +, as described above,
vi(Gy) = Gy/H, = h*.

Proof. As noted above, for a given prime element =, +,: G, — h*
is clearly a homomorphism into A" with kernel H,. By Lemma 4.1,
s G, — h* is surjective. Thus v(G,) = h* and G,/H, = h".

Before going further we need to observe a few facts about the
relationship between (1.1) and (3.2). Let b, = b,; + b,;vy with b,;, b,; € R.
Then denoting the conjugate of a € R, by conj(a), conj (b;) = b,; — vb,;,
and letting conj (¢(x)) denote the conjugate polynomial of g(x), f(x) =
g(x)(conj g(x)). Then by using v* = —py from (3.1) one may obtain
the following relationships among the coefficients:

(4.1, 0) a, = yb% + py*b,

(4.1, 1) @ =Y > bybu + y'p +Zk, ;b for 0<i<p
Jtk=1 K =1

k=1

(4'17 1) I kD G k=D
for p<i=m+p<2pand m=0,1,---,p—1.

a; = —2yb,,, + Y > byby + yzpj %i b,;b.

With these notation conventions we prove

LemMA 4.3, Let ¢t = min{V(b)/p|t =1,2, -+-, »p — 1} and let j
be the least positive integer such that V(b;) = tp. Then

(1) 0<s<pif and only if t =0 4f and only if j = s.

(ii) s=9p t1f and only if t =1 and b, s a unit.

(i) p = s < 2p if and only if t =1 if and only if 7 = m where
s=p+ m.

Proof. Proving (i) first, observe from (4.1) that for 0 < s < p
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(4-1, S) a; = ZybOObOS + yw;l:s bcmbok + yzpmés b1mb1k .
n,k+s
It follows that ¢ = 0, since if all of the b,,1=1,2,--+, »p — 1 were
nonunits, a, would be a nonunit. Conversely, if £t =0, b,; is a unit,
which implies that a; is a unit. Thus s < j by definition of s and
it follows that 0 < s<p since 0 <j <p. Moreover, if s<j, (4.1,5)
for 0 < s < p shows a, would not be a unit. Thus j = s, and the
proof of (i) is complete when we observe that if j = s, then0 <s<p
by definition of j.
Statement (ii) follows from (i) and the equation

(4.1, p) a, = —-—2yb10 +y Z b()nbok + yzp Z bmblk .
nik=p n¥F=p

n,k#p n,k+p

To prove (iii) we consider for p < s < 2p

(4.1, s) @, = —2yby, + Y D) boubor + YD L biby

gy Ly
and observe that 0 < m < p. Thus if p < s < 2p, b, is a unit since
(i) implies that for » < s < 2p, the b,;, © =1,2, ---, »p — 1, are all non-
units. Conversely, if ¢ =1, b,; is a unit, which implies that a,,; is
a unit. Arguing as before, (iii) follows.

Suppose now that # = a@,ch®. Then = has the property =°* +
o(v? + wr®) = 0 for some v, we R,,, and suppose that s=p. If ae
G\H,, a(w) = w + ©'z for some unit z. Applying « to the above
equation and simplifying, we obtain

w2 (2D L. e (D) \ .
7[?}%( k )n-k(’b 1)zk + p{kzi <k>vp kﬂ_-kia»k(,v)k + ns-&-za*(w)
(4.2)
+ (w + wta*(w))z* kZ:i (Z)n"“”””z"} =0.
LEMMA 4.4. If ©+>1,a,€h?, and s+ p, then G,* H, if and
only 18 R,,/R, if Galois, and in this case G,/ H, is the group of order p.

Proof. Considering successive values for 7 in (4.2) and equating
the values of the terms of minimum value, we have the following
cases:

1 =2, Then2p + s + 1 = 3p implying that s = p —1. Moreover,
the terms of minimum value are congruent mod M(3p + 1) and since
&y = %, @,_, = W and 7 = — pa, (mod M(2p+1)) this congruence implies
that

27 = p(a,—(p — 1)/2a,) .
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Thus a € G,\H, implies that o(a,_,(p — 1)/a,) has a (p — 1)th root. By
Lemma 4.3, s = »p — 1 implies that ¢t =0 and 7 =p — 1. Also sub-
stituting for the a, from (4.1, i), and observing that b,,_, = b,_, and
bw = b,, we have that

0@, (p — 1)/2a,) = 0((b,-(p — 1)/by))

so that conditions (a) and (b) of Theorem 4 are satisfied. It follows
that a is a Galois map.

©t=28. Then 2p + s+ 2=4p so that s =2p — 2. It follows
from Lemma 4.3 that t =1 and j =p — 2. The minimum value
terms are congruent mod M(4p 4 1) which leads to

2P = p(azp—z(zp - 2)/2@0) ’

implying that o(a.,_,(2p — 2)/2a,) has a (p — 1)th root. Observe now,
that £ =1 and j = » — 2 imply that b,_, = pc + 7b,,,_, for some ce R
and where b, ,_, is a unit. Thus b,,_, = p(b,—o/7). It follows from
(4.1, 1) that

0(@2—2(20 — 2)/2a0) = P(—b,_o(p — 2)/7(—by))

has a (p — 1)th root so that (a) and (b) of Theorem 4 are satisfied.
Thus if aeG,\H,, @ is a Galois map.

1 =4. Then p =8 and s = 2p which means that a;c M(2p) for
1=1,2,.-+,2p — 1. Also, as before, this implies that p(a.z* — 1) =
0 or that

(4.3) z = p(1/a,) .

But p(a,) = p(ybi) so that (4.3) implies that ¥ has a square root. It
follows that we have the second case of Theorem 4 and that « is
a Galois automorphism.

1 >4. Then G, = H, since otherwise Jr“’(zlp)n:“‘z would have

unique minimum value in (4.2). Thus every ae€G,\H, is a Galois
automorphism, and if G, # H,, G,/H; has order p.

LEMMA 4.5. Let ©>1,a,€h®> and s = p, and suppose @, €< h’.
Then G, H, if and only if R,,/R, is Galois. If R,,/R, is Galois,
then G,/H; has order p.

Proof. Recall from the discussion in Case 3 of the proof of
Lemma 4.1, that in the case under construction, we can choose the
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prime element so that @, = 1 + pc,. Assuming this, then 7 has the
property

(4.4) w? + p(v? + 7 + 7°w) =0,
for some units v and w in R,,. In case ¢ = 2p, we alter w to obtain
(4.5) w4+ p(v” + 7 + pw') =0,

for units v and w’ in R,,. Now let a € G\H, so that a(n) = 7 + 7wz
for some unit 2. Applying a to (4.4) and simplifying, we obtain

P

» (2
P i ( D )n.k(«;——l)zk + p{z ( p>vp—kﬂkia*(z)
=\ k k

k=1

(4.6) + z? zp} (Z)rc"”"”z’“ + wotie* (w)

k=1
i o X
+ (w + nia*(w))n"’; ( b )rck“-nzk} =0.

In an analysis similar to that of Lemma 4.4, one finds that ¢ = 2
implies that G, = H, and that 7 = 3 implies that ¢ = 2p — 2 and that
2?7 = p(wo/2v?). But W =a, v =@, and 6 = —2. Thus from the re-
lations (4.1,2p—2) and Lemma 4.3 it follows that o(—b,_,(p—2)/(7(—b,)*)
has a (p — 1)th root and that j=p — 2 so that the first set of
conditions of Theorem 4 is satisfied since V(b,_,/v) = 0. When ¢ =4
we find that ¢ = 2p and p = 3, so applying a to (4.5) and using the
fact that the minimum value terms must be in M(3p + 1), it follows
that

2" = p(1/ybi)

so that p = 3 implies that 7 has a square root. Thus the second set
of conditions of Theorem 4 is satisfied. The same sort of analysis
shows that if ¢ > 4, G, = H,. Therefore, in this case if G, # H,, R,,/R,
is Galois and G,/H, is the group of order ». The converse follows
from the fact that the Galois maps are always in G,\H; for some 1.

LEMMA 4.6. Let ¢ >1,a,€h?, s = p, and a,¢h”>. Then G, = H,
and (G,) = G;/H, = h* for 1> 2.

Proof. For acG,H, one finds that applying a to (1.3) with
s = p yields an equation having a term of unique minimum value
which is impossible. Thus G, = H,.

Suppose now that ¢ > 2 and ¢ is as defined in Case 3 of the proof
of Lemma 4.1. Then one can verify that V(f'(x)) =2p + ¢ — 1. Also,

we choose S to include a,. «+: G; — k' is a homomorphism with kerne
l
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H;, so we show here that 4, is surjective. Let @ch* and let a e R,,
be a representative of a. Then define D,(a,) = —(f'(x)x*"?a)/p, and
D,(S\{a,}) =0. Then D,(z) = n‘a (mod M(z+1)) and D(R)C M(o + © — p).
For ¢ < j < p define D,(S) = 0 so that D;(R)c M(4j + j), and D(x) e
M(sj + 7 +1). At this point we separate into cases.

Case 1. 1 >8o0r1=8,p<c<2p—38, and p #3. For j=p,
define D;(S) =0. Then D;(R)c M(¢j + j). The term of minimum
value in A4, + B, is 2D,(z)*n? € M(ip + p) so that D,(w)e M(i + 2).
For p < j < 2p, one can verify that D;(x)e M(1 + 2). Thus D(rn)
converges by Lemma 1.1 taking ¢ =7+ 1, n =2, and m = 2p + 1.

Case 2. ¢ =3 and 2p —2 =< 0 < 2p. Define D,(a,) so that
D,(f)m)+ A, + B,e M2p + t + 4). Then D,(R)C M(p) and D,(7)e
M(5). For j > p define Di(S) =0, sothat for g =mp +r, 0= < p,
D;(Ryc M(mp + rj +r) by Lemma A and D e 27 (R, R,,). Also
D;(r)e M(5) for p < j <2p. Thus D(x) converges by Lemma 1.1
taking ¢ =4, n» =2, and m = 2p + 1.

In Dboth cases for a given ¢, ¥ (ay) =@ and a,e€G\H;. Thus
Wit Gy — hT is surjective and it follows that (G, = G,/H, = h'.

The rest of this section is concerned with the factor G,/H,.

LemmA 4.7. If G, #+ H,, then G,/H, is isomorphic to the group
of order 2.

Proof. Let acG)\H, and suppose a(m) =7 + wz for some unit
z. Observe that = satisfies an equation #** + pu = 0 for some unit
u € R,,, and applyinu @ to it, we obtain

22 [ 2
P ,,ﬁ‘( ;)z” — ma*(u)p =0.

Inspection of this equation reveals that the terms of minimum value
are ﬁ”(zzj)”)z” and 7%72**, Their sum must be in M(2p + 1) which
implies that

(@ +227) = 0.

Thus z = 0, —2 so that a(z) = 7 (mod M(2)) or a(x) = —x (mod M(2)).
The mapping +: G, — h defined by (@) = p(a(w)/x) is a homomorphism
of G, into h*, the multiplicative group of &, having kernel H,. Thus
from above (G, = {1, —1} C h* so that G,/H, is isomorphic to the
group of order 2.

Proof of Theorem 3. The method of proof is as follows: We
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start with an inertial isomorphism «,: R — R,, and attempt to extend
@, to an automorphism on R,,. We define the polynomial a,(f)(x) by

a(f)@) = 2> + ngal(ai)xi .

Then the extension is obtained by constructing a root, mn, for the
polynomial «,(f)(x) and extending @, to an automorphism « on R,
by defining a(a) = a,(a) for all a ¢ B and a(x) = 7»n. In some cases
the inertial isomorphism «, must be constructed by using a convergent
higher derivation. In others a, may be an arbitrary isomorphism.
In either case observe first that if a,: R— R,, is an inertial iso-
morphism, then if it extends to a nontrivial automorphism « € G,\H,,
it must have the property that a(z) = n(—1 + 7°2) where n is a
positive integer and z is a unit. We assume first that o(a,) € h* and
that we have used Lemma 1.2 to choose a prime element @ so that
o0(c,) e h*. Further, let a(e) = ¢ + wa*(a) for all a € R\M, and observe
that when ¢ = 0, the j as defined in the theorem is the s defined
earlier and when ¢ > 0, s = 2p. To observe how any extension « of
«, must behave we apply it to f(x) and simplify to obtain

2 [ 2 ~
DY ( v )( —Lprrigt 4 p S aa{(—1) — 1]

.1) vt o i
+ P 21 o (—1Dia*(a;) + p Zlaiﬂi kZ‘J <k )(.—1)1~kﬂnkzk

+ p’ma*(e) = 0.

Since there is a large number of possible cases that can occur when
considering the various possible values that ¢, 7, and » may have,
and since the methods used in treating them are essentially the
same, we will treat only typical cases when ¢ = 0 and n = 1. Thus,
considering the terms of minimum value in (4.7) we have several
cases:

Case 1. j even, j < p — 1. Then
(4.8) a*(a;) — 2a;,, + jza; =0 (mod M) .

Case 2. j =p —1. Then
4.9) 2c82 + a2 — 2a, + a*(a,_,) =0 (mod M) .

Case 3. j>p. Then 71'2"(25 )(—~1)"7r"z" has unique minimum value.

Case 4. j odd, j < p — 1. Then pa;(—2)7? has unique minimum
value.
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Case 5. j = p. Then
(4.10) —ei2? +a,=0 (modM).

Part (a) of the theorem follows from consideration of Cases 3, 4, and
5. Considering the remaining cases in more detail, in Case 1 if
o(a;) e h? and p(a;,,) = 0, then jza; = 0 (mod M), which is impossible.
However, this case can be further developed by taking » > 1. If
ola;)eh? and o(a;;,) # 0, then in our later construction of N we may
choose z = 2a;,,/ja; so that in this case a, may be an arbitrary
inertial isomorphism. If o(a;)¢h?, then if S, is a p-basis for h,
we can assume that p(a;) €S and define a derivation de 2 (h) by
choosing d(o(a;)) so that

(4.11) o(p(ay)) = P(2a5., — Jzay)

for whatever choice of z is made later. This 6 e =(h) lifts to a
de 2 (R) and we define a higher derivation £ = {E;} on R by letting
E, be the identity mapping, E, =d and E,(S) =0 for ¢+ > 1. Then
define D = {D,} by D, = n'HE,. Clearly, D converges on R by Lemma
A. Now let a, = 3, D, so that af(a) = D(a)/x (mod M). In Case 2
if p(a,_,) € h?, then p(a*(a,_,)) = 0 so that when p(a,) # 0, the existence
of « is equivalent to the existence of a nontrivial solution 2z in h for
the equation

(4.12) p(z"+a”_1z —&> ~0,
2a, a,

which in this case is equivalent to R,,/R being Galois. If, however,
o(a,) = 0, then a nontrivial « € G\\H, can be constructed using » > 1.
If p¢h?, we choose a set of representatives S of a p-basis S for
h to contain a,_, and construct an inertial isomorphism a,: R — R,,
in the same manner as in Case 1. Now, starting with an inertial
automorphism a,: R — R,,, we want to extend @, to an inertial auto-
morphism « on R,, by constructing a A =-—1(mod M) such that
a,(f)@n) = 0. We construct such a » by induetion in a manner similar
to that used in the proof of Theorem 4. Thus, choose z, for z to
be a solution, where applicable, to (4.8), (4.9), (4.10) or (4.11). Now
letting A\, = (—1 + 7z,), we have that a,(f)(m\) e M(2p + 7 + 2). Now
suppose that 2z, has been chosen so that for v, = —1 + 2w+ -« +2,7%,
a(fY@n)eM@p + k + j +1). Then for n\., =N, + 7%z, it is
routine to verify that z,,, can be chosen so that a,(f)(@\i,) €
M2p +k+J5+2). Let »=lim,..\, so that a,(f)(@w\) = 0. Then
extend a, to R,, by defining a(r) = \7.

Now suppose that o(a,) ¢ h*. As before we assume that ¢ € G,\H,
and determine the properties that @ must have. We then construct
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such an @ in every case. Thus we assume that a(a) = a + wa*(a)
for all a € R and that a(xr)= —7+x"2 where z is a unit in R,,. Again,
note that if G, H, such an « can be chosen for every prime element
. We apply @ to f(x) and examine the terms of minimum value in
the resulting equation. In every case it is clear that we can construct
a higher derivation isomorphism a,: R — R,,, using a p-basis for A
that includes o(a,) as in Case 1 when po(a,) € h*. Similarly, we can
extend «, to be an inertial automorphism of R,, as before. Thus
when po(a,) ¢ h?, G, = H,.

Finally, observe that the automorphisms constructed in the above
proof cannot be in G, since [5, Lemma 5] requires that a,(x) —we
M(2). Moreover, not all of these automorphisms can be Galois since
Theorem 5 states that automorphisms of finite order occur only for
certain values of s. Thus, in general the automorphisms in G,\H,
are neither derivation nor Galois automorphisms.
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