COMPACT OPERATORS OF THE FORM $u C_{\varphi}$

Herbert Kamowitz

If A is the disc algebra, the uniform algebra of functions analytic on the open unit disc D and continuous on its closure, and if $u, \varphi \in A$ with $\|\varphi\| \leqq 1$, then the operator $u C_{\varphi}$ is defined on A by $u C_{\varphi}: f(z) \rightarrow u(z) f(\varphi(z))$. In this note we characterize compact operators of this form and determine their spectra.

We recall that a bounded linear operator T from a Banach space B_{1} to a Banach space B_{2} is compact if given a bounded sequence $\left\{x_{n}\right\}$ in B_{1}, there exists a subsequence $\left\{x_{n_{k}}\right\}$ such that $\left\{T x_{n_{k}}\right\}$ converges in B_{2}.

If $\varphi: \bar{D} \rightarrow \bar{D}$, we let φ_{n} denote $n^{\text {th }}$ the iterate of φ, i.e., $\varphi_{0}(z)=z$ and $\varphi_{n}(z)=\varphi\left(\varphi_{n-1}(z)\right)$ for $z \in \bar{D}$ and $n \geqq 1$. Our main result is the following.

Theorem. Let $u \in A, \varphi \in A,\|\varphi\| \leqq 1$ and suppose φ is not a constant function.
I. The operator $u C_{\varphi}$ is compact if, and only if, $|\varphi(z)|<1$ whenever $u(z) \neq 0$.
II. Suppose $u C_{\varphi}$ is compact and let $z_{0} \in \bar{D}$ be the unique fixed point of φ for which $\varphi_{n}(z) \rightarrow z_{0}$ for all $z \in D$. If $\left|z_{0}\right|=1$, then $u C_{\varphi}$ is quasinilpotent, while if $\left|z_{0}\right|<1$, the spectrum $\sigma\left(u C_{\varphi}\right)=\left\{u\left(z_{0}\right) \varphi^{\prime}\left(z_{0}\right)^{n} \mid n\right.$ is a positive integer $\} \cup\left\{0, u\left(z_{0}\right)\right\}$.

1. Characterization of compact $u C_{\varphi}$. We first consider the easy case in which φ is a constant function.

Theorem 1.1. Suppose $u \in A$ and $\varphi(z)=a \in \bar{D}$ for all $z \in \bar{D}$. Then $u C_{\varphi}$ is compact.

Proof. Since $\varphi(z)=a$ for all $z \in \bar{D}, \quad\left(u C_{\varphi}\right) f(z)=u(z) f(\varphi(z))=$ $f(a) u(z)$. Therefore the range of $u C_{\varphi}$ is one-dimensional and so $u C_{\varphi}$ is compact.

We next give a necessary and sufficient condition that $u C_{\varphi}$ be a compact operator for those φ which are not constant functions.

Theorem 1.2. Suppose $u \in A, \varphi \in A,\|\varphi\| \leqq 1$ and φ is not a constant function. Then $u C_{\varphi}$ is a compact operator on A if, and only if, $|\rho(z)|<1$ whenever $u(z) \neq 0$.

Proof. Since everything holds if $u \equiv 0$, we will assume that u is not identically zero.

1. Suppose $u C_{\varphi}$ is a compact operator on A. We must prove that if $z \in \bar{D}$ and $u(z) \neq 0$, then $|\varphi(z)|<1$. Since φ is not a constant function, the maximum modulus principle implies that $|\varphi(z)|<1$ whenever $|z|<1$ and thus it suffices to show that $|\mathscr{\varphi}(z)|<1$ when $u(z) \neq 0$ and z lies on the unit circle. Assume the contrary and let θ satisfy $u\left(e^{i \theta}\right) \neq 0$ and $\left|\varphi\left(e^{i \theta}\right)\right|=1$. Set $\mu=\varphi\left(e^{i \theta}\right)$ and for each positive integer n, define f_{n} by $f_{n}(z)=\left(\frac{1}{2}(z+\mu)\right)^{n}$. Then $\left\|f_{n}\right\|=1$. Since $u C_{\varphi}$ is assumed to be compact, there exists a subsequence $\left\{f_{n_{k}}\right\}$ and a function F in A with $\left(u C_{\varphi}\right) f_{n_{k}} \rightarrow F$ in A. That is, $u(z)\left(\frac{1}{2}(\varphi(z)+\mu)\right)^{n_{k}} \rightarrow F(z)$ uniformly for $z \in \bar{D}$. But $\left(\frac{1}{2}(\varphi(z)+\mu)\right)^{n_{k}} \rightarrow 0$ for $|z|<1$ and so $F(z)=0$ on D. However, F is continuous on \bar{D} and therefore $F(z)=0$ on \bar{D}. Hence $\left(u C_{\varphi}\right) f_{n_{k}} \rightarrow 0$ uniformly on \bar{D}. In particular, $u\left(e^{i \theta}\right)\left(\frac{1}{2}\left(\varphi\left(e^{i \theta}\right)+\mu\right)\right)^{n_{k}} \rightarrow 0$. But for all k, we have $\left|u\left(e^{i \theta}\right)\left(\frac{1}{2}\left(\varphi\left(e^{i \theta}\right)+\mu\right)\right)^{n}\right|=\left|u\left(e^{i \theta}\right)\right| \neq 0$. This is a contradiction. Hence if $u C_{\varphi}$ is compact and $u(z) \neq 0$, then $|\varphi(z)|<1$.
2. Conversely, assume $|\varphi(z)|<1$ whenever $u(z) \neq 0$. To show that $u C_{\varphi}$ is compact, assume $f_{n} \in A$ and $\left\|f_{n}\right\| \leqq 1$. Since $\left\{f_{n}\right\}$ is a uniformly bounded sequence of functions on D, it is a normal family in the sense of Montel and so there exists a subsequence $\left\{f_{n_{k}}\right\}$ and a function g analytic on D with $f_{n_{i}} \rightarrow g$ uniformly on compact subsets of the open dise D. We observe that this convergence implies $\sup _{|w|<1}|g(w)| \leqq 1$. Now defined a function G on the closed disc \bar{D} by setting $G(z)=0$ whenever $|z|=1$ and $u(z)=0$, and letting $G(z)=$ $u(z) g(\varphi(z))$ otherwise. We claim that $G \in A$ and $\left(u C_{\varphi}\right) f_{n_{k}} \rightarrow G$ uniformly on \bar{D}.

We first show that G is continuous on \bar{D}. Indeed, G is continuous on $\{z \mid u(z) \neq 0\}$ since $|\varphi(z)|<1$ on this set and g is continuous on D. Further, if $\left|z^{*}\right|=1$ and $u\left(z^{*}\right)=0$, let $\left\{z_{n}\right\}$ be a sequence in \bar{D} converging to z^{*}. For each $m, G\left(z_{m}\right)=0$ or $G\left(z_{m}\right)=u\left(z_{m}\right) g\left(\mathcal{P}\left(z_{m}\right)\right)$. Since $\left|g\left(\varphi\left(z_{m}\right)\right)\right| \leqq 1$ it follows that $\lim _{m \rightarrow \infty} G\left(z_{m}\right)=0=G\left(z^{*}\right)$ and so G is continuous at each $z \in \bar{D}$. Also G is analytic on D since u and $g \circ \varphi$ are analytic on D. Hence $G \in A$.

To show that $\left(u C_{\varphi}\right) f_{n_{k}} \rightarrow G$ uniformly on \bar{D}, let $V=\left\{e^{i 0} \mid u\left(e^{i \theta}\right)=0\right\}$ and suppose $\varepsilon>0$. Since u is continuous, there exists an open set $U \supset V$ for which $|u(t)|<\varepsilon$ for $t \in U$. Also since $|u(z)|<1$ for $z \notin U$ and $\bar{D} \backslash U$ is a compact set, there exists $r, 0<r<1$, such that $|\varphi(z)| \leqq r$ for $z \notin U$. Moreover, since $f_{n_{k}} \rightarrow g$ uniformly on compact subsets of $D, u(z) f_{n_{k}}(\varphi(z)) \rightarrow u(z) g(\varphi(z))$ uniformly for $z \notin U$. That is, there exists an integer N such that $\left|u(z) f_{n_{k}}(\mathcal{P}(z))-G(z)\right|=$
$\left|u(z) f_{n_{k}}(\varphi(z))-u(z) g(\varphi(z))\right|<\varepsilon$ for $k \geqq N$ and all $z \notin U$. On the other hand, for $z \in U \backslash V$ and for all k,

$$
\begin{aligned}
& \left|\left(u C_{\varphi}\right) f_{n_{k}}(z)-G(z)\right|=\left|u(z) f_{n_{k}}(\varphi(z))-u(z) g(\varphi(z))\right| \\
& \quad \leqq \sup _{z \in U V V}\left[|u(z)|\left|f_{n_{k}}(\varphi(z))-g(\varphi(z))\right|\right] \leqq \varepsilon\left[\left\|f_{n_{k}}\right\|+\|g\|_{\infty}\right]=2 \varepsilon .
\end{aligned}
$$

Finally, if $z \in V$, then $\left(u C_{\varphi}\right) f_{n_{k}}(z)=u(z) f_{n_{k}}(\varphi(z))=0=G(z)$. Hence given $\varepsilon>0$, there exists an integer N such that $\left|\left(u C_{\varphi}\right) f_{n_{k}}(z)-G(z)\right|<2 \varepsilon$ for $k \geqq N$ and all $z \in \bar{D}$. That is, $\left(u C_{\varphi}\right) f_{n_{k}} \rightarrow G$ uniformly. Thus if $|\varphi(z)|<1$ whenever $u(z)=0$, then the operator $u C_{\varphi}$ is compact.
2. Spectra of compact $u C_{\varphi}$. If T is a bounded linear operator from A to A we let $\sigma(T)$ denote the spectrum of T. As before, we first consider the case where φ is a constant function.

Theorem 2.1. Suppose $u \in A$ and $\varphi(z)=a \in \bar{D}$ for all $z \in \bar{D}$. Then $\sigma\left(u C_{\varphi}\right)=\{0, u(a)\}$.

Proof. 0 and $u(a)$ are both eigenvalues $u C_{\varphi}$. For, if $F(z)=$ $z-a$, then $\left(u C_{\varphi}\right) F(z)=u(z) F(\varphi(z))=u(z) F(a)=0$, while if $G(z)=u(z)$, then $\left(u C_{\varphi}\right) G(z)=u(z) G(\varphi(z))=u(a) G(z)$. Thus $\{0, u(a)\} \subset \sigma\left(u C_{\varphi}\right)$.

On the other hand, since the range of $u C_{\varphi}$ is one-dimensional, $\sigma\left(u C_{\varphi}\right)$ contains at most two elements and therefore $\sigma\left(u C_{\varphi}\right)=\{0, u(\alpha)\}$.

In determining the spectra of the remaining compact operators of the form $u C_{\varphi}$ we will make use of the following theorem of Denjoy and Wolf.

Theorem A (Denjoy [2], Wolf [6]). Suppose φ is an analytic function mapping D to D. If φ is not conformally equivalent to a rotation about a fixed point, then there exists a unique $z^{\prime} \in \bar{D}$ for which $\varphi_{n}(z) \rightarrow z^{\prime}$ for all $z \in D$. If φ is continuous at z^{\prime}, then $\varphi\left(z^{\prime}\right)=z^{\prime}$.

Suppose $\varphi \in A$ and $\varphi: D \rightarrow D$. It is easy to show that if $\varphi \not \equiv z$, then there is at most one fixed point of φ in the open disc D. There may, however, be infinitely many fixed points on the boundary of D. However, if the function φ is not equivalent to a rotation, then Theorem A asserts that there exists a unique fixed point $z_{0} \in \bar{D}$, which we call the Denjoy-Wolf fixed point of φ, for which $\varphi_{n}(z) \rightarrow z_{0}$ for all $z \in D$. The spectrum of a compact operator of the form $u C_{\varphi}$ will depend on the location of the Denjoy-Wolf fixed point of φ.

Theorem 2.2. Suppose $u \in A, \varphi \in A,\|\varphi\|=1, \varphi$ is not a constant
function and φ has all its fixed points on the unit circle. If $u C_{\varphi}$ is a compact operator, then $u C_{0}$ is quasinilpotent.

Proof. Let z_{0} be the Denjoy-Wolf fixed point of φ, which by hypothesis has modulus 1 . Since $u C_{\varphi}$ is compact, Theorem 1.2 implies $u\left(z_{0}\right)=0$. Let $V=\left\{e^{i \theta} \mid u\left(e^{i \theta}\right)=0\right\}$.

Choose $\varepsilon>0$. As in Theorem 1.2 there exists an open set U such that $U \supset V$ and $|u(t)|<\varepsilon$ for all $t \in U$. Also, since $\bar{D} \backslash U$ is compact there exists $r, 0<r<1$, such that $|\varphi(w)|<r$ for all $w \in \bar{D} \backslash U$. Since $\left\{\varphi_{n}\right\}$ is a bounded sequence and hence a normal family, there exists a subsequence $\left\{\varphi_{n_{k}}\right\}$ such that $\left\{\varphi_{n_{k}}\right\}$ converges uniformly on compact subsets of D. In particular, $\left\{\varphi_{n_{k} k}\right\}$ converges uniformly for $|z| \leqq r$. But $\varphi_{n}(z) \rightarrow z_{0}$ for all $z \in D$. It follows that $\left\{\varphi_{n}(z)\right\}$ converges uniformly to z_{0} for $|z| \leqq r$.

Now choose $\delta>0$ such that $\left\{s \in \bar{D} \| s-z_{0} \mid<\delta\right\} \subset U$. Since $\varphi_{n}(w) \rightarrow z_{0}$ uniformly for $|w| \leqq r$, there exists a positive integer N such that $\left|\varphi_{n}(w)-z_{0}\right|<\delta$ if $n \geqq N$ and $|w| \leqq r$. Thus $\varphi_{n}(\{w \| w \mid \leqq r\}) \subset U$ for $n \geqq N$. Therefore, for each $z \in \bar{D}$ and each positive integer n, at most N elements from $z, \varphi(z), \cdots, \varphi_{n}(z)$ lie in $\bar{D} \backslash U$. From the definition of U, if $t \in U$, then $|u(t)|<\varepsilon$. Hence for all $z \in \bar{D}$ and $n \geqq N$,

$$
\left|\left[\left(u C_{\varphi}\right)^{n} f\right](z)\right|=\left|u(z) \cdots u\left(\mathscr{\varphi}_{n-1}(z)\right) f\left(\mathscr{P}_{n}(z)\right)\right| \leqq\|u\|^{N} \varepsilon^{n-N}\|f\|
$$

Therefore $\left\|\left(u C_{\varphi}\right)^{n}\right\| \leqq\|u\|^{N} \varepsilon^{n-N}$ and so $\left\|u C_{\varphi}\right\|_{s p}=\lim _{n \rightarrow \infty}\left\|\left(u C_{\varphi}\right)^{n}\right\|^{1 / n} \leqq \varepsilon$. This holds for all $\varepsilon>0$; consequently $\left\|u C_{\varphi}\right\|_{s p}=0$ as required.

We next show that if $u C_{\varphi}$ is a compact operator on A and if φ has a fixed point z_{0} in D, then $\sigma\left(u C_{\varphi}\right)=\left\{u\left(z_{0}\right) \varphi^{\prime}\left(z_{0}\right)^{n} \mid n\right.$ is a positive integer $\} \cup\left\{0, u\left(z_{0}\right)\right\}$. This will be proved first for $z_{0}=0$ and then, by a standard argument, extended to arbitrary fixed points z_{0} in D.

Lemma 2.3. Suppose $u \in A, \varphi \in A,\|\varphi\| \leqq 1$ and $\varphi(0)=0$. Then $u(0) \in \sigma\left(u C_{\varphi}\right)$ and $u(0) \varphi^{\prime}(0)^{n} \in \sigma\left(u C_{\varphi}\right)$ for every positive integer n.

Proof. (i) $u(0) \in \sigma\left(u C_{\varphi}\right)$ since no $f \in A$ satisfies $u(0) f(z)-$ $u(z) f(\varphi(z))=1$. For, evaluating at $z=0$ gives $u(0) f(0)-u(0) f(0)=$ $0 \neq 1$.
(ii) If $\varphi^{\prime}(0)=0$, then φ is not a conformal map of D onto D. Therefore if $\varphi^{\prime}(0)=0$, the composition operator C_{φ} is not invertible and so $u C_{\varphi}$ is not invertible. Thus if $\varphi^{\prime}(0)=0$, then $u(0) \varphi^{\prime}(0)^{n}=0 \in$ $\sigma\left(u C_{\varphi}\right)$ for every positive integer n.
(iii) If $u(0)=0$, then again $u C_{0}$ is not invertible and therefore if $u(0)=0$, then $u(0) \varphi^{\prime}(0)^{n}=0 \in \sigma\left(u C_{\varphi}\right)$ for every positive integer n.
(iv) Finally if $u(0) \varphi^{\prime}(0) \neq 0$, we will prove that $u(0) \varphi^{\prime}(0)^{n} \in$ $\sigma\left(u C_{\varphi}\right)$ for every positive integer n by showing that for each such
integer n, the function z^{n} is not in the range of $\left(u(0) \varphi^{\prime}(0)^{n}-u C_{\varphi}\right)$.
Suppose the contrary, that for some positive integer n there exists $f \in A$ with $u(0) \varphi^{\prime}(0)^{n} f(z)-u(z) f(\varphi(z))=z^{n}$. Write $f(z)=z^{m} f_{0}(z)$ where $f_{0} \in A$ and $f_{0}(0) \neq 0$. Then $f_{0}(z)=f_{0}(0)+\mathcal{O}(|z|)$. Also let $u(z)=u(0)+\mathcal{O}(|z|)$ and $\varphi(z)=\varphi^{\prime}(0) z+\mathcal{O}\left(|z|^{2}\right)$. Then

$$
u(0) \varphi^{\prime}(0)^{n} f(z)-u(z) f(\varphi(z))=z^{n}
$$

is equivalent to

$$
\begin{aligned}
& u(0) \varphi^{\prime}(0)^{n} z^{m}\left[f_{0}(0)+\mathscr{O}(|z|)\right]-(u(0)+\mathscr{O}(|z|))\left(\varphi^{\prime}(0)^{m} z^{m}+\mathscr{O}\left(|z|^{m+1}\right)\right) \\
& \quad \times\left(f_{0}(0)+\mathscr{O}(|z|)\right)=z^{n}
\end{aligned}
$$

or

$$
\begin{equation*}
\left[u(0) \varphi^{\prime}(0)^{n} f_{0}(0)-u(0) \varphi^{\prime}(0)^{m} f_{0}(0)\right] z^{m}+\varnothing\left(|z|^{m+1}\right)=z^{n} \tag{1}
\end{equation*}
$$

If $m \neq n$, then the left side of (1) has order m and the right side has order n, a contradiction. On the other hand, if $m=n$, then the left side of (1) has order at least $n+1$ since the coefficient of z^{n} vanishes, while the right side of (1) has order n, which again is a contradiction.

Hence for each positive integer $n, u(0) \varphi^{\prime}(0)^{n} \in \sigma\left(u C_{\varphi}\right)$.
Lemma 2.4. Suppose $0 \not \equiv u \in A,\|\varphi\| \leqq 1, \varphi(0)=0$ and φ is not a constant function. If λ is an eigenvalue of $u C_{\varphi}$, then $\lambda \in\left\{u(0) \varphi^{\prime}(0)^{n} \mid n\right.$ is a positive integer $\} \cup\{u(0)\}$.

Proof. Suppose λ is an eigenvalue of $u C_{\varphi}$ with f as corresponding eigenvector. Then $\lambda \neq 0$ since φ is not a constant function and the algebra A has no zero divisors. Write $f(z)=a z^{m}+\mathcal{O}\left(|z|^{m+1}\right)$, $m \geqq 0, u(z)=b z^{r}+\mathscr{O}\left(|z|^{r+1}\right), r \geqq 0$ and $\varphi(z)=c z^{s}+\mathscr{O}\left(|z|^{s+1}\right), s \geqq 1$, where $a b c \neq 0$. Then $\lambda f=\left(u C_{\varphi}\right) f$ becomes

$$
\lambda\left[a z^{m}+\mathcal{O}\left(|z|^{m+1}\right)\right]=\left[b z^{r}+\mathcal{O}\left(|z|^{r+1}\right)\right]\left[a\left(c z^{s}+\mathcal{O}\left(|z|^{s+1}\right)^{m}+\mathcal{O}\left(|z|^{m s+1}\right)\right)\right]
$$

or

$$
a \lambda z^{m}+\mathscr{O}\left(|z|^{m+1}\right)=a b c^{m} z^{r+m s}+\mathscr{O}\left(|z|^{r+m s+1}\right) .
$$

Equating powers, we get $m=r+m s$ and $a \lambda=a b c^{m}$.
Since r and m are nonnegative integers and s is a positive integer, $m=r+m s$ implies (i) $r=m=0$ or (ii) $r=0$ and $s=1$. In the first case, $b=u(0)$ and so $a \lambda=a b c^{m}$ implies $\lambda=u(0)$, while if $r=0$ and $s=1$, then $b=u(0), c=\varphi^{\prime}(0)$ and $a \lambda=a b c^{m}$ implies $\lambda=u(0) \varphi^{\prime}(0)^{m}$ for some positive integer m, concluding the proof.

Theorem 2.5. Suppose $0 \not \equiv u \in A, \varphi \in A,\|\varphi\| \leqq 1, \varphi(0)=0$, φ is
not a constant function and $u C_{\varphi}$ is a compact operator. Then $\sigma\left(u C_{\varphi}\right)=\left\{u(0) \varphi^{\prime}(0)^{n} \mid n\right.$ is a positive integer $\} \cup\{0, u(0)\}$.

Proof. By the Fredholm alternative for compact operators, every nonzero element in $\sigma\left(u C_{\varphi}\right)$ is an eigenvalue. It follows from Lemma 2.4 that the only possible eigenvalues of $u C_{\varphi}$ are $u(0)$ and $u(0) \varphi^{\prime}(0)^{n}$ for positive integers n; on the other hand Lemma 2.3 shows that each of these numbers is in $\sigma\left(u C_{\varphi}\right)$. Hence $\sigma\left(u C_{\varphi}\right)=\left\{u(0) \varphi^{\prime}(0)^{n} \mid n\right.$ is a positive integer $\} \cup\{0, u(0)\}$.

I should like to thank the referee for greatly simplifying my original proof of Theorem 2.5.

For arbitrary $z_{0} \in \bar{D}$ we have
Theorem 2.6. Let $u \in A, \varphi \in A,\|\varphi\| \leqq 1$ and $u C_{\varphi}$ be a compact operator on A. Suppose z_{0} is the Denjoy-Wolf fixed point of φ.
(i) If φ is a constant function, then $\sigma\left(u C_{\varphi}\right)=\left\{0, u\left(z_{0}\right)\right\}$.
(ii) If ρ is not a constant function and $\left|z_{0}\right|=1$, then $\sigma\left(u C_{\varphi}\right)=\{0\}$.
(iii) If φ is not a constant function and $\left|z_{0}\right|<1$, then $\sigma\left(u C_{\varphi}\right)=$ $\left\{u\left(z_{0}\right) \varphi^{\prime}\left(z_{0}\right)^{n} \mid n\right.$ is a positive integer $\} \cup\left\{0, u\left(z_{0}\right)\right\}$.

Proof. The only statement that has not been proved is (iii). Also if $u \equiv 0$, then certainly $\sigma\left(u C_{\varphi}\right)=\{0\}$.

Thus assume $u \not \equiv 0, \varphi$ is not a constant function and $\varphi\left(z_{0}\right)=$ $z_{0} \in D$. Let p be the linear fractional transformation $p(z)=$ $\left(z_{0}-z\right) /\left(1-\bar{z}_{0} z\right)$. Then p maps D onto D and $p \circ p=z$. If we define S by $S f(z)=f(p(z))$ for $z \in \bar{D}$, then S is an isometry on A and $S=S^{-1}$. Let $\psi=p \circ \rho \circ p$ and $u^{*}(z)=u(p(z))$. Then $u^{*} \in A$ and $S\left(u^{*} C_{\psi}\right) S^{-1}=u C_{\varphi} . \quad$ Indeed,

$$
\begin{aligned}
{\left[S\left(u^{*} C_{\psi}\right) S^{-1}\right] f } & =\left[S\left(u^{*} C_{\psi}\right)\right](f \circ p)=S\left[u^{*} \cdot f \circ p \circ \psi\right] \\
& =\left(u^{*} \circ p\right) \cdot(f \circ p \circ \psi \circ p)=u \cdot(f \circ \varphi)=\left(u C_{\varphi}\right) f
\end{aligned}
$$

Consequently $\sigma\left(u^{*} C_{\psi}\right)=\sigma\left(u C_{\varphi}\right)$. Since $\dot{\psi}(0)=0$, it follows from Theorem 2.5 that $\sigma\left(u^{*} C_{\psi}\right)=\left\{u^{*}(0) \psi^{\prime}(0)^{n} \mid n\right.$ is a positive integer $\} \cup$ $\left\{0, u^{*}(0)\right\}$. But $u^{*}(0)=u(p(0))=u\left(z_{0}\right)$ and $\psi^{\prime}(0)=\varphi^{\prime}\left(z_{0}\right)$. Thus $\sigma\left(u C_{\varphi}\right)=\left\{u\left(z_{0}\right) \varphi^{\prime}\left(z_{0}\right)^{n} \mid n\right.$ is a positive integer $\} \cup\left\{0, u\left(z_{0}\right)\right\}$.

Remarks. 1. By considering the adjoint $\left(u C_{\varphi}\right)^{*}$ of $u C_{\varphi}$ it can be shown that each nonzero eigenvalue of $u C_{\varphi}$ has multiplicity one.
2. Operators of the form $u C_{\varphi}$ on A for those φ which are conformal maps of D onto D were considered in [3]. Except for the case where φ has finite orbit, their spectra consist of circles, discs or annuli centered at the origin.
3. Caughran and Schwartz [1], Schwartz [4], and Shapiro and Taylor [5] have considered compact composition operators on H^{p}. Included in their papers are geometric conditions on φ insuring that C_{φ} be compact. They also determine $\sigma\left(C_{\varphi}\right)$ when C_{φ} is compact. It is shown that if C_{φ} is a compact composition operator, then φ has a fixed point z_{0} in D and $\sigma\left(C_{\varphi}\right)=\left\{\varphi^{\prime}\left(z_{0}\right)^{n} \mid n\right.$ is a positive integer $\} \cup$ $\{0,1\}$.
4. The arguments leading to Theorem 2.5 are valid if $u \in H^{\infty}$ $\varphi \in H^{\infty},|\varphi(z)|<1$ for $|z|<1$ and $u C_{\varphi}$ acts on $H^{p}, 1 \leqq p \leqq \infty$. Thus for such u and φ, if $\varphi\left(z_{0}\right)=z_{0} \in D$ and $u C_{\varphi}$ is a compact operator on H^{p}, then again $\sigma\left(u C_{\varphi}\right)=\left\{u\left(z_{0}\right) \varphi^{\prime}\left(z_{0}\right)^{n} \mid n\right.$ is a positive integer $\} \cup$ $\left\{0, u\left(z_{0}\right)\right\}$.

References

1. J. G. Caughran and H. J. Schwartz, Spectra of compact composition operators, Proc. Amer. Math. Soc., 51 (1975), 127-130.
2. M. A. Denjoy, Sur l'itération des fonctions analytiques, C. R. Acad. Sci. Paris, 182 (1926), 255-257.
3. H. Kamowitz, The spectra of a class of operators on the disc algebra, Indiana Univ. Math. J., 27 (1978), 851-610.
4. H. J. Schwartz, Composition operators on H^{p}, Thesis, Univ. of Toledo, 1969.
5. J. H. Shapiro and P. D. Taylor, Compact, nuclear and Hilbert-Schmidt composition operators on H^{2}, Indiana Univ. Math. J., 23 (1973), 471-496.
6. J. Wolf, Sur l'itération des fonctions, C. R. Acad. Sci. Paris, 182 (1926), 42-43 and 200-201.

Received December 1, 1977 and in revised May 5, 1978.
University of Massachusetts/Boston
DORCHESTER, MA 02125

